Abstract

We demonstrate the distribution of polarization-entangled photons for the purpose of quantum key distribution (QKD) along active telecom fibers. Entangled photon pairs of 810 nm wavelength generated by a Sagnac interferometer source were coupled into standard telecom single mode fibers. The fibers were either dark or carrying a standardized 1550 nm ethernet signals (1000BASE-ZX) with a nominal speed of 1 GBps from regular media converter devices, without any requirements on the optical power or spectrum transmitted. Our system demonstrates a QKD network covering 6 km in distance with a central service provider for classical and quantum data.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. G. Paterson, F. Piper, and R. Schack, “Quantum cryptography: a practical information security perspective,” arXiv.org, arXiv:quant-ph/0406147v2 (2004).
  2. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, (IEEE, 1984), p. 175.
  3. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
    [CrossRef] [PubMed]
  4. T. C. Ralph, “Continuous variable quantum cryptography,” Phys. Rev. A 61, 010303 (1999).
    [CrossRef]
  5. C. Erven, C. Couteau, R. Laflamme, and G. Weihs, “Entangled quantum key distribution over two free-space optical links,” Opt. Express 16, 16840–16853 (2008).
    [CrossRef] [PubMed]
  6. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
    [CrossRef]
  7. C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. Gorman, P. Tapster, and J. Rarity, “Quantum cryptography: a step towards global key distribution,” Nature 419, 450–450 (2002).
    [CrossRef] [PubMed]
  8. A. Poppe, A. Fedrizzi, R. Ursin, H. Böhm, T. Lörunser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger, “Practical quantum key distribution with polarization entangled photons,” Opt. Express 12, 3865–3871 (2004).
    [CrossRef] [PubMed]
  9. H. Hübel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express 15, 7853–7862 (2007).
    [CrossRef] [PubMed]
  10. P. Hiskett, D. Rosenberg, C. Peterson, R. Hughes, S. Nam, A. Lita, A. Miller, and J. Nordholt, “Long-distance quantum key distribution in optical fibre,” New J. Phys. 8, 193 (2006).
    [CrossRef]
  11. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” New J. Phys. 4, 41 (2002).
    [CrossRef]
  12. T. Chapuran, P. Toliver, N. Peters, J. Jackel, M. Goodman, R. Runser, S. McNown, N. Dallmann, R. Hughes, K. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
    [CrossRef]
  13. P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
    [CrossRef]
  14. N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm qkd with strong classical channels in reconfigurable networking environments,” New J. Phys. 11, 045012 (2009).
    [CrossRef]
  15. D. Lancho, J. Martinez, D. Elkouss, M. Soto, and V. Martin, “Qkd in standard optical telecommunications networks,” in Quantum Communication and Quantum Networking, vol. 36 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, O. Akan, P. Bellavista, J. Cao, F. Dressler, D. Ferrari, M. Gerla, H. Kobayashi, S. Palazzo, S. Sahni, X. S. Shen, M. Stan, J. Xiaohua, A. Zomaya, G. Coulson, A. Sergienko, S. Pascazio, and P. Villoresi, eds. (Springer, Berlin, 2010), pp. 142–149.
    [CrossRef]
  16. I. Choi, R. J. Young, and P. D. Townsend, “Quantum information to the home,” New J. Phys. 13, 063039 (2011).
    [CrossRef]
  17. G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Measurement Sci. Technol. 21, 012002 (2010).
    [CrossRef]
  18. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Distribution of polarization-entangled photonpairsproduced via spontaneous parametricdown-conversion within a local-area fibernetwork: Theoretical model and experiment,” Opt. Express 16, 14512–14523 (2008).
    [CrossRef] [PubMed]
  19. E. Meyer-Scott, H. Hubel, A. Fedrizzi, C. Erven, G. Weihs, and T. Jennewein, “Quantum entanglement distribution with 810 nm photons through telecom fibers,” Appl. Phys. Lett. 97, 031117–031117 (2010).
    [CrossRef]
  20. R. J. Collins, P. J. Clarke, V. Fernández, K. J. Gordon, M. N. Makhonin, J. A. Timpson, A. Tahraoui, M. Hopkinson, A. M. Fox, M. S. Skolnick, and G. S. Buller, “Quantum key distribution system in standard telecommunications fiber using a short wavelength single photon source,” J. Appl. Phys. 107, 073102 (2010).
    [CrossRef]
  21. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
    [CrossRef] [PubMed]
  22. D. J. Barrett, R. E. Silverman, and R. G. Byrnes, SSH, the Secure Shell: the Definitive Guide (O’Reilly Media, 2005).
  23. J. Matthews, Computer Networking: Internet Protocols in Action (Wiley, 2005).
  24. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).
  25. P. Townsend, “Experimental investigation of the performance limits for first telecommunications-window quantum cryptography systems,” IEEE Photonics Technol. Lett. 10, 1048–1050 (1998).
    [CrossRef]
  26. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
    [CrossRef]
  27. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301 (2009).
    [CrossRef]
  28. V. Scarani and R. Renato,, “Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing”, Phys. Rev. Lett. 20, 200501 (2008).
  29. X. Ma, C.-H. F. Fung, and H.-K. Lo, “Quantum key distribution with entangled photon sources,” Phys. Rev. A 76, 012307 (2007).
    [CrossRef]
  30. T. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. 58, 276–287 (2011).
    [CrossRef]

