Abstract

Experimental investigation of single and dual pulses in a passively Q-switched Nd:YAG microchip laser with a Cr4+:YAG saturable absorber has been reported. The dual pulses consist of a main and a satellite pulse with respective spectra, intensities, and durations. It is found that the preponderant oscillating mode gives birth to the main pulse, and the other oscillating mode corresponds to the satellite pulse. Our results demonstrate that the dual-pulse emission results from double-longitudinal-mode oscillation in high pump regime.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Y. Zhang, H. T. Huang, L. Xu, M. J. Wang, F. Chen, J. Q. Xu, J. L. He, and B. Zhao, “Continuous wave and passively Q-switched Nd:LuxY1-xVO4 laser at 1.34 µm with V3+:YAG as the saturable absorber,” Opt. Express 19(3), 1830–1835 (2011).
    [CrossRef] [PubMed]
  2. D. Mao, X. M. Liu, L. R. Wang, H. Lu, and L. N. Duan, “Dual-wavelength step-like pulses in an ultra-large negative-dispersion fiber laser,” Opt. Express 19(5), 3996–4001 (2011).
    [CrossRef] [PubMed]
  3. L. R. Wang, X. M. Liu, and Y. K. Gong, “Giant-chirp oscillator for ultra-large net-normal dispersion fiber lasers,” Laser Phys. Lett. 7(1), 63–67 (2010).
    [CrossRef]
  4. X. H. Li, X. M. Liu, X. H. Hu, L. R. Wang, H. Lu, Y. S. Wang, and W. Zhao, “Long-cavity passively mode-locked fiber ring laser with high-energy rectangular-shape pulses in anomalous dispersion regime,” Opt. Lett. 35(19), 3249–3251 (2010).
    [CrossRef] [PubMed]
  5. L. R. Wang, X. M. Liu, Y. K. Gong, D. Mao, and L. N. Duan, “Observations of four types of pulses in a fiber laser with large net-normal dispersion,” Opt. Express 19(8), 7616–7624 (2011).
    [CrossRef] [PubMed]
  6. D. Mao, X. M. Liu, L. R. Wang, X. H. Hu, and H. Lu, “Partially polarized wave-breaking-free dissipative soliton with super-broad spectrum in a mode-locked fiber laser,” Laser Phys. Lett. 8(2), 134–138 (2011).
    [CrossRef]
  7. Y. X. Bai, N. L. Wu, J. Zhang, J. Q. Li, S. Q. Li, J. Xu, and P. Z. Deng, “Passively Q-switched Nd:YVO4 laser with a Cr4+:YAG crystal saturable absorber,” Appl. Opt. 36(12), 2468–2472 (1997).
    [CrossRef] [PubMed]
  8. A. Agnesi and S. Dell’acqua, “High-peak-power diode-pumped passively Q-switched Nd:YVO4 laser,” Appl. Phys. B 76(4), 351–354 (2003).
    [CrossRef]
  9. J. J. Zayhowski, “Passively Q-switched Nd:YAG microchip lasers and applications,” J. Alloy. Comp. 303–304(1–2), 393–400 (2000).
    [CrossRef]
  10. D. Z. Li, X. D. Xu, J. Q. Meng, D. H. Zhou, C. T. Xia, F. Wu, and J. Xu, “Diode-pumped continuous wave and Q-switched operation of Nd:CaYAIO4 crystal,” Opt. Express 18(18), 18649–18654 (2010).
    [CrossRef] [PubMed]
  11. D. Y. Tang, S. P. Ng, L. J. Qin, and X. L. Meng, “Deterministic chaos in a diode-pumped Nd:YAG laser passively Q switched by a Cr4+:YAG crystal,” Opt. Lett. 28(5), 325–327 (2003).
    [CrossRef] [PubMed]
  12. J. Y. Huang, W. Z. Zhuang, W. C. Huang, K. W. Su, C. Hu, K. F. Huang, and Y. F. Chen, “Comparative studies for Cr4+:YAG crystal and AlGaInAs semiconductor used as a saturable absorber in Q-switched Yb-doped fiber lasers,” Opt. Express 17(23), 20800–20805 (2009).
