Abstract

This study presents a photo-driven micro-lever fabricated to multiply optical forces using the two-photon polymerization 3D-microfabrication technique. The micro-lever is a second class lever comprising an optical trapping sphere, a beam, and a pivot. A micro-spring is placed between the short and long arms to characterize the induced force. This design enables precise manipulation of the micro-lever by optical tweezers at the micron scale. Under optical dragging, the sphere placed on the lever beam moves, resulting in torque that induces related force on the spring. The optical force applied at the sphere is approximately 100 to 300 pN, with a laser power of 100 to 300 mW. In this study, the optical tweezers drives the micro-lever successfully. The relationship between the optical force and the spring constant can be determined by using the principle of leverage. The arm ratio design developed in this study multiplies the applied optical force by 9. The experimental results are in good agreement with the simulation of spring property.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  2. P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
    [CrossRef]
  3. P. Galajda and P. Ormos, “Rotors produced and driven in laser tweezers with reversed direction of rotation,” Appl. Phys. Lett. 80(24), 4653–4655 (2002).
    [CrossRef]
  4. K. Ikuta, Y. Sasaki, L. Maegawa, and S. Maruo, “Biochemical IC chip for pretreatment in biochemical experiments,” MEMSYS, IEEE 6th Annu. Int. Conf., 19–23 Jan, 343–346 (2003).
  5. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
    [CrossRef] [PubMed]
  6. Y. J. Jeong, T. W. Lim, Y. Son, D.-Y. Yang, H.-J. Kong, and K.-S. Lee, “Proportional enlargement of movement by using an optically driven multi-link system with an elastic joint,” Opt. Express 18(13), 13745–13753 (2010).
    [CrossRef] [PubMed]
  7. H.-B. Sun, K. Takada, and S. Kawata, “Elastic force analysis of functional polymer submicron oscillators,” Appl. Phys. Lett. 79(19), 3173–3175 (2001).
    [CrossRef]
  8. J. Wang, H. Xia, B.-B. Xu, L.-G. Niu, D. Wu, Q.-D. Chen, and H.-B. Sun, “Remote manipulation of micronanomachines containing magnetic nanoparticles,” Opt. Lett. 34(5), 581–583 (2009).
    [CrossRef] [PubMed]
  9. H. Xia, J. Wang, Y. Tian, Q.-D. Chen, X.-B. Du, Y.-L. Zhang, Y. He, and H.-B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. (Deerfield Beach Fla.) 22(29), 3204–3207 (2010).
    [CrossRef] [PubMed]
  10. K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
    [CrossRef] [PubMed]
  11. W. H. Wright, G. J. Sonek, and M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33(9), 1735–1748 (1994).
    [CrossRef] [PubMed]
  12. A. Ostendorf and B. N. Chichkov, “Two-photon polymerization: a new approach to micromachining,” Photonics Spectra, Oct. (2006).

2010

H. Xia, J. Wang, Y. Tian, Q.-D. Chen, X.-B. Du, Y.-L. Zhang, Y. He, and H.-B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. (Deerfield Beach Fla.) 22(29), 3204–3207 (2010).
[CrossRef] [PubMed]

Y. J. Jeong, T. W. Lim, Y. Son, D.-Y. Yang, H.-J. Kong, and K.-S. Lee, “Proportional enlargement of movement by using an optically driven multi-link system with an elastic joint,” Opt. Express 18(13), 13745–13753 (2010).
[CrossRef] [PubMed]

2009

2008

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
[CrossRef] [PubMed]

2002

P. Galajda and P. Ormos, “Rotors produced and driven in laser tweezers with reversed direction of rotation,” Appl. Phys. Lett. 80(24), 4653–4655 (2002).
[CrossRef]

2001

H.-B. Sun, K. Takada, and S. Kawata, “Elastic force analysis of functional polymer submicron oscillators,” Appl. Phys. Lett. 79(19), 3173–3175 (2001).
[CrossRef]

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[CrossRef]

1997

1994

1986

Ashkin, A.

Berns, M. W.

