Abstract

A non-contact determination of thermal diffusivity and spatial distribution of temperature on tens-of-micrometers scale is demonstrated by thermal imaging. Temperature localization and a heat flow have been in situ monitored with ∼ 10 ms temporal resolution in Kapton polymer films structured by femtosecond laser pulses. The structured regions can localize temperature and create strong thermal gradients of few degrees over tens-of-micrometers (∼ 0.1 K/μm). This is used to induce an anisotropy in a heat transport. Temperature changes on the order of ∼ 0.1°C were reliably detected and spatial spreading by diffusion was monitored using Fourier analysis. Application potential, miniaturization prospects, and emissivity changes induced by laser structuring of materials are discussed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95, 6072–6076 (2004).
    [CrossRef]
  2. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3, 535–544 (2009).
    [CrossRef]
  3. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 2, 132 – 134 (1997).
    [CrossRef]
  4. S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76, 2656–2658 (2000).
    [CrossRef]
  5. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697–698 (2001).
    [CrossRef] [PubMed]
  6. O. Breitenstein, J. Bauer, K. Bothe, W. Kwapil, D. Lausch, U. Rau, J. Schmidt, M. Schneemann, M. C. Schubert, J.-M. Wagner, and W. Warta, “Understanding junction breakdown in multicrystalline solar cells,” J. Appl. Phys. 109, 071101 (2011).
    [CrossRef]
  7. K. Juodkazis, J. Juodkazytė, P. Kalinauskas, E. Jelmakas, and S. Juodkazis, “Photoelectrolysis of water: Solar hydrogen - achievements and perspectives,” Opt. Express: energy express 18, A147–A160 (2010).
    [CrossRef]
  8. M. Schmotz, P. Bookjans, E. Scheer, and P. Leiderer, “Optical temperature measurements on thin freestanding silicon membranes,” Rev. Sci. Instrum. 81, 114903 (2010).
    [CrossRef] [PubMed]
  9. W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. R. de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
    [CrossRef]
  10. Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, “Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses,” Appl. Phys. Lett. 89, 161911 (2006).
    [CrossRef]
  11. J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys. A. 98(3), 551–556 (2010).
    [CrossRef]
  12. J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of femtosecond laser-structured PMMA,” Appl. Phys. A 101, 27–31 (2010).
    [CrossRef]
  13. J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions of sapphire,” Opt. Express 18, 8300–8310 (2010).
    [CrossRef] [PubMed]
  14. M. Farsari and B. Chichkov, “Materials processing: Two-photon fabrication,” Nature Photonics 3, 450 – 452 (2009).
    [CrossRef]
  15. K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89, 024106 (2006).
    [CrossRef]
  16. L. Hallo, C. Mézel, A. Bourgeade, D. Hébert, E. G. Gamaly, and S. Juodkazis, Laser-Matter Interaction in Transparent Materials: Confined Micro-explosion and Jet Formation, 121–146. NATO Science for Peace and Security Series B: Physics and Biophysics, Springer Netherlands, 2009.
  17. T. Kudrius, G. Šlekys, and S. Juodkazis, “Surface-texturing of sapphire by femtosecond laser pulses for photonic applications,” J. Phys. D: Appl. Phys. 43, 145501 (2010).
    [CrossRef]
  18. L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express 1, 605–613 (2011).
    [CrossRef]
  19. G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. D. Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5μm by astigmatic beam focusing,” Opt. Lett. 27, 1938–1940 (2002).
    [CrossRef]
  20. G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express 17, 9515–9525 (2009).
    [CrossRef] [PubMed]
  21. D. Day and M. Gu, “Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses,” Opt. Express 13, 5939–5946 (2005).
    [CrossRef] [PubMed]
  22. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
    [CrossRef]
  23. L. Shah, A. Arai, S. Eaton, and P. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express 13, 1999–2006 (2005).
    [CrossRef] [PubMed]
  24. J. Wu and X. Gan, “Three dimensional nanoparticle trapping enhanced by surface plasmon resonance,” Opt. Express 18, 27619–27626 (2010).
    [CrossRef]
  25. H. Misawa and S. Juodkazis, “Photophysics and photochemistry of a laser manipulated microparticle,” Prog. Polym. Sci. 24, 665–697 (1999).
    [CrossRef]
  26. E. Brasselet and S. Juodkazis, “Optical angular manipulation of liquid crystal droplets in laser tweezers,” J. of Nonlin. Opt. Phys. and Mat. 18, 167–194 (2009).
    [CrossRef]
  27. O. A. Louchev, S. Juodkazis, N. Murazawa, S. Wada, and H. Misawa, “Coupled laser molecular trapping, cluster assembly, and deposition fed by laser-induced Marangoni convection,” Opt. Express 16, 5673–5680 (2008).
    [CrossRef] [PubMed]
  28. A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451, 163 – 167 (2008).
    [CrossRef] [PubMed]
  29. J. Morikawa, A. Orie, Y. Hikima, T. Hashimoto, and S. Juodkazis, “Influence of ordering change on the optical and thermal properties of inflation polyethylene films,” Appl. Surf. Sci. 257, 5439–5442 (2011).
    [CrossRef]
  30. Y. Gu, X. Tang, Y. Xu, and I. Hatta, “Ingenious method for eliminating effects of heat loss in measurements of thermal diffusivity by ac calorimetric method,” Jpn. J. Appl. Phys. 32, L1365 – L1367 (1993).
    [CrossRef]
  31. J. Morikawa and T. Hashimoto, “Thermal diffusivity of aromatic polyimide thin films by temperature wave analysis,” J. Appl. Phys. 105, 113506 (2009).
    [CrossRef]
  32. S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Efficient microvalve driven by a Si-Ni bimorph,” Jpn. J. Appl. Phys. 42(part 1, No.7A), 4464–4468 (2003).
    [CrossRef]
  33. S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Miniaturization of a thermally driven Ni|Si bimorph,” Jpn. J. Appl. Phys. 42(part 1, No.7A), 4593–4597 (2003).
    [CrossRef]
  34. R. Krishnan, S. Shirota, Y. Tanaka, and N. Nishiguchi, “High-efficient acoustic wave rectifier,” Sol. State Comm. 144, 194–197 (2007).
    [CrossRef]
  35. E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B 81, 054113 (2010).
    [CrossRef]
  36. S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89, 062903 (2006).
    [CrossRef]

