Abstract

End-to-end real-time experimental demonstrations are reported, for the first time, of aggregated 11.25Gb/s over 26.4km standard SMF, optical orthogonal frequency division multiple access (OOFDMA) PONs with adaptive dynamic bandwidth allocation (DBA). The demonstrated intensity-modulation and direct-detection (IMDD) OOFDMA PON system consists of two optical network units (ONUs), each of which employs a DFB-based directly modulated laser (DML) or a VCSEL-based DML for modulating upstream signals. Extensive experimental explorations of dynamic OOFDMA PON system properties are undertaken utilizing identified optimum DML operating conditions. It is shown that, for simultaneously achieving acceptable BERs for all upstream signals, the OOFDMA PON system has a >3dB dynamic ONU launch power variation range, and the BER performance of the system is insusceptible to any upstream symbol offsets slightly smaller than the adopted cyclic prefix. In addition, experimental results also indicate that, in addition to maximizing the aggregated system transmission capacity, adaptive DBA can also effectively reduce imperfections in transmission channel properties without affecting signal bit rates offered to individual ONUs.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Wong, “Current and next-generation broadband access technologies”, Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), (USA, 2011), Paper NMD1.
  2. L. G. Kazovsky, W.-T. Shaw, D. Gutierrez, N. Cheng, and S.-W. Wong, “Next-Generation Optical Access Networks,” J. Lightwave Technol. 25(11), 3428–3442 (2007).
    [CrossRef]
  3. N. Suzuki, K. Nakura, T. Suehiro, M. Nogami, S. Kosaki, and J. Nakagawa, “Over-Sampling based Burst-mode CDR Technology for High-speed TDM-PON Systems”, Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), (USA, 2011), Paper OThT3.
  4. J. Kani, “Enabling technologies for future scalable and flexible WDM-POJN and WDM/TDM-PON systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1290–1297 (2010).
    [CrossRef]
  5. D. Qian, J. Hu, J. Yu, P. N. Ji, L. Xu, T. Wang, M. Cvijetic, and T. Kusano, “Experimental demonstration of a novel OFDM-A based 10 Gb/s PON architecture,” European Conference on Optical Communication (ECOC), (Berlin, 2007), Paper Mo 5.4.1.
  6. D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett. 21(17), 1265–1267 (2009).
    [CrossRef]
  7. Y.-M. Lin and P.-L. Tien, “Next-generation OFDMA-based passive optical network architecture supporting radio-over-fiber,” IEEE J. Sel. Areas Commun. 28(6), 791–799 (2010).
    [CrossRef]
  8. X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
    [CrossRef]
  9. N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
    [CrossRef]
  10. R. P. Giddings and J. M. Tang, “Experimental demonstration and optimisation of a synchronous clock recovery technique for real-time end-to-end optical OFDM transmission at 11.25Gb/s over 25km SSMF,” Opt. Express 19(3), 2831–2845 (2011).
    [CrossRef] [PubMed]
  11. R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express 18(6), 5541–5555 (2010).
    [CrossRef] [PubMed]
  12. E. Hugues-Salas, R. P. Giddings, X. Q. Jin, J. L. Wei, X. Zheng, Y. Hong, C. Shu, and J. M. Tang, “Real-time experimental demonstration of low-cost VCSEL intensity-modulated 11.25 Gb/s optical OFDM signal transmission over 25 km PON systems,” Opt. Express 19(4), 2979–2988 (2011).
    [CrossRef] [PubMed]
  13. X. Q. Jin and J. M. Tang, “Optical OFDM synchronization with symbol timing offset and sampling clock offset compensation in real-time IMDD systems,” IEEE Photonics J. 3(2), 187–196 (2011).
    [CrossRef]
  14. X. Q. Jin, R. P. Giddings, and J. M. Tang, “Real-time transmission of 3 Gb/s 16-QAM encoded optical OFDM signals over 75 km SMFs with negative power penalties,” Opt. Express 17(17), 14574–14585 (2009).
    [CrossRef] [PubMed]
  15. M. Morelli, C.-C. J. Kuo, and M.-O. Pun, “Synchronization Techniques for Orthogonal Frequency Division Multiple Access (OFDMA): A Tutorial Review,” Proc. IEEE 95(7), 1394–1427 (2007).
    [CrossRef]
  16. M. Nölle, L. Molle, D.-D. Gross, and R. Freund, “Transmission of 5x62 Gbit/s DWDM coherent OFDM with a spectral efficiency of 7.2 bit/s/Hz using joint 64-QAM and 16-QAM modulation”, Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), (USA, 2010), Paper OMR4.
  17. J. L. Wei, C. Sánchez, R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Significant improvements in optical power budgets of real-time optical OFDM PON systems,” Opt. Express 18(20), 20732–20745 (2010).
    [CrossRef] [PubMed]
  18. X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, and J. M. Tang, “Negative power penalties of optical OFDM signal transmissions in directly modulated DFB laser-based IMDD systems incorporating negative dispersion fibres,” IEEE Photonics J. 2(4), 532–542 (2010).
    [CrossRef]