Bjorkholm, J. E.

Chen, Q.-D.

H. Xia, J. Wang, Y. Tian, Q.-D. Chen, X.-B. Du, Y.-L. Zhang, Y. He, and H.-B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. (Deerfield Beach Fla.) 22(29), 3204–3207 (2010).
[CrossRef] [PubMed]

J. Wang, H. Xia, B.-B. Xu, L.-G. Niu, D. Wu, Q.-D. Chen, and H.-B. Sun, “Remote manipulation of micronanomachines containing magnetic nanoparticles,” Opt. Lett. 34(5), 581–583 (2009).
[CrossRef] [PubMed]

Chu, S.

Du, X.-B.

H. Xia, J. Wang, Y. Tian, Q.-D. Chen, X.-B. Du, Y.-L. Zhang, Y. He, and H.-B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. (Deerfield Beach Fla.) 22(29), 3204–3207 (2010).
[CrossRef] [PubMed]

Dziedzic, J. M.

Galajda, P.

P. Galajda and P. Ormos, “Rotors produced and driven in laser tweezers with reversed direction of rotation,” Appl. Phys. Lett. 80(24), 4653–4655 (2002).
[CrossRef]

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[CrossRef]

He, Y.

H. Xia, J. Wang, Y. Tian, Q.-D. Chen, X.-B. Du, Y.-L. Zhang, Y. He, and H.-B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. (Deerfield Beach Fla.) 22(29), 3204–3207 (2010).
[CrossRef] [PubMed]

Jeong, Y. J.

Kawata, S.

H.-B. Sun, K. Takada, and S. Kawata, “Elastic force analysis of functional polymer submicron oscillators,” Appl. Phys. Lett. 79(19), 3173–3175 (2001).
[CrossRef]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
[CrossRef] [PubMed]

Kong, H.-J.

Lee, K.-S.

Lim, T. W.

Maruo, S.

Nagy, A.

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
[CrossRef] [PubMed]

Nakamura, O.

Neuman, K. C.

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
[CrossRef] [PubMed]

Niu, L.-G.

Ormos, P.

P. Galajda and P. Ormos, “Rotors produced and driven in laser tweezers with reversed direction of rotation,” Appl. Phys. Lett. 80(24), 4653–4655 (2002).
[CrossRef]

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[CrossRef]

Son, Y.

Sonek, G. J.

Sun, H.-B.

H. Xia, J. Wang, Y. Tian, Q.-D. Chen, X.-B. Du, Y.-L. Zhang, Y. He, and H.-B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. (Deerfield Beach Fla.) 22(29), 3204–3207 (2010).
[CrossRef] [PubMed]

J. Wang, H. Xia, B.-B. Xu, L.-G. Niu, D. Wu, Q.-D. Chen, and H.-B. Sun, “Remote manipulation of micronanomachines containing magnetic nanoparticles,” Opt. Lett. 34(5), 581–583 (2009).
[CrossRef] [PubMed]

H.-B. Sun, K. Takada, and S. Kawata, “Elastic force analysis of functional polymer submicron oscillators,” Appl. Phys. Lett. 79(19), 3173–3175 (2001).
[CrossRef]

Takada, K.

H.-B. Sun, K. Takada, and S. Kawata, “Elastic force analysis of functional polymer submicron oscillators,” Appl. Phys. Lett. 79(19), 3173–3175 (2001).
[CrossRef]

Tian, Y.

H. Xia, J. Wang, Y. Tian, Q.-D. Chen, X.-B. Du, Y.-L. Zhang, Y. He, and H.-B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. (Deerfield Beach Fla.) 22(29), 3204–3207 (2010).
[CrossRef] [PubMed]

Wang, J.

H. Xia, J. Wang, Y. Tian, Q.-D. Chen, X.-B. Du, Y.-L. Zhang, Y. He, and H.-B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. (Deerfield Beach Fla.) 22(29), 3204–3207 (2010).
[CrossRef] [PubMed]

J. Wang, H. Xia, B.-B. Xu, L.-G. Niu, D. Wu, Q.-D. Chen, and H.-B. Sun, “Remote manipulation of micronanomachines containing magnetic nanoparticles,” Opt. Lett. 34(5), 581–583 (2009).
[CrossRef] [PubMed]

Wright, W. H.