    [CrossRef] [PubMed]
  13. G. M. Thomas and M. J. Damzen, “Passively Q-switched Nd:YVO4 laser with greater than 11 W average power,” Opt. Express 19(5), 4577–4582 (2011).
    [CrossRef] [PubMed]
  14. J. J. Zayhowski and A. Wilson, “Pump-induced bleaching of saturable absorber in short pulse Nd:YAG/Cr4+:YAG passively Q-switched microchip lasers,” IEEE J. Quantum Electron. 39(12), 1588–1593 (2003).
    [CrossRef]
  15. X. Li, G. Q. Li, S. Z. Zhao, C. Xu, Y. F. Li, H. Liu, and H. J. Zhang, “Enhancement of passively Q-switched performance at 1.34 μm with a class of Nd:GdxY1-xVO4 crystals,” Opt. Express 18(21), 21551–21556 (2010).
    [CrossRef] [PubMed]
  16. J. J. Zayhowski and C. Dill, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19(18), 1427–1429 (1994).
    [CrossRef] [PubMed]
  17. Y. C. Zhi, C. M. Dong, J. Zhang, Z. T. Jia, B. T. Zhang, Y. Z. Zhang, S. P. Wang, J. L. He, and X. T. Tao, “Continuous-wave and passively Q-switched laser performance of LD-end-pumped 1062 nm Nd:GAGG laser,” Opt. Express 18(8), 7584–7589 (2010).
    [CrossRef] [PubMed]
  18. Y. F. Chen and Y. P. Lan, “Comparison between c-cut and a-cut Nd:YVO4 lasers passively Q-switched with Cr4+:YAG saturable absorber,” Appl. Phys. B 74(4-5), 415–418 (2002).
    [CrossRef]
  19. I. Freitag, A. Tünnermann, and H. Welling, “Passively Q-switched Nd:YAG ring lasers with high average output power in single-frequency operation,” Opt. Lett. 22(10), 706–708 (1997).
    [CrossRef] [PubMed]
  20. J. Y. Huang, H. C. Liang, K. W. Su, and Y. F. Chen, “High power passively Q-switched ytterbium fiber laser with Cr(4+):YAG as a saturable absorber,” Opt. Express 15(2), 473–479 (2007).
    [CrossRef] [PubMed]
  21. H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
    [CrossRef] [PubMed]
  22. A. E. Siegman, Lasers (University Science, 1986), Chap. 26.
  23. J. Dong, K. Ueda, and P. Yang, “Multi-pulse oscillation and instabilities in microchip self-Q-switched transverse-mode laser,” Opt. Express 17(19), 16980–16993 (2009).
    [CrossRef] [PubMed]
  24. J. Liu, B. Ozygus, S. Yang, J. Erhard, U. Seelig, A. Ding, H. Weber, X. Meng, L. Zhu, L. Qin, C. Du, X. Xu, and Z. Shao, “Efficient passive Q-switching operation of a diode-pumped Nd:GdVO4 laser with a Cr4+:YAG saturable absorber,” J. Opt. Soc. Am. B 20(4), 652–661 (2003).
    [CrossRef]
  25. S. P. Ng, D. Y. Tang, L. J. Qian, and L. J. Qin, “Satellite pulse generation in diode-pumped passively Q-switched Nd:GdVO4 lasers,” IEEE J. Quantum Electron. 42(7), 625–632 (2006).
    [CrossRef]
  26. W. Kochner, Solid State Laser Engineering, 5th ed. (Springer–Verlag, 1999), Chap. 5.2.2, pp.259, Chap. 2.3.1, pp.55.
  27. X. Délen, F. Balembois, and P. Georges, “Temperature dependence of the emission cross section of Nd:YVO4 around 1064 nm and consequences on laser operation,” J. Opt. Soc. Am. B 28(5), 972–976 (2011).
    [CrossRef]
  28. D. K. Sardar and R. M. Yow, “Stark components of 4F3/24I9/2 and 4I11/2 manifold energy levels and effects of temperature on the laser transition of Nd3+: in YVO4,” Opt. Mater. 14(1), 5–11 (2000).
    [CrossRef]

