Abstract

We report surface-plasmon mediated total absorption of light into a silicon substrate. For an Au grating on Si, we experimentally show that a surface-plasmon polariton (SPP) excited on the air/Au interface leads to total absorption with a rate nearly 10 times larger than the ohmic damping rate of collectively oscillating free electrons in the Au film. Rigorous numerical simulations show that the SPP resonantly enhances forward diffraction of light to multiple orders of lossy waves in the Si substrate with reflection and ohmic absorption in the Au film being negligible. The measured reflection and phase spectra reveal a quantitative relation between the peak absorbance and the associated reflection phase change, implying a resonant interference contribution to this effect. An analytic model of a dissipative quasi-bound resonator provides a general formula for the resonant absorbance-phase relation in excellent agreement with the experimental results.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yoon, K. H. Seol, S. H. Song, and R. Magnusson, “Critical coupling in dissipative surface-plasmon resonators with multiple ports,” Opt. Express 18(25), 25702–25711 (2010).
    [CrossRef] [PubMed]
  2. Y. P. Bliokh, J. Felsteiner, and Y. Z. Slutsker, “Total absorption of an electromagnetic wave by an overdense plasma,” Phys. Rev. Lett. 95(16), 165003 (2005).
    [CrossRef] [PubMed]
  3. T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
    [CrossRef]
  4. W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
    [CrossRef] [PubMed]
  5. A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75(25), 3917–3919 (1999).
    [CrossRef]
  6. A. V. Kabashin and P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150(1-6), 5–6 (1998).
    [CrossRef]
  7. T. D. Heidel, J. K. Mapel, M. Singh, K. Celebi, and M. A. Baldo, “Surface plasmon polariton mediated energy transfer in organic photovoltaic devices,” Appl. Phys. Lett. 91(9), 093506 (2007).
    [CrossRef]
  8. K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
    [CrossRef]
  9. C. Hägglund and S. P. Apell, “Resource efficient plasmon-based 2D-photovoltaics with reflective support,” Opt. Express 18(S3Suppl 3), A343–A356 (2010).
    [CrossRef] [PubMed]
  10. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, 1984).
  11. J. Chandezon, M. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72(7), 839–846 (1982).
    [CrossRef]
  12. E. D. Palik, Handbook of Optical Constants of Solids II (Academic Press, San Diego, 1998).
  13. D. Maystre, M. Nevière, and P. Vincent, “On the general theory of anomalies and energy absorption by diffraction gratings and their relation with surface waves,” J. Mod. Opt. 25(9), 905–915 (1978).
    [CrossRef]

2011

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[CrossRef] [PubMed]

2010

2008

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

2007

T. D. Heidel, J. K. Mapel, M. Singh, K. Celebi, and M. A. Baldo, “Surface plasmon polariton mediated energy transfer in organic photovoltaic devices,” Appl. Phys. Lett. 91(9), 093506 (2007).
[CrossRef]

K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

2005

Y. P. Bliokh, J. Felsteiner, and Y. Z. Slutsker, “Total absorption of an electromagnetic wave by an overdense plasma,” Phys. Rev. Lett. 95(16), 165003 (2005).
[CrossRef] [PubMed]

1999

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75(25), 3917–3919 (1999).
[CrossRef]

1998

A. V. Kabashin and P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150(1-6), 5–6 (1998).
[CrossRef]

1982

1978

D. Maystre, M. Nevière, and P. Vincent, “On the general theory of anomalies and energy absorption by diffraction gratings and their relation with surface waves,” J. Mod. Opt. 25(9), 905–915 (1978).
[CrossRef]

Abdelsalam, M.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Apell, S. P.

Baldo, M. A.

T. D. Heidel, J. K. Mapel, M. Singh, K. Celebi, and M. A. Baldo, “Surface plasmon polariton mediated energy transfer in organic photovoltaic devices,” Appl. Phys. Lett. 91(9), 093506 (2007).
[CrossRef]

Bartlett, P. N.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Baumberg, J. J.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Bliokh, Y. P.