Wu, D.

Xia, H.

H. Xia, J. Wang, Y. Tian, Q.-D. Chen, X.-B. Du, Y.-L. Zhang, Y. He, and H.-B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. (Deerfield Beach Fla.) 22(29), 3204–3207 (2010).
[CrossRef] [PubMed]

J. Wang, H. Xia, B.-B. Xu, L.-G. Niu, D. Wu, Q.-D. Chen, and H.-B. Sun, “Remote manipulation of micronanomachines containing magnetic nanoparticles,” Opt. Lett. 34(5), 581–583 (2009).
[CrossRef] [PubMed]

Xu, B.-B.

Yang, D.-Y.

Zhang, Y.-L.

H. Xia, J. Wang, Y. Tian, Q.-D. Chen, X.-B. Du, Y.-L. Zhang, Y. He, and H.-B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. (Deerfield Beach Fla.) 22(29), 3204–3207 (2010).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.)

H. Xia, J. Wang, Y. Tian, Q.-D. Chen, X.-B. Du, Y.-L. Zhang, Y. He, and H.-B. Sun, “Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization,” Adv. Mater. (Deerfield Beach Fla.) 22(29), 3204–3207 (2010).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[CrossRef]

P. Galajda and P. Ormos, “Rotors produced and driven in laser tweezers with reversed direction of rotation,” Appl. Phys. Lett. 80(24), 4653–4655 (2002).
[CrossRef]

H.-B. Sun, K. Takada, and S. Kawata, “Elastic force analysis of functional polymer submicron oscillators,” Appl. Phys. Lett. 79(19), 3173–3175 (2001).
[CrossRef]

Nat. Methods

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Other

A. Ostendorf and B. N. Chichkov, “Two-photon polymerization: a new approach to micromachining,” Photonics Spectra, Oct. (2006).

K. Ikuta, Y. Sasaki, L. Maegawa, and S. Maruo, “Biochemical IC chip for pretreatment in biochemical experiments,” MEMSYS, IEEE 6th Annu. Int. Conf., 19–23 Jan, 343–346 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Details of TPP 3D-microfabrication: the interior of the microscope frame, the enlarged sample, and the voxel-based element.

Fig. 2
Fig. 2

AUTOCAD figures of a lever-beam with a spring. Left: the 3D-structure and enlarged portion of a lever beam with an “H” cross-section. Right: arm ratios (r1, r2, r3).

Fig. 3
Fig. 3

Micro-lever product (arm ratio: 2, 2.5, 3): (a) a SEM photo of a micro-lever, (b) a micro-lever with a spring observed by transmission with an optical microscope.

Fig. 4
Fig. 4

The relationship between the optical exerted force and laser power of different sphere sizes.

Fig. 5
Fig. 5

Demonstration of the typical rotation of a beam when the pivot is trapped by optical tweezers.

Fig. 6
Fig. 6

Demonstration of photo-driven micro-lever: optical force is applied at the sphere to pull (right) or compress (left) the spring.

Fig. 7
Fig. 7

The dependence of △xoptic when the optical force is increased in two directions: compression and pulling.

Fig. 8
Fig. 8

(a) a micro-lever (arm ratio: 3, 6, 9) with a spring observed by transmission with an optical microscope (b) The dependence of △xoptic when the optical force for arm ratios 3, 6, and 9 are increased.

Fig. 9
Fig. 9

The relationship diagram of the optical force (Foptic), induced force (Fspring), displacements of the sphere (△xoptic) and joint (△xspring), and the arm ratio (l1 + l2)/l1

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k exp = F spring Δ x spring = r F optic 1 r Δ x optic = r 2 (Δ x optic / F optic )
k the = G d 4 8 D 3 N
δ= P L 3 3EI

Metrics