2011 (2)

I. Choi, R. J. Young, and P. D. Townsend, “Quantum information to the home,” New J. Phys. 13, 063039 (2011).
[CrossRef]

T. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. 58, 276–287 (2011).
[CrossRef]

2010 (4)

G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Measurement Sci. Technol. 21, 012002 (2010).
[CrossRef]

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[CrossRef]

E. Meyer-Scott, H. Hubel, A. Fedrizzi, C. Erven, G. Weihs, and T. Jennewein, “Quantum entanglement distribution with 810 nm photons through telecom fibers,” Appl. Phys. Lett. 97, 031117–031117 (2010).
[CrossRef]

R. J. Collins, P. J. Clarke, V. Fernández, K. J. Gordon, M. N. Makhonin, J. A. Timpson, A. Tahraoui, M. Hopkinson, A. M. Fox, M. S. Skolnick, and G. S. Buller, “Quantum key distribution system in standard telecommunications fiber using a short wavelength single photon source,” J. Appl. Phys. 107, 073102 (2010).
[CrossRef]

2009 (3)

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm qkd with strong classical channels in reconfigurable networking environments,” New J. Phys. 11, 045012 (2009).
[CrossRef]

T. Chapuran, P. Toliver, N. Peters, J. Jackel, M. Goodman, R. Runser, S. McNown, N. Dallmann, R. Hughes, K. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[CrossRef]

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301 (2009).
[CrossRef]

2008 (2)

2007 (4)

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
[CrossRef] [PubMed]

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[CrossRef]

H. Hübel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express 15, 7853–7862 (2007).
[CrossRef] [PubMed]

X. Ma, C.-H. F. Fung, and H.-K. Lo, “Quantum key distribution with entangled photon sources,” Phys. Rev. A 76, 012307 (2007).
[CrossRef]

2006 (1)

P. Hiskett, D. Rosenberg, C. Peterson, R. Hughes, S. Nam, A. Lita, A. Miller, and J. Nordholt, “Long-distance quantum key distribution in optical fibre,” New J. Phys. 8, 193 (2006).
[CrossRef]

2004 (1)

2002 (3)

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” New J. Phys. 4, 41 (2002).
[CrossRef]

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. Gorman, P. Tapster, and J. Rarity, “Quantum cryptography: a step towards global key distribution,” Nature 419, 450–450 (2002).
[CrossRef] [PubMed]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

1999 (1)

T. C. Ralph, “Continuous variable quantum cryptography,” Phys. Rev. A 61, 010303 (1999).
[CrossRef]

1998 (1)

P. Townsend, “Experimental investigation of the performance limits for first telecommunications-window quantum cryptography systems,” IEEE Photonics Technol. Lett. 10, 1048–1050 (1998).
[CrossRef]

1992 (1)

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[CrossRef] [PubMed]

Barbieri, C.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[CrossRef]

Barbieri, M.

T. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. 58, 276–287 (2011).
[CrossRef]

Barrett, D. J.

D. J. Barrett, R. E. Silverman, and R. G. Byrnes, SSH, the Secure Shell: the Definitive Guide (O’Reilly Media, 2005).

Bechmann-Pasquinucci, H.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301 (2009).
[CrossRef]

Bennett, C. H.

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[CrossRef] [PubMed]

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, (IEEE, 1984), p. 175.

Blauensteiner, B.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[CrossRef]

H. Hübel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express 15, 7853–7862 (2007).
[CrossRef] [PubMed]

Böhm, H.

Brassard, G.

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[CrossRef] [PubMed]

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, (IEEE, 1984), p. 175.

Buller, G. S.

R. J. Collins, P. J. Clarke, V. Fernández, K. J. Gordon, M. N. Makhonin, J. A. Timpson, A. Tahraoui, M. Hopkinson, A. M. Fox, M. S. Skolnick, and G. S. Buller, “Quantum key distribution system in standard telecommunications fiber using a short wavelength single photon source,” J. Appl. Phys. 107, 073102 (2010).
[CrossRef]

G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Measurement Sci. Technol. 21, 012002 (2010).
[CrossRef]

Byrnes, R. G.