Y. P. Bliokh, J. Felsteiner, and Y. Z. Slutsker, “Total absorption of an electromagnetic wave by an overdense plasma,” Phys. Rev. Lett. 95(16), 165003 (2005).
[CrossRef] [PubMed]

Borisov, A. G.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Cao, H.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[CrossRef] [PubMed]

Celebi, K.

T. D. Heidel, J. K. Mapel, M. Singh, K. Celebi, and M. A. Baldo, “Surface plasmon polariton mediated energy transfer in organic photovoltaic devices,” Appl. Phys. Lett. 91(9), 093506 (2007).
[CrossRef]

Chandezon, J.

Chong, Y.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[CrossRef] [PubMed]

Cornet, G.

Dupuis, M.

Felsteiner, J.

Y. P. Bliokh, J. Felsteiner, and Y. Z. Slutsker, “Total absorption of an electromagnetic wave by an overdense plasma,” Phys. Rev. Lett. 95(16), 165003 (2005).
[CrossRef] [PubMed]

García de Abajo, F. J.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Ge, L.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[CrossRef] [PubMed]

Grigorenko, A. N.

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75(25), 3917–3919 (1999).
[CrossRef]

Hägglund, C.

Heidel, T. D.

T. D. Heidel, J. K. Mapel, M. Singh, K. Celebi, and M. A. Baldo, “Surface plasmon polariton mediated energy transfer in organic photovoltaic devices,” Appl. Phys. Lett. 91(9), 093506 (2007).
[CrossRef]

Inganas, O.

K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

Kabashin, A. V.

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75(25), 3917–3919 (1999).
[CrossRef]

A. V. Kabashin and P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150(1-6), 5–6 (1998).
[CrossRef]

Magnusson, R.

Mapel, J. K.

T. D. Heidel, J. K. Mapel, M. Singh, K. Celebi, and M. A. Baldo, “Surface plasmon polariton mediated energy transfer in organic photovoltaic devices,” Appl. Phys. Lett. 91(9), 093506 (2007).
[CrossRef]

Maystre, D.

J. Chandezon, M. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72(7), 839–846 (1982).
[CrossRef]

D. Maystre, M. Nevière, and P. Vincent, “On the general theory of anomalies and energy absorption by diffraction gratings and their relation with surface waves,” J. Mod. Opt. 25(9), 905–915 (1978).
[CrossRef]

Nevière, M.

D. Maystre, M. Nevière, and P. Vincent, “On the general theory of anomalies and energy absorption by diffraction gratings and their relation with surface waves,” J. Mod. Opt. 25(9), 905–915 (1978).
[CrossRef]

Nikitin, P. I.

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75(25), 3917–3919 (1999).
[CrossRef]

A. V. Kabashin and P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150(1-6), 5–6 (1998).
[CrossRef]

Noh, H.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[CrossRef] [PubMed]

Persson, N.-K.

K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

Rahachou, A.

K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

Seol, K. H.

Singh, M.

T. D. Heidel, J. K. Mapel, M. Singh, K. Celebi, and M. A. Baldo, “Surface plasmon polariton mediated energy transfer in organic photovoltaic devices,” Appl. Phys. Lett. 91(9), 093506 (2007).
[CrossRef]

Slutsker, Y. Z.

Y. P. Bliokh, J. Felsteiner, and Y. Z. Slutsker, “Total absorption of an electromagnetic wave by an overdense plasma,” Phys. Rev. Lett. 95(16), 165003 (2005).
[CrossRef] [PubMed]

Song, S. H.

Stone, A. D.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[CrossRef] [PubMed]

Sugawara, Y.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Teperik, T. V.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Tvingstedt, K.

K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

Vincent, P.

