Abstract

Truncated spherical voids nanostructured tungsten films are shown to have nearly perfect absorption with characteristics of broad-band, polarization-independent and wide-incidence angle in near infrared and visible regime. Through optimizing material and structural parameters, we can achieve the absorbance above 90% from 420THz to 600THz within incidence angle from 0° to 60° for TE polarization and from 450THz to 800THz within incidence angle from 0° to 75° for TM polarization. In particular, absorbance can achieve 99.9% at 550.5THz for both polarizations under normal incidence. Such strong absorption is explained using multilayer effective media theory and cavity resonance.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
    [CrossRef]
  2. C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express 17(13), 11039–11044 (2009).
    [CrossRef] [PubMed]
  3. N. C. Panoiu and R. M. Osgood., “Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes,” Opt. Lett. 32(19), 2825–2827 (2007).
    [CrossRef] [PubMed]
  4. B. Sepulveda, L.G. Carrascossa, D. Regarots, M. A. Otte, D. Farina, and L.M. Lechuga, “Surfance Plasmon Resonance Biosensors for highly sensitive detection in real samples,” Proc. SPIE 7397, 1–11 (2009).
  5. J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
    [CrossRef]
  6. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
    [CrossRef]
  7. R. Esteban, M. Laroche, and J. J. Greffet, “Dielectric gratings for wide-angle, broadband absorption by thin film photovoltaic cells,” Appl. Phys. Lett. 97(22), 221111 (2010).
    [CrossRef]
  8. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based in a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [CrossRef]
  9. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
    [CrossRef] [PubMed]
  10. E. E. Narimanov and A. V. Kildishev, “Optical Black Hole: Broadband omnidirectional light absober,” Appl. Phys. Lett. 95(4), 041106 (2009).
    [CrossRef]
  11. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19(18), 17413–17420 (2011).
    [CrossRef]
  12. T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
    [CrossRef]
  13. E. Popov, S. Enoch, and N. Bonod, “Absorption of light by extremely shallow metallic gratings: metamaterial behavior,” Opt. Express 17(8), 6770–6781 (2009).
    [CrossRef] [PubMed]
  14. N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express 17(25), 22800–22812 (2009).
    [CrossRef] [PubMed]
  15. Z. B. Li, W. Y. Zhou, X. T. Kong, and J. G. Tian, “Polarization dependence and independence of near-field enhancement through a subwavelength circle hole,” Opt. Express 18(6), 5854–5860 (2010).
    [CrossRef] [PubMed]
  16. T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
    [CrossRef]
  17. R. M. Cole, J. J. Baumberg, F. J. Garcia de Abajo, S. Mahajan, M. Abdelsalam, and P. N. Bartlett, “Understanding Plasmons in Nanoscale Voids,” Nano Lett. 7(7), 2094–2100 (2007).
    [CrossRef]
  18. C. H. Lin, R. L. Chern, and H. Y. Lin, “Polarization-independent broad-band nearly perfect absorbers in the visible regime,” Opt. Express 19(2), 415–424 (2011).
    [CrossRef] [PubMed]
  19. N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Solar-Selective Absorbers using Sub-Wavelength Gratings,” sergeant@stanford.edu, http://peumans-pc.stanford.edu .
  20. N. P. Sergeant, M. Agrawal, and P. Peumans, “High performance solar-selective absorbers using coated sub-wavelength gratings,” Opt. Express 18(6), 5525–5540 (2010).
    [CrossRef] [PubMed]
  21. M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, and S. Coyle, “Preparation of arrays of isolated spherical cavities by self-assembly of polystyrene spheres on self-assembled pro-patterned macroporous films,” Adv. Mater. (Deerfield Beach Fla.) 16(1), 90–93 (2004).
    [CrossRef]
  22. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1998).
  23. M. Born and E. Wolf, Principles of Optcs (Cambridge University Press, Cambirdge, 2003).
  24. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley, New Jersey, 2007).
  25. E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
    [CrossRef]
  26. H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85(16), 3399 (2004).
    [CrossRef]

2011

2010

N. P. Sergeant, M. Agrawal, and P. Peumans, “High performance solar-selective absorbers using coated sub-wavelength gratings,” Opt. Express 18(6), 5525–5540 (2010).
[CrossRef] [PubMed]

Z. B. Li, W. Y. Zhou, X. T. Kong, and J. G. Tian, “Polarization dependence and independence of near-field enhancement through a subwavelength circle hole,” Opt. Express 18(6), 5854–5860 (2010).
[CrossRef] [PubMed]

R. Esteban, M. Laroche, and J. J. Greffet, “Dielectric gratings for wide-angle, broadband absorption by thin film photovoltaic cells,” Appl. Phys. Lett. 97(22), 221111 (2010).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based in a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

2009

E. E. Narimanov and A. V. Kildishev, “Optical Black Hole: Broadband omnidirectional light absober,” Appl. Phys. Lett. 95(4), 041106 (2009).
[CrossRef]

B. Sepulveda, L.G. Carrascossa, D. Regarots, M. A. Otte, D. Farina, and L.M. Lechuga, “Surfance Plasmon Resonance Biosensors for highly sensitive detection in real samples,” Proc. SPIE 7397, 1–11 (2009).