D. J. Barrett, R. E. Silverman, and R. G. Byrnes, SSH, the Secure Shell: the Definitive Guide (O’Reilly Media, 2005).

Cerf, N. J.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301 (2009).
[CrossRef]

Chapuran, T.

T. Chapuran, P. Toliver, N. Peters, J. Jackel, M. Goodman, R. Runser, S. McNown, N. Dallmann, R. Hughes, K. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[CrossRef]

Chapuran, T. E.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm qkd with strong classical channels in reconfigurable networking environments,” New J. Phys. 11, 045012 (2009).
[CrossRef]

Choi, I.

I. Choi, R. J. Young, and P. D. Townsend, “Quantum information to the home,” New J. Phys. 13, 063039 (2011).
[CrossRef]

Clarke, P. J.

R. J. Collins, P. J. Clarke, V. Fernández, K. J. Gordon, M. N. Makhonin, J. A. Timpson, A. Tahraoui, M. Hopkinson, A. M. Fox, M. S. Skolnick, and G. S. Buller, “Quantum key distribution system in standard telecommunications fiber using a short wavelength single photon source,” J. Appl. Phys. 107, 073102 (2010).
[CrossRef]

Collins, R. J.

G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Measurement Sci. Technol. 21, 012002 (2010).
[CrossRef]

R. J. Collins, P. J. Clarke, V. Fernández, K. J. Gordon, M. N. Makhonin, J. A. Timpson, A. Tahraoui, M. Hopkinson, A. M. Fox, M. S. Skolnick, and G. S. Buller, “Quantum key distribution system in standard telecommunications fiber using a short wavelength single photon source,” J. Appl. Phys. 107, 073102 (2010).
[CrossRef]

Couteau, C.

Dallmann, N.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm qkd with strong classical channels in reconfigurable networking environments,” New J. Phys. 11, 045012 (2009).
[CrossRef]

T. Chapuran, P. Toliver, N. Peters, J. Jackel, M. Goodman, R. Runser, S. McNown, N. Dallmann, R. Hughes, K. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[CrossRef]

Dardy, H.

T. Chapuran, P. Toliver, N. Peters, J. Jackel, M. Goodman, R. Runser, S. McNown, N. Dallmann, R. Hughes, K. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[CrossRef]

Dusek, M.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301 (2009).
[CrossRef]

Elkouss, D.

D. Lancho, J. Martinez, D. Elkouss, M. Soto, and V. Martin, “Qkd in standard optical telecommunications networks,” in Quantum Communication and Quantum Networking, vol. 36 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, O. Akan, P. Bellavista, J. Cao, F. Dressler, D. Ferrari, M. Gerla, H. Kobayashi, S. Palazzo, S. Sahni, X. S. Shen, M. Stan, J. Xiaohua, A. Zomaya, G. Coulson, A. Sergienko, S. Pascazio, and P. Villoresi, eds. (Springer, Berlin, 2010), pp. 142–149.
[CrossRef]

Eraerds, P.

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[CrossRef]

Erven, C.

E. Meyer-Scott, H. Hubel, A. Fedrizzi, C. Erven, G. Weihs, and T. Jennewein, “Quantum entanglement distribution with 810 nm photons through telecom fibers,” Appl. Phys. Lett. 97, 031117–031117 (2010).
[CrossRef]

C. Erven, C. Couteau, R. Laflamme, and G. Weihs, “Entangled quantum key distribution over two free-space optical links,” Opt. Express 16, 16840–16853 (2008).
[CrossRef] [PubMed]

Fedrizzi, A.

Fernández, V.

R. J. Collins, P. J. Clarke, V. Fernández, K. J. Gordon, M. N. Makhonin, J. A. Timpson, A. Tahraoui, M. Hopkinson, A. M. Fox, M. S. Skolnick, and G. S. Buller, “Quantum key distribution system in standard telecommunications fiber using a short wavelength single photon source,” J. Appl. Phys. 107, 073102 (2010).
[CrossRef]

Fox, A. M.

R. J. Collins, P. J. Clarke, V. Fernández, K. J. Gordon, M. N. Makhonin, J. A. Timpson, A. Tahraoui, M. Hopkinson, A. M. Fox, M. S. Skolnick, and G. S. Buller, “Quantum key distribution system in standard telecommunications fiber using a short wavelength single photon source,” J. Appl. Phys. 107, 073102 (2010).
[CrossRef]

Fung, C.-H. F.

X. Ma, C.-H. F. Fung, and H.-K. Lo, “Quantum key distribution with entangled photon sources,” Phys. Rev. A 76, 012307 (2007).
[CrossRef]

Fürst, M.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[CrossRef]

Gisin, N.

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[CrossRef]

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” New J. Phys. 4, 41 (2002).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Goodman, M.