2011

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[CrossRef]

R. P. Giddings and J. M. Tang, “Experimental demonstration and optimisation of a synchronous clock recovery technique for real-time end-to-end optical OFDM transmission at 11.25Gb/s over 25km SSMF,” Opt. Express 19(3), 2831–2845 (2011).
[CrossRef] [PubMed]

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, J. L. Wei, X. Zheng, Y. Hong, C. Shu, and J. M. Tang, “Real-time experimental demonstration of low-cost VCSEL intensity-modulated 11.25 Gb/s optical OFDM signal transmission over 25 km PON systems,” Opt. Express 19(4), 2979–2988 (2011).
[CrossRef] [PubMed]

X. Q. Jin and J. M. Tang, “Optical OFDM synchronization with symbol timing offset and sampling clock offset compensation in real-time IMDD systems,” IEEE Photonics J. 3(2), 187–196 (2011).
[CrossRef]

2010

J. L. Wei, C. Sánchez, R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Significant improvements in optical power budgets of real-time optical OFDM PON systems,” Opt. Express 18(20), 20732–20745 (2010).
[CrossRef] [PubMed]

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, and J. M. Tang, “Negative power penalties of optical OFDM signal transmissions in directly modulated DFB laser-based IMDD systems incorporating negative dispersion fibres,” IEEE Photonics J. 2(4), 532–542 (2010).
[CrossRef]

R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express 18(6), 5541–5555 (2010).
[CrossRef] [PubMed]

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[CrossRef]

J. Kani, “Enabling technologies for future scalable and flexible WDM-POJN and WDM/TDM-PON systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1290–1297 (2010).
[CrossRef]

Y.-M. Lin and P.-L. Tien, “Next-generation OFDMA-based passive optical network architecture supporting radio-over-fiber,” IEEE J. Sel. Areas Commun. 28(6), 791–799 (2010).
[CrossRef]

2009

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett. 21(17), 1265–1267 (2009).
[CrossRef]

X. Q. Jin, R. P. Giddings, and J. M. Tang, “Real-time transmission of 3 Gb/s 16-QAM encoded optical OFDM signals over 75 km SMFs with negative power penalties,” Opt. Express 17(17), 14574–14585 (2009).
[CrossRef] [PubMed]

2007

M. Morelli, C.-C. J. Kuo, and M.-O. Pun, “Synchronization Techniques for Orthogonal Frequency Division Multiple Access (OFDMA): A Tutorial Review,” Proc. IEEE 95(7), 1394–1427 (2007).
[CrossRef]

L. G. Kazovsky, W.-T. Shaw, D. Gutierrez, N. Cheng, and S.-W. Wong, “Next-Generation Optical Access Networks,” J. Lightwave Technol. 25(11), 3428–3442 (2007).
[CrossRef]

Cheng, N.

Cvijetic, N.

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[CrossRef]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett. 21(17), 1265–1267 (2009).
[CrossRef]

Giacoumidis, E.

Giddings, R. P.