2011 (6)

2010 (5)

2009 (2)

2008 (1)

2007 (1)

2006 (1)

S. P. Ng, D. Y. Tang, L. J. Qian, and L. J. Qin, “Satellite pulse generation in diode-pumped passively Q-switched Nd:GdVO4 lasers,” IEEE J. Quantum Electron. 42(7), 625–632 (2006).
[CrossRef]

2003 (4)

A. Agnesi and S. Dell’acqua, “High-peak-power diode-pumped passively Q-switched Nd:YVO4 laser,” Appl. Phys. B 76(4), 351–354 (2003).
[CrossRef]

J. J. Zayhowski and A. Wilson, “Pump-induced bleaching of saturable absorber in short pulse Nd:YAG/Cr4+:YAG passively Q-switched microchip lasers,” IEEE J. Quantum Electron. 39(12), 1588–1593 (2003).
[CrossRef]

D. Y. Tang, S. P. Ng, L. J. Qin, and X. L. Meng, “Deterministic chaos in a diode-pumped Nd:YAG laser passively Q switched by a Cr4+:YAG crystal,” Opt. Lett. 28(5), 325–327 (2003).
[CrossRef] [PubMed]

J. Liu, B. Ozygus, S. Yang, J. Erhard, U. Seelig, A. Ding, H. Weber, X. Meng, L. Zhu, L. Qin, C. Du, X. Xu, and Z. Shao, “Efficient passive Q-switching operation of a diode-pumped Nd:GdVO4 laser with a Cr4+:YAG saturable absorber,” J. Opt. Soc. Am. B 20(4), 652–661 (2003).
[CrossRef]

2002 (1)

Y. F. Chen and Y. P. Lan, “Comparison between c-cut and a-cut Nd:YVO4 lasers passively Q-switched with Cr4+:YAG saturable absorber,” Appl. Phys. B 74(4-5), 415–418 (2002).
[CrossRef]

2000 (2)

J. J. Zayhowski, “Passively Q-switched Nd:YAG microchip lasers and applications,” J. Alloy. Comp. 303–304(1–2), 393–400 (2000).
[CrossRef]

D. K. Sardar and R. M. Yow, “Stark components of 4F3/24I9/2 and 4I11/2 manifold energy levels and effects of temperature on the laser transition of Nd3+: in YVO4,” Opt. Mater. 14(1), 5–11 (2000).
[CrossRef]

1997 (2)

1994 (1)

Agnesi, A.

A. Agnesi and S. Dell’acqua, “High-peak-power diode-pumped passively Q-switched Nd:YVO4 laser,” Appl. Phys. B 76(4), 351–354 (2003).
[CrossRef]

Bai, Y. X.

Balembois, F.

Chen, F.

Chen, Y. F.

Damzen, M. J.

Délen, X.

Dell’acqua, S.

A. Agnesi and S. Dell’acqua, “High-peak-power diode-pumped passively Q-switched Nd:YVO4 laser,” Appl. Phys. B 76(4), 351–354 (2003).
[CrossRef]

Deng, P. Z.

Dill, C.

Ding, A.

Dong, C. M.

Dong, J.

Du, C.

Duan, L. N.

Erhard, J.

Freitag, I.

Georges, P.

Gong, Y. K.

L. R. Wang, X. M. Liu, Y. K. Gong, D. Mao, and L. N. Duan, “Observations of four types of pulses in a fiber laser with large net-normal dispersion,” Opt. Express 19(8), 7616–7624 (2011).
[CrossRef] [PubMed]

L. R. Wang, X. M. Liu, and Y. K. Gong, “Giant-chirp oscillator for ultra-large net-normal dispersion fiber lasers,” Laser Phys. Lett. 7(1), 63–67 (2010).
[CrossRef]

He, J. L.

Hu, C.

Hu, X. H.