T. Chapuran, P. Toliver, N. Peters, J. Jackel, M. Goodman, R. Runser, S. McNown, N. Dallmann, R. Hughes, K. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[CrossRef]

Gordon, K. J.

R. J. Collins, P. J. Clarke, V. Fernández, K. J. Gordon, M. N. Makhonin, J. A. Timpson, A. Tahraoui, M. Hopkinson, A. M. Fox, M. S. Skolnick, and G. S. Buller, “Quantum key distribution system in standard telecommunications fiber using a short wavelength single photon source,” J. Appl. Phys. 107, 073102 (2010).
[CrossRef]

Gorman, P.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. Gorman, P. Tapster, and J. Rarity, “Quantum cryptography: a step towards global key distribution,” Nature 419, 450–450 (2002).
[CrossRef] [PubMed]

Guinnard, O.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” New J. Phys. 4, 41 (2002).
[CrossRef]

Halder, M.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. Gorman, P. Tapster, and J. Rarity, “Quantum cryptography: a step towards global key distribution,” Nature 419, 450–450 (2002).
[CrossRef] [PubMed]

Herbst, T.

Hiskett, P.

P. Hiskett, D. Rosenberg, C. Peterson, R. Hughes, S. Nam, A. Lita, A. Miller, and J. Nordholt, “Long-distance quantum key distribution in optical fibre,” New J. Phys. 8, 193 (2006).
[CrossRef]

Hopkinson, M.

R. J. Collins, P. J. Clarke, V. Fernández, K. J. Gordon, M. N. Makhonin, J. A. Timpson, A. Tahraoui, M. Hopkinson, A. M. Fox, M. S. Skolnick, and G. S. Buller, “Quantum key distribution system in standard telecommunications fiber using a short wavelength single photon source,” J. Appl. Phys. 107, 073102 (2010).
[CrossRef]

Hubel, H.

E. Meyer-Scott, H. Hubel, A. Fedrizzi, C. Erven, G. Weihs, and T. Jennewein, “Quantum entanglement distribution with 810 nm photons through telecom fibers,” Appl. Phys. Lett. 97, 031117–031117 (2010).
[CrossRef]

Hübel, H.

Hughes, R.

T. Chapuran, P. Toliver, N. Peters, J. Jackel, M. Goodman, R. Runser, S. McNown, N. Dallmann, R. Hughes, K. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[CrossRef]

P. Hiskett, D. Rosenberg, C. Peterson, R. Hughes, S. Nam, A. Lita, A. Miller, and J. Nordholt, “Long-distance quantum key distribution in optical fibre,” New J. Phys. 8, 193 (2006).
[CrossRef]

Hughes, R. J.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm qkd with strong classical channels in reconfigurable networking environments,” New J. Phys. 11, 045012 (2009).
[CrossRef]

Jackel, J.

T. Chapuran, P. Toliver, N. Peters, J. Jackel, M. Goodman, R. Runser, S. McNown, N. Dallmann, R. Hughes, K. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[CrossRef]

Jennewein, T.

T. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. 58, 276–287 (2011).
[CrossRef]

E. Meyer-Scott, H. Hubel, A. Fedrizzi, C. Erven, G. Weihs, and T. Jennewein, “Quantum entanglement distribution with 810 nm photons through telecom fibers,” Appl. Phys. Lett. 97, 031117–031117 (2010).
[CrossRef]

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[CrossRef]

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
[CrossRef] [PubMed]

A. Poppe, A. Fedrizzi, R. Ursin, H. Böhm, T. Lörunser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger, “Practical quantum key distribution with polarization entangled photons,” Opt. Express 12, 3865–3871 (2004).
[CrossRef] [PubMed]

Kikuchi, K.

Kurtsiefer, C.

Laflamme, R.

Lancho, D.

D. Lancho, J. Martinez, D. Elkouss, M. Soto, and V. Martin, “Qkd in standard optical telecommunications networks,” in Quantum Communication and Quantum Networking, vol. 36 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, O. Akan, P. Bellavista, J. Cao, F. Dressler, D. Ferrari, M. Gerla, H. Kobayashi, S. Palazzo, S. Sahni, X. S. Shen, M. Stan, J. Xiaohua, A. Zomaya, G. Coulson, A. Sergienko, S. Pascazio, and P. Villoresi, eds. (Springer, Berlin, 2010), pp. 142–149.
[CrossRef]

Lederer, T.

Legré, M.

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[CrossRef]

Lim, H. C.

Lindenthal, M.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[CrossRef]

Lita, A.

P. Hiskett, D. Rosenberg, C. Peterson, R. Hughes, S. Nam, A. Lita, A. Miller, and J. Nordholt, “Long-distance quantum key distribution in optical fibre,” New J. Phys. 8, 193 (2006).
[CrossRef]

Lo, H.-K.