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, J. L. Wei, X. Zheng, Y. Hong, C. Shu, and J. M. Tang, “Real-time experimental demonstration of low-cost VCSEL intensity-modulated 11.25 Gb/s optical OFDM signal transmission over 25 km PON systems,” Opt. Express 19(4), 2979–2988 (2011).
[CrossRef] [PubMed]

R. P. Giddings and J. M. Tang, “Experimental demonstration and optimisation of a synchronous clock recovery technique for real-time end-to-end optical OFDM transmission at 11.25Gb/s over 25km SSMF,” Opt. Express 19(3), 2831–2845 (2011).
[CrossRef] [PubMed]

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[CrossRef]

R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express 18(6), 5541–5555 (2010).
[CrossRef] [PubMed]

J. L. Wei, C. Sánchez, R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Significant improvements in optical power budgets of real-time optical OFDM PON systems,” Opt. Express 18(20), 20732–20745 (2010).
[CrossRef] [PubMed]

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, and J. M. Tang, “Negative power penalties of optical OFDM signal transmissions in directly modulated DFB laser-based IMDD systems incorporating negative dispersion fibres,” IEEE Photonics J. 2(4), 532–542 (2010).
[CrossRef]

X. Q. Jin, R. P. Giddings, and J. M. Tang, “Real-time transmission of 3 Gb/s 16-QAM encoded optical OFDM signals over 75 km SMFs with negative power penalties,” Opt. Express 17(17), 14574–14585 (2009).
[CrossRef] [PubMed]

Gutierrez, D.

Hong, Y.

Hong, Y. H.

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, and J. M. Tang, “Negative power penalties of optical OFDM signal transmissions in directly modulated DFB laser-based IMDD systems incorporating negative dispersion fibres,” IEEE Photonics J. 2(4), 532–542 (2010).
[CrossRef]

Hu, J.

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[CrossRef]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett. 21(17), 1265–1267 (2009).
[CrossRef]

Hugues-Salas, E.

Jin, X. Q.

X. Q. Jin and J. M. Tang, “Optical OFDM synchronization with symbol timing offset and sampling clock offset compensation in real-time IMDD systems,” IEEE Photonics J. 3(2), 187–196 (2011).
[CrossRef]

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, J. L. Wei, X. Zheng, Y. Hong, C. Shu, and J. M. Tang, “Real-time experimental demonstration of low-cost VCSEL intensity-modulated 11.25 Gb/s optical OFDM signal transmission over 25 km PON systems,” Opt. Express 19(4), 2979–2988 (2011).
[CrossRef] [PubMed]

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[CrossRef]

R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express 18(6), 5541–5555 (2010).
[CrossRef] [PubMed]

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, and J. M. Tang, “Negative power penalties of optical OFDM signal transmissions in directly modulated DFB laser-based IMDD systems incorporating negative dispersion fibres,” IEEE Photonics J. 2(4), 532–542 (2010).
[CrossRef]

X. Q. Jin, R. P. Giddings, and J. M. Tang, “Real-time transmission of 3 Gb/s 16-QAM encoded optical OFDM signals over 75 km SMFs with negative power penalties,” Opt. Express 17(17), 14574–14585 (2009).
[CrossRef] [PubMed]

Kani, J.

J. Kani, “Enabling technologies for future scalable and flexible WDM-POJN and WDM/TDM-PON systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1290–1297 (2010).
[CrossRef]

Kazovsky, L. G.

Kuo, C.-C. J.

M. Morelli, C.-C. J. Kuo, and M.-O. Pun, “Synchronization Techniques for Orthogonal Frequency Division Multiple Access (OFDMA): A Tutorial Review,” Proc. IEEE 95(7), 1394–1427 (2007).
[CrossRef]

Lin, Y.-M.

Y.-M. Lin and P.-L. Tien, “Next-generation OFDMA-based passive optical network architecture supporting radio-over-fiber,” IEEE J. Sel. Areas Commun. 28(6), 791–799 (2010).
[CrossRef]

Morelli, M.

M. Morelli, C.-C. J. Kuo, and M.-O. Pun, “Synchronization Techniques for Orthogonal Frequency Division Multiple Access (OFDMA): A Tutorial Review,” Proc. IEEE 95(7), 1394–1427 (2007).
[CrossRef]

Pun, M.-O.

M. Morelli, C.-C. J. Kuo, and M.-O. Pun, “Synchronization Techniques for Orthogonal Frequency Division Multiple Access (OFDMA): A Tutorial Review,” Proc. IEEE 95(7), 1394–1427 (2007).
[CrossRef]

Qian, D.

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[CrossRef]

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett. 21(17), 1265–1267 (2009).
[CrossRef]

Quinlan, T.

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[CrossRef]

Sánchez, C.