2011

O. Breitenstein, J. Bauer, K. Bothe, W. Kwapil, D. Lausch, U. Rau, J. Schmidt, M. Schneemann, M. C. Schubert, J.-M. Wagner, and W. Warta, “Understanding junction breakdown in multicrystalline solar cells,” J. Appl. Phys. 109, 071101 (2011).
[CrossRef]

J. Morikawa, A. Orie, Y. Hikima, T. Hashimoto, and S. Juodkazis, “Influence of ordering change on the optical and thermal properties of inflation polyethylene films,” Appl. Surf. Sci. 257, 5439–5442 (2011).
[CrossRef]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express 1, 605–613 (2011).
[CrossRef]

2010

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions of sapphire,” Opt. Express 18, 8300–8310 (2010).
[CrossRef] [PubMed]

J. Wu and X. Gan, “Three dimensional nanoparticle trapping enhanced by surface plasmon resonance,” Opt. Express 18, 27619–27626 (2010).
[CrossRef]

E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B 81, 054113 (2010).
[CrossRef]

K. Juodkazis, J. Juodkazytė, P. Kalinauskas, E. Jelmakas, and S. Juodkazis, “Photoelectrolysis of water: Solar hydrogen - achievements and perspectives,” Opt. Express: energy express 18, A147–A160 (2010).
[CrossRef]

M. Schmotz, P. Bookjans, E. Scheer, and P. Leiderer, “Optical temperature measurements on thin freestanding silicon membranes,” Rev. Sci. Instrum. 81, 114903 (2010).
[CrossRef] [PubMed]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys. A. 98(3), 551–556 (2010).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of femtosecond laser-structured PMMA,” Appl. Phys. A 101, 27–31 (2010).
[CrossRef]

T. Kudrius, G. Šlekys, and S. Juodkazis, “Surface-texturing of sapphire by femtosecond laser pulses for photonic applications,” J. Phys. D: Appl. Phys. 43, 145501 (2010).
[CrossRef]

2009

M. Farsari and B. Chichkov, “Materials processing: Two-photon fabrication,” Nature Photonics 3, 450 – 452 (2009).
[CrossRef]

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3, 535–544 (2009).
[CrossRef]