X. Ma, C.-H. F. Fung, and H.-K. Lo, “Quantum key distribution with entangled photon sources,” Phys. Rev. A 76, 012307 (2007).
[CrossRef]

Lorünser, T.

Lörunser, T.

Lutkenhaus, N.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301 (2009).
[CrossRef]

Ma, X.

X. Ma, C.-H. F. Fung, and H.-K. Lo, “Quantum key distribution with entangled photon sources,” Phys. Rev. A 76, 012307 (2007).
[CrossRef]

Makhonin, M. N.

R. J. Collins, P. J. Clarke, V. Fernández, K. J. Gordon, M. N. Makhonin, J. A. Timpson, A. Tahraoui, M. Hopkinson, A. M. Fox, M. S. Skolnick, and G. S. Buller, “Quantum key distribution system in standard telecommunications fiber using a short wavelength single photon source,” J. Appl. Phys. 107, 073102 (2010).
[CrossRef]

Martin, V.

D. Lancho, J. Martinez, D. Elkouss, M. Soto, and V. Martin, “Qkd in standard optical telecommunications networks,” in Quantum Communication and Quantum Networking, vol. 36 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, O. Akan, P. Bellavista, J. Cao, F. Dressler, D. Ferrari, M. Gerla, H. Kobayashi, S. Palazzo, S. Sahni, X. S. Shen, M. Stan, J. Xiaohua, A. Zomaya, G. Coulson, A. Sergienko, S. Pascazio, and P. Villoresi, eds. (Springer, Berlin, 2010), pp. 142–149.
[CrossRef]

Martinez, J.

D. Lancho, J. Martinez, D. Elkouss, M. Soto, and V. Martin, “Qkd in standard optical telecommunications networks,” in Quantum Communication and Quantum Networking, vol. 36 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, O. Akan, P. Bellavista, J. Cao, F. Dressler, D. Ferrari, M. Gerla, H. Kobayashi, S. Palazzo, S. Sahni, X. S. Shen, M. Stan, J. Xiaohua, A. Zomaya, G. Coulson, A. Sergienko, S. Pascazio, and P. Villoresi, eds. (Springer, Berlin, 2010), pp. 142–149.
[CrossRef]

Matthews, J.

J. Matthews, Computer Networking: Internet Protocols in Action (Wiley, 2005).

Maurhardt, O.

McCabe, K.

T. Chapuran, P. Toliver, N. Peters, J. Jackel, M. Goodman, R. Runser, S. McNown, N. Dallmann, R. Hughes, K. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[CrossRef]

McCabe, K. P.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm qkd with strong classical channels in reconfigurable networking environments,” New J. Phys. 11, 045012 (2009).
[CrossRef]

McNown, S.

T. Chapuran, P. Toliver, N. Peters, J. Jackel, M. Goodman, R. Runser, S. McNown, N. Dallmann, R. Hughes, K. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[CrossRef]

McNown, S. R.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm qkd with strong classical channels in reconfigurable networking environments,” New J. Phys. 11, 045012 (2009).
[CrossRef]

Mercer, L.

T. Chapuran, P. Toliver, N. Peters, J. Jackel, M. Goodman, R. Runser, S. McNown, N. Dallmann, R. Hughes, K. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[CrossRef]

Mermin, N. D.

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[CrossRef] [PubMed]

Meyenburg, M.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[CrossRef]

Meyer-Scott, E.

E. Meyer-Scott, H. Hubel, A. Fedrizzi, C. Erven, G. Weihs, and T. Jennewein, “Quantum entanglement distribution with 810 nm photons through telecom fibers,” Appl. Phys. Lett. 97, 031117–031117 (2010).
[CrossRef]

Miller, A.

P. Hiskett, D. Rosenberg, C. Peterson, R. Hughes, S. Nam, A. Lita, A. Miller, and J. Nordholt, “Long-distance quantum key distribution in optical fibre,” New J. Phys. 8, 193 (2006).
[CrossRef]

Nam, S.

P. Hiskett, D. Rosenberg, C. Peterson, R. Hughes, S. Nam, A. Lita, A. Miller, and J. Nordholt, “Long-distance quantum key distribution in optical fibre,” New J. Phys. 8, 193 (2006).
[CrossRef]

Nordholt, J.

P. Hiskett, D. Rosenberg, C. Peterson, R. Hughes, S. Nam, A. Lita, A. Miller, and J. Nordholt, “Long-distance quantum key distribution in optical fibre,” New J. Phys. 8, 193 (2006).
[CrossRef]

Nordholt, J. E.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm qkd with strong classical channels in reconfigurable networking environments,” New J. Phys. 11, 045012 (2009).
[CrossRef]

T. Chapuran, P. Toliver, N. Peters, J. Jackel, M. Goodman, R. Runser, S. McNown, N. Dallmann, R. Hughes, K. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[CrossRef]

Ömer, B.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[CrossRef]

Paterson, K. G.