D. Mao, X. M. Liu, L. R. Wang, X. H. Hu, and H. Lu, “Partially polarized wave-breaking-free dissipative soliton with super-broad spectrum in a mode-locked fiber laser,” Laser Phys. Lett. 8(2), 134–138 (2011).
[CrossRef]

X. H. Li, X. M. Liu, X. H. Hu, L. R. Wang, H. Lu, Y. S. Wang, and W. Zhao, “Long-cavity passively mode-locked fiber ring laser with high-energy rectangular-shape pulses in anomalous dispersion regime,” Opt. Lett. 35(19), 3249–3251 (2010).
[CrossRef] [PubMed]

Huang, H. T.

Huang, J. Y.

Huang, K. F.

Huang, W. C.

Jia, Z. T.

Kan, H.

Lan, Y. P.

Y. F. Chen and Y. P. Lan, “Comparison between c-cut and a-cut Nd:YVO4 lasers passively Q-switched with Cr4+:YAG saturable absorber,” Appl. Phys. B 74(4-5), 415–418 (2002).
[CrossRef]

Li, D. Z.

Li, G. Q.

Li, J. Q.

Li, S. Q.

Li, X.

Li, X. H.

Li, Y. F.

Liang, H. C.

Liu, H.

Liu, J.

Liu, X. M.

Lu, H.

Mao, D.

Meng, J. Q.

Meng, X.

Meng, X. L.

Ng, S. P.

S. P. Ng, D. Y. Tang, L. J. Qian, and L. J. Qin, “Satellite pulse generation in diode-pumped passively Q-switched Nd:GdVO4 lasers,” IEEE J. Quantum Electron. 42(7), 625–632 (2006).
[CrossRef]

D. Y. Tang, S. P. Ng, L. J. Qin, and X. L. Meng, “Deterministic chaos in a diode-pumped Nd:YAG laser passively Q switched by a Cr4+:YAG crystal,” Opt. Lett. 28(5), 325–327 (2003).
[CrossRef] [PubMed]

Ozygus, B.

Qian, L. J.

S. P. Ng, D. Y. Tang, L. J. Qian, and L. J. Qin, “Satellite pulse generation in diode-pumped passively Q-switched Nd:GdVO4 lasers,” IEEE J. Quantum Electron. 42(7), 625–632 (2006).
[CrossRef]

Qin, L.

Qin, L. J.

S. P. Ng, D. Y. Tang, L. J. Qian, and L. J. Qin, “Satellite pulse generation in diode-pumped passively Q-switched Nd:GdVO4 lasers,” IEEE J. Quantum Electron. 42(7), 625–632 (2006).
[CrossRef]

D. Y. Tang, S. P. Ng, L. J. Qin, and X. L. Meng, “Deterministic chaos in a diode-pumped Nd:YAG laser passively Q switched by a Cr4+:YAG crystal,” Opt. Lett. 28(5), 325–327 (2003).
[CrossRef] [PubMed]

Sakai, H.

Sardar, D. K.

D. K. Sardar and R. M. Yow, “Stark components of 4F3/24I9/2 and 4I11/2 manifold energy levels and effects of temperature on the laser transition of Nd3+: in YVO4,” Opt. Mater. 14(1), 5–11 (2000).
[CrossRef]

Seelig, U.

Shao, Z.

Su, K. W.

Taira, T.

Tang, D. Y.

S. P. Ng, D. Y. Tang, L. J. Qian, and L. J. Qin, “Satellite pulse generation in diode-pumped passively Q-switched Nd:GdVO4 lasers,” IEEE J. Quantum Electron. 42(7), 625–632 (2006).
[CrossRef]

D. Y. Tang, S. P. Ng, L. J. Qin, and X. L. Meng, “Deterministic chaos in a diode-pumped Nd:YAG laser passively Q switched by a Cr4+:YAG crystal,” Opt. Lett. 28(5), 325–327 (2003).
[CrossRef] [PubMed]

Tao, X. T.

Thomas, G. M.

Tünnermann, A.

Ueda, K.

Wang, L. R.

Wang, M. J.

Wang, S. P.

Wang, Y. S.

Weber, H.

Welling, H.

Wilson, A.

J. J. Zayhowski and A. Wilson, “Pump-induced bleaching of saturable absorber in short pulse Nd:YAG/Cr4+:YAG passively Q-switched microchip lasers,” IEEE J. Quantum Electron. 39(12), 1588–1593 (2003).
[CrossRef]

Wu, F.