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[CrossRef]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[CrossRef]

E. Popov, S. Enoch, and N. Bonod, “Absorption of light by extremely shallow metallic gratings: metamaterial behavior,” Opt. Express 17(8), 6770–6781 (2009).
[CrossRef] [PubMed]

C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express 17(13), 11039–11044 (2009).
[CrossRef] [PubMed]

N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express 17(25), 22800–22812 (2009).
[CrossRef] [PubMed]

2008

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[CrossRef]

T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

2007

R. M. Cole, J. J. Baumberg, F. J. Garcia de Abajo, S. Mahajan, M. Abdelsalam, and P. N. Bartlett, “Understanding Plasmons in Nanoscale Voids,” Nano Lett. 7(7), 2094–2100 (2007).
[CrossRef]

N. C. Panoiu and R. M. Osgood., “Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes,” Opt. Lett. 32(19), 2825–2827 (2007).
[CrossRef] [PubMed]

2006

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[CrossRef]

2004

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, and S. Coyle, “Preparation of arrays of isolated spherical cavities by self-assembly of polystyrene spheres on self-assembled pro-patterned macroporous films,” Adv. Mater. (Deerfield Beach Fla.) 16(1), 90–93 (2004).
[CrossRef]

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85(16), 3399 (2004).
[CrossRef]

Abdelsalam, M.

T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

R. M. Cole, J. J. Baumberg, F. J. Garcia de Abajo, S. Mahajan, M. Abdelsalam, and P. N. Bartlett, “Understanding Plasmons in Nanoscale Voids,” Nano Lett. 7(7), 2094–2100 (2007).
[CrossRef]

Abdelsalam, M. E.

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[CrossRef]

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, and S. Coyle, “Preparation of arrays of isolated spherical cavities by self-assembly of polystyrene spheres on self-assembled pro-patterned macroporous films,” Adv. Mater. (Deerfield Beach Fla.) 16(1), 90–93 (2004).
[CrossRef]

Agrawal, M.

Bartlett, P. N.

T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

R. M. Cole, J. J. Baumberg, F. J. Garcia de Abajo, S. Mahajan, M. Abdelsalam, and P. N. Bartlett, “Understanding Plasmons in Nanoscale Voids,” Nano Lett. 7(7), 2094–2100 (2007).
[CrossRef]

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[CrossRef]

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, and S. Coyle, “Preparation of arrays of isolated spherical cavities by self-assembly of polystyrene spheres on self-assembled pro-patterned macroporous films,” Adv. Mater. (Deerfield Beach Fla.) 16(1), 90–93 (2004).
[CrossRef]

Baumberg, J. J.

T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

R. M. Cole, J. J. Baumberg, F. J. Garcia de Abajo, S. Mahajan, M. Abdelsalam, and P. N. Bartlett, “Understanding Plasmons in Nanoscale Voids,” Nano Lett. 7(7), 2094–2100 (2007).
[CrossRef]

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[CrossRef]

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, and S. Coyle, “Preparation of arrays of isolated spherical cavities by self-assembly of polystyrene spheres on self-assembled pro-patterned macroporous films,” Adv. Mater. (Deerfield Beach Fla.) 16(1), 90–93 (2004).
[CrossRef]

Bonod, N.

Borisov, A. G.

T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Carrascossa, L.G.

B. Sepulveda, L.G. Carrascossa, D. Regarots, M. A. Otte, D. Farina, and L.M. Lechuga, “Surfance Plasmon Resonance Biosensors for highly sensitive detection in real samples,” Proc. SPIE 7397, 1–11 (2009).

Chen, X.

Chern, R. L.

Cintra, S.

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[CrossRef]

Cole, R. M.

R. M. Cole, J. J. Baumberg, F. J. Garcia de Abajo, S. Mahajan, M. Abdelsalam, and P. N. Bartlett, “Understanding Plasmons in Nanoscale Voids,” Nano Lett. 7(7), 2094–2100 (2007).
[CrossRef]

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[CrossRef]

Coyle, S.