K. G. Paterson, F. Piper, and R. Schack, “Quantum cryptography: a practical information security perspective,” arXiv.org, arXiv:quant-ph/0406147v2 (2004).

Peev, M.

Perdigues, J.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[CrossRef]

Peters, N.

T. Chapuran, P. Toliver, N. Peters, J. Jackel, M. Goodman, R. Runser, S. McNown, N. Dallmann, R. Hughes, K. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[CrossRef]

Peters, N. A.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm qkd with strong classical channels in reconfigurable networking environments,” New J. Phys. 11, 045012 (2009).
[CrossRef]

Peterson, C.

P. Hiskett, D. Rosenberg, C. Peterson, R. Hughes, S. Nam, A. Lita, A. Miller, and J. Nordholt, “Long-distance quantum key distribution in optical fibre,” New J. Phys. 8, 193 (2006).
[CrossRef]

Peterson, C. G.

T. Chapuran, P. Toliver, N. Peters, J. Jackel, M. Goodman, R. Runser, S. McNown, N. Dallmann, R. Hughes, K. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[CrossRef]

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm qkd with strong classical channels in reconfigurable networking environments,” New J. Phys. 11, 045012 (2009).
[CrossRef]

Piper, F.

K. G. Paterson, F. Piper, and R. Schack, “Quantum cryptography: a practical information security perspective,” arXiv.org, arXiv:quant-ph/0406147v2 (2004).

Poppe, A.

Ralph, T. C.

T. C. Ralph, “Continuous variable quantum cryptography,” Phys. Rev. A 61, 010303 (1999).
[CrossRef]

Rarity, J.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[CrossRef]

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. Gorman, P. Tapster, and J. Rarity, “Quantum cryptography: a step towards global key distribution,” Nature 419, 450–450 (2002).
[CrossRef] [PubMed]

Renato, R.

V. Scarani and R. Renato,, “Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing”, Phys. Rev. Lett. 20, 200501 (2008).

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” New J. Phys. 4, 41 (2002).
[CrossRef]

Rosenberg, D.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm qkd with strong classical channels in reconfigurable networking environments,” New J. Phys. 11, 045012 (2009).
[CrossRef]

P. Hiskett, D. Rosenberg, C. Peterson, R. Hughes, S. Nam, A. Lita, A. Miller, and J. Nordholt, “Long-distance quantum key distribution in optical fibre,” New J. Phys. 8, 193 (2006).
[CrossRef]

Runser, R.

T. Chapuran, P. Toliver, N. Peters, J. Jackel, M. Goodman, R. Runser, S. McNown, N. Dallmann, R. Hughes, K. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[CrossRef]

Runser, R. J.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm qkd with strong classical channels in reconfigurable networking environments,” New J. Phys. 11, 045012 (2009).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).

Scarani, V.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301 (2009).
[CrossRef]

V. Scarani and R. Renato,, “Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing”, Phys. Rev. Lett. 20, 200501 (2008).

Schack, R.

K. G. Paterson, F. Piper, and R. Schack, “Quantum cryptography: a practical information security perspective,” arXiv.org, arXiv:quant-ph/0406147v2 (2004).

Scheidl, T.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[CrossRef]

Schmitt-Manderbach, T.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[CrossRef]

Silverman, R. E.

D. J. Barrett, R. E. Silverman, and R. G. Byrnes, SSH, the Secure Shell: the Definitive Guide (O’Reilly Media, 2005).

Skolnick, M. S.

R. J. Collins, P. J. Clarke, V. Fernández, K. J. Gordon, M. N. Makhonin, J. A. Timpson, A. Tahraoui, M. Hopkinson, A. M. Fox, M. S. Skolnick, and G. S. Buller, “Quantum key distribution system in standard telecommunications fiber using a short wavelength single photon source,” J. Appl. Phys. 107, 073102 (2010).
[CrossRef]

Sodnik, Z.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[CrossRef]

Soto, M.

D. Lancho, J. Martinez, D. Elkouss, M. Soto, and V. Martin, “Qkd in standard optical telecommunications networks,” in Quantum Communication and Quantum Networking, vol. 36 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, O. Akan, P. Bellavista, J. Cao, F. Dressler, D. Ferrari, M. Gerla, H. Kobayashi, S. Palazzo, S. Sahni, X. S. Shen, M. Stan, J. Xiaohua, A. Zomaya, G. Coulson, A. Sergienko, S. Pascazio, and P. Villoresi, eds. (Springer, Berlin, 2010), pp. 142–149.
[CrossRef]

Stucki, D.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” New J. Phys. 4, 41 (2002).
[CrossRef]

Suda, M.

Tahraoui, A.