Wu, N. L.

Xia, C. T.

Xu, C.

Xu, J.

Xu, J. Q.

Xu, L.

Xu, X.

Xu, X. D.

Yang, P.

Yang, S.

Yow, R. M.

D. K. Sardar and R. M. Yow, “Stark components of 4F3/24I9/2 and 4I11/2 manifold energy levels and effects of temperature on the laser transition of Nd3+: in YVO4,” Opt. Mater. 14(1), 5–11 (2000).
[CrossRef]

Zayhowski, J. J.

J. J. Zayhowski and A. Wilson, “Pump-induced bleaching of saturable absorber in short pulse Nd:YAG/Cr4+:YAG passively Q-switched microchip lasers,” IEEE J. Quantum Electron. 39(12), 1588–1593 (2003).
[CrossRef]

J. J. Zayhowski, “Passively Q-switched Nd:YAG microchip lasers and applications,” J. Alloy. Comp. 303–304(1–2), 393–400 (2000).
[CrossRef]

J. J. Zayhowski and C. Dill, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19(18), 1427–1429 (1994).
[CrossRef] [PubMed]

Zhang, B. T.

Zhang, H. J.

Zhang, J.

Zhang, S. Y.

Zhang, Y. Z.

Zhao, B.

Zhao, S. Z.

Zhao, W.

Zhi, Y. C.

Zhou, D. H.

Zhu, L.

Zhuang, W. Z.

Appl. Opt. (1)

Appl. Phys. B (2)

A. Agnesi and S. Dell’acqua, “High-peak-power diode-pumped passively Q-switched Nd:YVO4 laser,” Appl. Phys. B 76(4), 351–354 (2003).
[CrossRef]

Y. F. Chen and Y. P. Lan, “Comparison between c-cut and a-cut Nd:YVO4 lasers passively Q-switched with Cr4+:YAG saturable absorber,” Appl. Phys. B 74(4-5), 415–418 (2002).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. P. Ng, D. Y. Tang, L. J. Qian, and L. J. Qin, “Satellite pulse generation in diode-pumped passively Q-switched Nd:GdVO4 lasers,” IEEE J. Quantum Electron. 42(7), 625–632 (2006).
[CrossRef]

J. J. Zayhowski and A. Wilson, “Pump-induced bleaching of saturable absorber in short pulse Nd:YAG/Cr4+:YAG passively Q-switched microchip lasers,” IEEE J. Quantum Electron. 39(12), 1588–1593 (2003).
[CrossRef]

J. Alloy. Comp. (1)

J. J. Zayhowski, “Passively Q-switched Nd:YAG microchip lasers and applications,” J. Alloy. Comp. 303–304(1–2), 393–400 (2000).
[CrossRef]

J. Opt. Soc. Am. B (2)

Laser Phys. Lett. (2)

L. R. Wang, X. M. Liu, and Y. K. Gong, “Giant-chirp oscillator for ultra-large net-normal dispersion fiber lasers,” Laser Phys. Lett. 7(1), 63–67 (2010).
[CrossRef]

D. Mao, X. M. Liu, L. R. Wang, X. H. Hu, and H. Lu, “Partially polarized wave-breaking-free dissipative soliton with super-broad spectrum in a mode-locked fiber laser,” Laser Phys. Lett. 8(2), 134–138 (2011).
[CrossRef]

Opt. Express (11)

J. Y. Huang, H. C. Liang, K. W. Su, and Y. F. Chen, “High power passively Q-switched ytterbium fiber laser with Cr(4+):YAG as a saturable absorber,” Opt. Express 15(2), 473–479 (2007).
[CrossRef] [PubMed]

H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
[CrossRef] [PubMed]

J. Dong, K. Ueda, and P. Yang, “Multi-pulse oscillation and instabilities in microchip self-Q-switched transverse-mode laser,” Opt. Express 17(19), 16980–16993 (2009).
[CrossRef] [PubMed]