Shaw, W.-T.

Shu, C.

Tang, J. M.

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, J. L. Wei, X. Zheng, Y. Hong, C. Shu, and J. M. Tang, “Real-time experimental demonstration of low-cost VCSEL intensity-modulated 11.25 Gb/s optical OFDM signal transmission over 25 km PON systems,” Opt. Express 19(4), 2979–2988 (2011).
[CrossRef] [PubMed]

X. Q. Jin and J. M. Tang, “Optical OFDM synchronization with symbol timing offset and sampling clock offset compensation in real-time IMDD systems,” IEEE Photonics J. 3(2), 187–196 (2011).
[CrossRef]

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[CrossRef]

R. P. Giddings and J. M. Tang, “Experimental demonstration and optimisation of a synchronous clock recovery technique for real-time end-to-end optical OFDM transmission at 11.25Gb/s over 25km SSMF,” Opt. Express 19(3), 2831–2845 (2011).
[CrossRef] [PubMed]

R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, and J. M. Tang, “Experimental demonstration of a record high 11.25Gb/s real-time optical OFDM transceiver supporting 25km SMF end-to-end transmission in simple IMDD systems,” Opt. Express 18(6), 5541–5555 (2010).
[CrossRef] [PubMed]

J. L. Wei, C. Sánchez, R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Significant improvements in optical power budgets of real-time optical OFDM PON systems,” Opt. Express 18(20), 20732–20745 (2010).
[CrossRef] [PubMed]

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, and J. M. Tang, “Negative power penalties of optical OFDM signal transmissions in directly modulated DFB laser-based IMDD systems incorporating negative dispersion fibres,” IEEE Photonics J. 2(4), 532–542 (2010).
[CrossRef]

X. Q. Jin, R. P. Giddings, and J. M. Tang, “Real-time transmission of 3 Gb/s 16-QAM encoded optical OFDM signals over 75 km SMFs with negative power penalties,” Opt. Express 17(17), 14574–14585 (2009).
[CrossRef] [PubMed]

Tien, P.-L.

Y.-M. Lin and P.-L. Tien, “Next-generation OFDMA-based passive optical network architecture supporting radio-over-fiber,” IEEE J. Sel. Areas Commun. 28(6), 791–799 (2010).
[CrossRef]

Walker, S.

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[CrossRef]

Wang, T.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett. 21(17), 1265–1267 (2009).
[CrossRef]

Wei, J. L.

Wong, S.-W.

Zheng, X.

E. Hugues-Salas, R. P. Giddings, X. Q. Jin, J. L. Wei, X. Zheng, Y. Hong, C. Shu, and J. M. Tang, “Real-time experimental demonstration of low-cost VCSEL intensity-modulated 11.25 Gb/s optical OFDM signal transmission over 25 km PON systems,” Opt. Express 19(4), 2979–2988 (2011).
[CrossRef] [PubMed]

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, and J. M. Tang, “Negative power penalties of optical OFDM signal transmissions in directly modulated DFB laser-based IMDD systems incorporating negative dispersion fibres,” IEEE Photonics J. 2(4), 532–542 (2010).
[CrossRef]

IEEE Commun. Mag.

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[CrossRef]

IEEE J. Sel. Areas Commun.

Y.-M. Lin and P.-L. Tien, “Next-generation OFDMA-based passive optical network architecture supporting radio-over-fiber,” IEEE J. Sel. Areas Commun. 28(6), 791–799 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. Kani, “Enabling technologies for future scalable and flexible WDM-POJN and WDM/TDM-PON systems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1290–1297 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

D. Qian, N. Cvijetic, J. Hu, and T. Wang, “A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks,” IEEE Photon. Technol. Lett. 21(17), 1265–1267 (2009).
[CrossRef]

IEEE Photonics J.