D. Maystre, M. Nevière, and P. Vincent, “On the general theory of anomalies and energy absorption by diffraction gratings and their relation with surface waves,” J. Mod. Opt. 25(9), 905–915 (1978).
[CrossRef]

Wan, W.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[CrossRef] [PubMed]

Yoon, J.

Zozoulenko, I. V.

K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

Appl. Phys. Lett.

T. D. Heidel, J. K. Mapel, M. Singh, K. Celebi, and M. A. Baldo, “Surface plasmon polariton mediated energy transfer in organic photovoltaic devices,” Appl. Phys. Lett. 91(9), 093506 (2007).
[CrossRef]

K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91(11), 113514 (2007).
[CrossRef]

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, “Phase jumps and interferometric surface plasmon resonance imaging,” Appl. Phys. Lett. 75(25), 3917–3919 (1999).
[CrossRef]

J. Mod. Opt.

D. Maystre, M. Nevière, and P. Vincent, “On the general theory of anomalies and energy absorption by diffraction gratings and their relation with surface waves,” J. Mod. Opt. 25(9), 905–915 (1978).
[CrossRef]

J. Opt. Soc. Am.

Nat. Photonics

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Opt. Commun.

A. V. Kabashin and P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150(1-6), 5–6 (1998).
[CrossRef]

Opt. Express

Phys. Rev. Lett.

Y. P. Bliokh, J. Felsteiner, and Y. Z. Slutsker, “Total absorption of an electromagnetic wave by an overdense plasma,” Phys. Rev. Lett. 95(16), 165003 (2005).
[CrossRef] [PubMed]

Science

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[CrossRef] [PubMed]

Other

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, 1984).

E. D. Palik, Handbook of Optical Constants of Solids II (Academic Press, San Diego, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Photograph of the 3” wafer containing nine Au grating devices. Each device is labeled D1–D9 as indicated. (b) Atomic force microscope (AFM) image of D3 after Au deposition of 27 nm. (c) Averaged AFM profiles for D1–D9.

Fig. 2
Fig. 2

Measured Δ spectra for (a) tAu = 27 nm, (b) 31.5 nm, and (c) 36 nm with corresponding R-spectra on the inset of each panel. Φ from the measured Δ and R spectra in (a)–(c) are represented on a complex plane in (d)–(f), respectively.

Fig. 3
Fig. 3

(a) AFM profile of the D5 grating (square symbols) and the profile used in the rigorous numerical simulation (solid curve). (b) Δ spectra near the SPP resonance wavelength. Open square symbols represent experimentally measured values by ellipsometry (tAu: red-27 nm, black-31.5 nm, and blue-36 nm) while curves indicate simulation results. (c), (d), and (e) show corresponding R spectra.

Fig. 4
Fig. 4

(a) Tangential magnetic field (Hy) distribution at R minimum (λ = 834.1 nm) in Fig. 3(d). Color scale represents magnetic field strength relative to that of the incident field (H0). The arrows with power-transfer percentages represent propagation directions of lossy waves reradiated from the excited SPP toward Si. (b) A simple resonator model in which the resonator is coupled to one radiation port and five lossy-wave ports.

Fig. 5
Fig. 5

(a) Geometry of resonance response circle (RRC) representing Eq. (2) on a complex plane. (b) RRCs for under-coupled (b < 0.5, red), critical-coupled (b = 0.5, green), and over-coupled (b > 0.5, blue) resonances.

Fig. 6
Fig. 6

Consistency of Eq. (3) with experimental results. Square symbols are taken from all under-coupled resonances in experimental results, and the curve indicates Eq. (3). Inset shows a schematic measuring ξ and Amax.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

1 Λ sinθ λ SPP = 1 λ SPP ε Au ε Au +1 ,
ρ(ω)= e iϕ [ ω ω 0 +i( γ nr γ rad ) ω ω 0 +i( γ nr + γ rad ) ],
A max = 4sin(ξ/2) [ 1+sin(ξ/2) ] 2 .

Metrics