J. Y. Huang, W. Z. Zhuang, W. C. Huang, K. W. Su, C. Hu, K. F. Huang, and Y. F. Chen, “Comparative studies for Cr4+:YAG crystal and AlGaInAs semiconductor used as a saturable absorber in Q-switched Yb-doped fiber lasers,” Opt. Express 17(23), 20800–20805 (2009).
[CrossRef] [PubMed]

Y. C. Zhi, C. M. Dong, J. Zhang, Z. T. Jia, B. T. Zhang, Y. Z. Zhang, S. P. Wang, J. L. He, and X. T. Tao, “Continuous-wave and passively Q-switched laser performance of LD-end-pumped 1062 nm Nd:GAGG laser,” Opt. Express 18(8), 7584–7589 (2010).
[CrossRef] [PubMed]

D. Z. Li, X. D. Xu, J. Q. Meng, D. H. Zhou, C. T. Xia, F. Wu, and J. Xu, “Diode-pumped continuous wave and Q-switched operation of Nd:CaYAIO4 crystal,” Opt. Express 18(18), 18649–18654 (2010).
[CrossRef] [PubMed]

L. R. Wang, X. M. Liu, Y. K. Gong, D. Mao, and L. N. Duan, “Observations of four types of pulses in a fiber laser with large net-normal dispersion,” Opt. Express 19(8), 7616–7624 (2011).
[CrossRef] [PubMed]

X. Li, G. Q. Li, S. Z. Zhao, C. Xu, Y. F. Li, H. Liu, and H. J. Zhang, “Enhancement of passively Q-switched performance at 1.34 μm with a class of Nd:GdxY1-xVO4 crystals,” Opt. Express 18(21), 21551–21556 (2010).
[CrossRef] [PubMed]

S. Y. Zhang, H. T. Huang, L. Xu, M. J. Wang, F. Chen, J. Q. Xu, J. L. He, and B. Zhao, “Continuous wave and passively Q-switched Nd:LuxY1-xVO4 laser at 1.34 µm with V3+:YAG as the saturable absorber,” Opt. Express 19(3), 1830–1835 (2011).
[CrossRef] [PubMed]

D. Mao, X. M. Liu, L. R. Wang, H. Lu, and L. N. Duan, “Dual-wavelength step-like pulses in an ultra-large negative-dispersion fiber laser,” Opt. Express 19(5), 3996–4001 (2011).
[CrossRef] [PubMed]

G. M. Thomas and M. J. Damzen, “Passively Q-switched Nd:YVO4 laser with greater than 11 W average power,” Opt. Express 19(5), 4577–4582 (2011).
[CrossRef] [PubMed]

Opt. Lett. (4)

Opt. Mater. (1)

D. K. Sardar and R. M. Yow, “Stark components of 4F3/24I9/2 and 4I11/2 manifold energy levels and effects of temperature on the laser transition of Nd3+: in YVO4,” Opt. Mater. 14(1), 5–11 (2000).
[CrossRef]

Other (2)

W. Kochner, Solid State Laser Engineering, 5th ed. (Springer–Verlag, 1999), Chap. 5.2.2, pp.259, Chap. 2.3.1, pp.55.

A. E. Siegman, Lasers (University Science, 1986), Chap. 26.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of experimental setup for passively Q-switched Nd:YAG laser.

Fig. 2
Fig. 2

Pulse characteristics in temporal (a) and spectral (b) domain when the pump power is ~3.52 W. The corresponding repetition rate is ~4.4 kHz. Two- (c) and three- (d) dimensional output-beam qualities, which suggests the TEM00 Gaussian mode.

Fig. 3
Fig. 3

Pulse characteristics in temporal (a) and spectral (b) domain when the pump power is ~4.36 W. The corresponding repetition rate is ~8.8 kHz. Two- (c) and three- (d) dimensional output-beam qualities.

Fig. 4
Fig. 4

Pulses evolution in temporal (a) and spectral (b) domain versus different pump power.

Fig. 5
Fig. 5

Pulse characteristics in temporal (a) and spectral domain (b) under different positionsof pump light spot in the Nd:YAG/Cr4+:YAG crystal.

Fig. 6
Fig. 6

Repetition rate of passively Q-switched Nd:YAG laser as a function of the pump power.

Metrics