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, and S. Coyle, “Preparation of arrays of isolated spherical cavities by self-assembly of polystyrene spheres on self-assembled pro-patterned macroporous films,” Adv. Mater. (Deerfield Beach Fla.) 16(1), 90–93 (2004).
[CrossRef]

Diem, M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[CrossRef]

Enoch, S.

Esteban, R.

R. Esteban, M. Laroche, and J. J. Greffet, “Dielectric gratings for wide-angle, broadband absorption by thin film photovoltaic cells,” Appl. Phys. Lett. 97(22), 221111 (2010).
[CrossRef]

Fan, S.

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[CrossRef]

Farina, D.

B. Sepulveda, L.G. Carrascossa, D. Regarots, M. A. Otte, D. Farina, and L.M. Lechuga, “Surfance Plasmon Resonance Biosensors for highly sensitive detection in real samples,” Proc. SPIE 7397, 1–11 (2009).

Feng, Q.

Garcia de Abajo, F. J.

T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

R. M. Cole, J. J. Baumberg, F. J. Garcia de Abajo, S. Mahajan, M. Abdelsalam, and P. N. Bartlett, “Understanding Plasmons in Nanoscale Voids,” Nano Lett. 7(7), 2094–2100 (2007).
[CrossRef]

Greffet, J. J.

R. Esteban, M. Laroche, and J. J. Greffet, “Dielectric gratings for wide-angle, broadband absorption by thin film photovoltaic cells,” Appl. Phys. Lett. 97(22), 221111 (2010).
[CrossRef]

Grigorenko, A. N.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

Hao, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based in a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Hu, C.

Huang, C.

Kelf, T. A.

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[CrossRef]

Kildishev, A. V.

E. E. Narimanov and A. V. Kildishev, “Optical Black Hole: Broadband omnidirectional light absober,” Appl. Phys. Lett. 95(4), 041106 (2009).
[CrossRef]

Kong, X. T.

Koschny, T.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[CrossRef]

Kravets, V. G.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

Krishna, S.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[CrossRef]

Laroche, M.

R. Esteban, M. Laroche, and J. J. Greffet, “Dielectric gratings for wide-angle, broadband absorption by thin film photovoltaic cells,” Appl. Phys. Lett. 97(22), 221111 (2010).
[CrossRef]

Lechuga, L.M.

B. Sepulveda, L.G. Carrascossa, D. Regarots, M. A. Otte, D. Farina, and L.M. Lechuga, “Surfance Plasmon Resonance Biosensors for highly sensitive detection in real samples,” Proc. SPIE 7397, 1–11 (2009).

Li, Z. B.

Lin, C. H.

Lin, H. Y.

Liu, X.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based in a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

Luo, X.

Mahajan, S.

R. M. Cole, J. J. Baumberg, F. J. Garcia de Abajo, S. Mahajan, M. Abdelsalam, and P. N. Bartlett, “Understanding Plasmons in Nanoscale Voids,” Nano Lett. 7(7), 2094–2100 (2007).
[CrossRef]

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[CrossRef]

Narimanov, E. E.

E. E. Narimanov and A. V. Kildishev, “Optical Black Hole: Broadband omnidirectional light absober,” Appl. Phys. Lett. 95(4), 041106 (2009).
[CrossRef]

Osgood, R. M.

Otte, M. A.

B. Sepulveda, L.G. Carrascossa, D. Regarots, M. A. Otte, D. Farina, and L.M. Lechuga, “Surfance Plasmon Resonance Biosensors for highly sensitive detection in real samples,” Proc. SPIE 7397, 1–11 (2009).

Padilla, W. J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based in a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

Painter, O.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[CrossRef]

Panoiu, N. C.

Peumans, P.

Pincon, O.

Popov, E.

Pu, M.

Qiu, M.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based in a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Regarots, D.

B. Sepulveda, L.G. Carrascossa, D. Regarots, M. A. Otte, D. Farina, and L.M. Lechuga, “Surfance Plasmon Resonance Biosensors for highly sensitive detection in real samples,” Proc. SPIE 7397, 1–11 (2009).

Rephaeli, E.

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[CrossRef]

Rosenberg, J.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[CrossRef]

Russell, A. E.

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[CrossRef]

Sai, H.

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85(16), 3399 (2004).
[CrossRef]

Schedin, F.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

Sepulveda, B.