R. J. Collins, P. J. Clarke, V. Fernández, K. J. Gordon, M. N. Makhonin, J. A. Timpson, A. Tahraoui, M. Hopkinson, A. M. Fox, M. S. Skolnick, and G. S. Buller, “Quantum key distribution system in standard telecommunications fiber using a short wavelength single photon source,” J. Appl. Phys. 107, 073102 (2010).
[CrossRef]

Tapster, P.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. Gorman, P. Tapster, and J. Rarity, “Quantum cryptography: a step towards global key distribution,” Nature 419, 450–450 (2002).
[CrossRef] [PubMed]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).

Tiefenbacher, F.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[CrossRef]

Timpson, J. A.

R. J. Collins, P. J. Clarke, V. Fernández, K. J. Gordon, M. N. Makhonin, J. A. Timpson, A. Tahraoui, M. Hopkinson, A. M. Fox, M. S. Skolnick, and G. S. Buller, “Quantum key distribution system in standard telecommunications fiber using a short wavelength single photon source,” J. Appl. Phys. 107, 073102 (2010).
[CrossRef]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Toliver, P.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm qkd with strong classical channels in reconfigurable networking environments,” New J. Phys. 11, 045012 (2009).
[CrossRef]

T. Chapuran, P. Toliver, N. Peters, J. Jackel, M. Goodman, R. Runser, S. McNown, N. Dallmann, R. Hughes, K. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[CrossRef]

Townsend, P.

P. Townsend, “Experimental investigation of the performance limits for first telecommunications-window quantum cryptography systems,” IEEE Photonics Technol. Lett. 10, 1048–1050 (1998).
[CrossRef]

Townsend, P. D.

I. Choi, R. J. Young, and P. D. Townsend, “Quantum information to the home,” New J. Phys. 13, 063039 (2011).
[CrossRef]

Trojek, P.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[CrossRef]

Tsuchida, H.

Tyagi, K. T.

T. Chapuran, P. Toliver, N. Peters, J. Jackel, M. Goodman, R. Runser, S. McNown, N. Dallmann, R. Hughes, K. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[CrossRef]

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm qkd with strong classical channels in reconfigurable networking environments,” New J. Phys. 11, 045012 (2009).
[CrossRef]

Ursin, R.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[CrossRef]

A. Poppe, A. Fedrizzi, R. Ursin, H. Böhm, T. Lörunser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger, “Practical quantum key distribution with polarization entangled photons,” Opt. Express 12, 3865–3871 (2004).
[CrossRef] [PubMed]

Vanner, M. R.

Walenta, N.

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[CrossRef]

Weier, H.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[CrossRef]

Weihs, G.

E. Meyer-Scott, H. Hubel, A. Fedrizzi, C. Erven, G. Weihs, and T. Jennewein, “Quantum entanglement distribution with 810 nm photons through telecom fibers,” Appl. Phys. Lett. 97, 031117–031117 (2010).
[CrossRef]

C. Erven, C. Couteau, R. Laflamme, and G. Weihs, “Entangled quantum key distribution over two free-space optical links,” Opt. Express 16, 16840–16853 (2008).
[CrossRef] [PubMed]

Weinfurter, H.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[CrossRef]

A. Poppe, A. Fedrizzi, R. Ursin, H. Böhm, T. Lörunser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger, “Practical quantum key distribution with polarization entangled photons,” Opt. Express 12, 3865–3871 (2004).
[CrossRef] [PubMed]

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. Gorman, P. Tapster, and J. Rarity, “Quantum cryptography: a step towards global key distribution,” Nature 419, 450–450 (2002).
[CrossRef] [PubMed]

White, A. G.

T. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. 58, 276–287 (2011).
[CrossRef]

Yoshizawa, A.

Young, R. J.

I. Choi, R. J. Young, and P. D. Townsend, “Quantum information to the home,” New J. Phys. 13, 063039 (2011).
[CrossRef]

Zarda, P.

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. Gorman, P. Tapster, and J. Rarity, “Quantum cryptography: a step towards global key distribution,” Nature 419, 450–450 (2002).
[CrossRef] [PubMed]

Zbinden, H.

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[CrossRef]

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” New J. Phys. 4, 41 (2002).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Zeilinger, A.