X. Q. Jin, J. L. Wei, R. P. Giddings, T. Quinlan, S. Walker, and J. M. Tang, “Experimental demonstrations and extensive comparisons of end-to-end real-time optical OFDM transceivers with adaptive bit and/or power loading,” IEEE Photonics J. 3(3), 500–511 (2011).
[CrossRef]

X. Q. Jin and J. M. Tang, “Optical OFDM synchronization with symbol timing offset and sampling clock offset compensation in real-time IMDD systems,” IEEE Photonics J. 3(2), 187–196 (2011).
[CrossRef]

X. Zheng, X. Q. Jin, R. P. Giddings, J. L. Wei, E. Hugues-Salas, Y. H. Hong, and J. M. Tang, “Negative power penalties of optical OFDM signal transmissions in directly modulated DFB laser-based IMDD systems incorporating negative dispersion fibres,” IEEE Photonics J. 2(4), 532–542 (2010).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Proc. IEEE

M. Morelli, C.-C. J. Kuo, and M.-O. Pun, “Synchronization Techniques for Orthogonal Frequency Division Multiple Access (OFDMA): A Tutorial Review,” Proc. IEEE 95(7), 1394–1427 (2007).
[CrossRef]

Other

M. Nölle, L. Molle, D.-D. Gross, and R. Freund, “Transmission of 5x62 Gbit/s DWDM coherent OFDM with a spectral efficiency of 7.2 bit/s/Hz using joint 64-QAM and 16-QAM modulation”, Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), (USA, 2010), Paper OMR4.

N. Suzuki, K. Nakura, T. Suehiro, M. Nogami, S. Kosaki, and J. Nakagawa, “Over-Sampling based Burst-mode CDR Technology for High-speed TDM-PON Systems”, Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), (USA, 2011), Paper OThT3.

D. Qian, J. Hu, J. Yu, P. N. Ji, L. Xu, T. Wang, M. Cvijetic, and T. Kusano, “Experimental demonstration of a novel OFDM-A based 10 Gb/s PON architecture,” European Conference on Optical Communication (ECOC), (Berlin, 2007), Paper Mo 5.4.1.

E. Wong, “Current and next-generation broadband access technologies”, Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), (USA, 2011), Paper NMD1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

OOFDMA PON system setup. λ12): wavelength of the VCSEL- (DFB-) based DML. P1 (P2): optical launch power of ONU1 (ONU2). Pr: optical power received by the PIN in the OLT.

Fig. 2
Fig. 2

Real-time OFDM transmitter/receiver in the ONU/OLT.

Fig. 3
Fig. 3

Data-encoding bit and adaptively loaded subcarrier amplitude distributions over different subcarriers assigned to different ONUs: (a) Data-encoding bit distribution and (b) normalized subcarrier amplitude prior to the IFFT in the transmitter of each ONU.

Fig. 4
Fig. 4

Bias current dependent BER and optimum RMS driving current for different DMLs. (a) VCSEL-based DML and (b) DFB-based DML. In the OOFDMA PON system, only one ONU is switched on at a time and the received optical power is fixed at −8dBm in the OLT. Threshold currents: 2mA for the VCSEL and 29mA for the DFB laser.

Fig. 5
Fig. 5

BER of each ONU versus bias current in the OOFDMA PON system with two ONUs simultaneously sending their upstream signals to the OLT. (a) VCSEL-based DML and (b) DFB-based DML. The received optical power in the OLT is fixed at −5dBm.

Fig. 6
Fig. 6

ONU launch power variation range for the OOFDMA PON system with DMLs operating at their optimum conditions. (a) The optical launch power from the VCSEL-based ONU1 varies and the optical launch power from the DFB-based ONU2 is fixed at 6dBm. (b) The optical launch power from the VCSEL-based ONU1 is fixed at 6dBm and the optical launch power from the DFB-based ONU2 varies. Pr: fixed optical power received in the OLT.

Fig. 7
Fig. 7

BER performance sensitivity to symbol offset between upstream signals of different ONUs. The received optical power in the OLT is fixed at −7dBm.

Fig. 8
Fig. 8

BERs versus received optical power for two ONUs using 64-QAM. Case I, represented by solid lines, where both ONUs are activated; Case II, represented by dash lines, where one ONU is activated and the other ONU is deactivated. (a) The adaptive DBA scheme presented in Section 2.3, and (b) The adaptive DBA scheme based on interleaved subcarriers.

Fig. 9
Fig. 9

BERs versus received optical power for two ONUs using 32-QAM. Case I, represented by solid lines, where both ONUs are activated; Case II, represented by dash lines, where one ONU is activated and the other ONU is deactivated. The adaptive DBA scheme and all other system parameters are identical to those utilized in Fig. 8(a).

Metrics