B. Sepulveda, L.G. Carrascossa, D. Regarots, M. A. Otte, D. Farina, and L.M. Lechuga, “Surfance Plasmon Resonance Biosensors for highly sensitive detection in real samples,” Proc. SPIE 7397, 1–11 (2009).

Sergeant, N. P.

Shenoi, R. V.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[CrossRef]

Soukoulis, C. M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[CrossRef]

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

Starr, T.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

Sugawara, Y.

T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[CrossRef]

Teperik, T. V.

T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Tian, J. G.

Vandervelde, T. E.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[CrossRef]

Wang, C.

Wang, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based in a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Wang, M.

Yugami, H.

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85(16), 3399 (2004).
[CrossRef]

Zhao, Z.

Zhou, L.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based in a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

Zhou, W. Y.

Adv. Mater. (Deerfield Beach Fla.)

M. E. Abdelsalam, P. N. Bartlett, J. J. Baumberg, and S. Coyle, “Preparation of arrays of isolated spherical cavities by self-assembly of polystyrene spheres on self-assembled pro-patterned macroporous films,” Adv. Mater. (Deerfield Beach Fla.) 16(1), 90–93 (2004).
[CrossRef]

Appl. Phys. Lett.

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[CrossRef]

H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85(16), 3399 (2004).
[CrossRef]

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[CrossRef]

R. Esteban, M. Laroche, and J. J. Greffet, “Dielectric gratings for wide-angle, broadband absorption by thin film photovoltaic cells,” Appl. Phys. Lett. 97(22), 221111 (2010).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based in a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[CrossRef]

E. E. Narimanov and A. V. Kildishev, “Optical Black Hole: Broadband omnidirectional light absober,” Appl. Phys. Lett. 95(4), 041106 (2009).
[CrossRef]

Nano Lett.

R. M. Cole, J. J. Baumberg, F. J. Garcia de Abajo, S. Mahajan, M. Abdelsalam, and P. N. Bartlett, “Understanding Plasmons in Nanoscale Voids,” Nano Lett. 7(7), 2094–2100 (2007).
[CrossRef]

Nat. Photonics

T. V. Teperik, F. J. Garcia de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings,” Phys. Rev. B 78(20), 205405 (2008).
[CrossRef]

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 245415 (2006).
[CrossRef]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009).
[CrossRef]

Phys. Rev. Lett.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[CrossRef] [PubMed]

Proc. SPIE

B. Sepulveda, L.G. Carrascossa, D. Regarots, M. A. Otte, D. Farina, and L.M. Lechuga, “Surfance Plasmon Resonance Biosensors for highly sensitive detection in real samples,” Proc. SPIE 7397, 1–11 (2009).

Other

N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Solar-Selective Absorbers using Sub-Wavelength Gratings,” sergeant@stanford.edu, http://peumans-pc.stanford.edu .

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1998).

M. Born and E. Wolf, Principles of Optcs (Cambridge University Press, Cambirdge, 2003).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley, New Jersey, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic drawing of metal nanostructure. (a) Cross section view. (b) Top view. (c) Perspective view. The main geometric parameters are marked in (a). The red (dash) line in (b) shows the unit cell in simulation. The yellow area in (c) shows the incidence plane. Incidence angle θ and azimuth angle φ are marked in (c).

Fig. 2
Fig. 2

Absorption spectra with r=200 nm, t=314 nm, d=4 nm (black and solid line). The blue dash line shows the absorbance of the nanostructure surrounded by the dielectric material with ε=4 . The red dot line describes the absorbance of tungsten layer (thickness is 200nm).

Fig. 3
Fig. 3

Distribution of Ex under TM polarization respectively at (a) f=797THz, (b) f=550THz and (c) f=345THz.

Fig. 4
Fig. 4

Absorbance calculated by multilayer effective media theory. The insert shows the process visually.

Fig. 5
Fig. 5

Absorbance as a function of incidence angle and frequency under (a) TE polarization and (b) TM polarizations.

Fig. 6
Fig. 6

Absorbance as a function of azimuth angle and frequency at 20° incident angle for (a) TE polarization and (b) TM polarizations.

Fig. 7
Fig. 7

Dependence of absorbance on (a) the radius of voids r and (b) distance d.

Fig. 8
Fig. 8

Absorbance of improved absorber as a function of incidence angle and frequency for (a) TE polarization and (b) TM polarizations.

Fig. 9
Fig. 9

Absorbance as a function of azimuth angle and frequency in normal incident case, 0° for TM polarization and 90° for TE polarization.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε i = ε tungsten ε air (1+2f)+2 ε tungsten (1f) ε air (1f)+ ε tungsten (2+f) ,

Metrics