Appl. Phys. Lett. (1)

E. Meyer-Scott, H. Hubel, A. Fedrizzi, C. Erven, G. Weihs, and T. Jennewein, “Quantum entanglement distribution with 810 nm photons through telecom fibers,” Appl. Phys. Lett. 97, 031117–031117 (2010).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

P. Townsend, “Experimental investigation of the performance limits for first telecommunications-window quantum cryptography systems,” IEEE Photonics Technol. Lett. 10, 1048–1050 (1998).
[CrossRef]

J. Appl. Phys. (1)

R. J. Collins, P. J. Clarke, V. Fernández, K. J. Gordon, M. N. Makhonin, J. A. Timpson, A. Tahraoui, M. Hopkinson, A. M. Fox, M. S. Skolnick, and G. S. Buller, “Quantum key distribution system in standard telecommunications fiber using a short wavelength single photon source,” J. Appl. Phys. 107, 073102 (2010).
[CrossRef]

J. Mod. Opt. (1)

T. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. 58, 276–287 (2011).
[CrossRef]

Measurement Sci. Technol. (1)

G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Measurement Sci. Technol. 21, 012002 (2010).
[CrossRef]

Nat. Phys. (1)

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[CrossRef]

Nature (1)

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. Gorman, P. Tapster, and J. Rarity, “Quantum cryptography: a step towards global key distribution,” Nature 419, 450–450 (2002).
[CrossRef] [PubMed]

New J. Phys. (6)

I. Choi, R. J. Young, and P. D. Townsend, “Quantum information to the home,” New J. Phys. 13, 063039 (2011).
[CrossRef]

P. Hiskett, D. Rosenberg, C. Peterson, R. Hughes, S. Nam, A. Lita, A. Miller, and J. Nordholt, “Long-distance quantum key distribution in optical fibre,” New J. Phys. 8, 193 (2006).
[CrossRef]

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” New J. Phys. 4, 41 (2002).
[CrossRef]

T. Chapuran, P. Toliver, N. Peters, J. Jackel, M. Goodman, R. Runser, S. McNown, N. Dallmann, R. Hughes, K. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[CrossRef]

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[CrossRef]

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm qkd with strong classical channels in reconfigurable networking environments,” New J. Phys. 11, 045012 (2009).
[CrossRef]

Opt. Express (5)

Phys. Rev. A (2)

X. Ma, C.-H. F. Fung, and H.-K. Lo, “Quantum key distribution with entangled photon sources,” Phys. Rev. A 76, 012307 (2007).
[CrossRef]

T. C. Ralph, “Continuous variable quantum cryptography,” Phys. Rev. A 61, 010303 (1999).
[CrossRef]

Phys. Rev. Lett. (2)

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[CrossRef] [PubMed]

V. Scarani and R. Renato,, “Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing”, Phys. Rev. Lett. 20, 200501 (2008).

Rev. Mod. Phys. (2)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301 (2009).
[CrossRef]

Other (6)

D. J. Barrett, R. E. Silverman, and R. G. Byrnes, SSH, the Secure Shell: the Definitive Guide (O’Reilly Media, 2005).

J. Matthews, Computer Networking: Internet Protocols in Action (Wiley, 2005).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).

K. G. Paterson, F. Piper, and R. Schack, “Quantum cryptography: a practical information security perspective,” arXiv.org, arXiv:quant-ph/0406147v2 (2004).

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, (IEEE, 1984), p. 175.

D. Lancho, J. Martinez, D. Elkouss, M. Soto, and V. Martin, “Qkd in standard optical telecommunications networks,” in Quantum Communication and Quantum Networking, vol. 36 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, O. Akan, P. Bellavista, J. Cao, F. Dressler, D. Ferrari, M. Gerla, H. Kobayashi, S. Palazzo, S. Sahni, X. S. Shen, M. Stan, J. Xiaohua, A. Zomaya, G. Coulson, A. Sergienko, S. Pascazio, and P. Villoresi, eds. (Springer, Berlin, 2010), pp. 142–149.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of experimental apparatus. Two fiber splitters (represented by circles in this diagram) connect the 1550 nm fiber links. Classical information (represented by solid lines) travels in the opposite direction along the fiber as the quantum information (represented by dashed lines) and is generated by copper to optical media converters. For details on the polarization analyzer, see [5], for details on the photon source, see [21].

Fig. 2
Fig. 2

Signal spectrum in (a) is intensity averaged in bins of 1 nm, for various signal configurations on 2 km of 1550 nm SMF. (b) is the total detected counts per second with classical signal opposite. In (b), the counts in the no-signal case are the total detector dark counts per arm. Statistical error on the count number is smaller than the size of the data point.

Fig. 3
Fig. 3

QBER (a) and SKR (b) for varying lengths of fiber per arm, which are dark (no telecom signals introduced) or with telecom signals carrying 10.5 Mbps of traffic. The observed QBER is larger than predicted by theory at longer lengths due to the difficulty in aligning polarization bases with attenuated count rates, even at the maximum source rate. SKR was simulated using the mathematical descriptions of detectors and SPDC sources of entangled photons described in [29], with experimental and ideal parameters.

Fig. 4
Fig. 4

QBER for varying levels of telecom traffic, averaged in bins of 10 s. The QBER increases slightly over time due to polarization drift, but is unaffected by classical traffic.

Metrics