E. Brasselet and S. Juodkazis, “Optical angular manipulation of liquid crystal droplets in laser tweezers,” J. of Nonlin. Opt. Phys. and Mat. 18, 167–194 (2009).
[CrossRef]

J. Morikawa and T. Hashimoto, “Thermal diffusivity of aromatic polyimide thin films by temperature wave analysis,” J. Appl. Phys. 105, 113506 (2009).
[CrossRef]

G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express 17, 9515–9525 (2009).
[CrossRef] [PubMed]

2008

O. A. Louchev, S. Juodkazis, N. Murazawa, S. Wada, and H. Misawa, “Coupled laser molecular trapping, cluster assembly, and deposition fed by laser-induced Marangoni convection,” Opt. Express 16, 5673–5680 (2008).
[CrossRef] [PubMed]

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. R. de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451, 163 – 167 (2008).
[CrossRef] [PubMed]

2007

R. Krishnan, S. Shirota, Y. Tanaka, and N. Nishiguchi, “High-efficient acoustic wave rectifier,” Sol. State Comm. 144, 194–197 (2007).
[CrossRef]

2006

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89, 062903 (2006).
[CrossRef]

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89, 024106 (2006).
[CrossRef]

Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, “Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses,” Appl. Phys. Lett. 89, 161911 (2006).
[CrossRef]

2005

2004

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95, 6072–6076 (2004).
[CrossRef]

2003

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Efficient microvalve driven by a Si-Ni bimorph,” Jpn. J. Appl. Phys. 42(part 1, No.7A), 4464–4468 (2003).
[CrossRef]

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Miniaturization of a thermally driven Ni|Si bimorph,” Jpn. J. Appl. Phys. 42(part 1, No.7A), 4593–4597 (2003).
[CrossRef]

2002

2001

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697–698 (2001).
[CrossRef] [PubMed]

2000

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76, 2656–2658 (2000).
[CrossRef]

1999

H. Misawa and S. Juodkazis, “Photophysics and photochemistry of a laser manipulated microparticle,” Prog. Polym. Sci. 24, 665–697 (1999).
[CrossRef]

1997

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 2, 132 – 134 (1997).
[CrossRef]

1993

Y. Gu, X. Tang, Y. Xu, and I. Hatta, “Ingenious method for eliminating effects of heat loss in measurements of thermal diffusivity by ac calorimetric method,” Jpn. J. Appl. Phys. 32, L1365 – L1367 (1993).
[CrossRef]

Ams, M.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3, 535–544 (2009).
[CrossRef]

Arai, A.

Audouard, E.

Bado, P.

Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, “Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses,” Appl. Phys. Lett. 89, 161911 (2006).
[CrossRef]

Baldacchini, T.

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95, 6072–6076 (2004).
[CrossRef]

Bauer, J.

O. Breitenstein, J. Bauer, K. Bothe, W. Kwapil, D. Lausch, U. Rau, J. Schmidt, M. Schneemann, M. C. Schubert, J.-M. Wagner, and W. Warta, “Understanding junction breakdown in multicrystalline solar cells,” J. Appl. Phys. 109, 071101 (2011).
[CrossRef]

Bellouard, Y.

Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, “Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses,” Appl. Phys. Lett. 89, 161911 (2006).
[CrossRef]

Bookjans, P.

M. Schmotz, P. Bookjans, E. Scheer, and P. Leiderer, “Optical temperature measurements on thin freestanding silicon membranes,” Rev. Sci. Instrum. 81, 114903 (2010).
[CrossRef] [PubMed]

Bothe, K.

O. Breitenstein, J. Bauer, K. Bothe, W. Kwapil, D. Lausch, U. Rau, J. Schmidt, M. Schneemann, M. C. Schubert, J.-M. Wagner, and W. Warta, “Understanding junction breakdown in multicrystalline solar cells,” J. Appl. Phys. 109, 071101 (2011).
[CrossRef]

Bourgeade, A.

L. Hallo, C. Mézel, A. Bourgeade, D. Hébert, E. G. Gamaly, and S. Juodkazis, Laser-Matter Interaction in Transparent Materials: Confined Micro-explosion and Jet Formation, 121–146. NATO Science for Peace and Security Series B: Physics and Biophysics, Springer Netherlands, 2009.

Brasselet, E.

E. Brasselet and S. Juodkazis, “Optical angular manipulation of liquid crystal droplets in laser tweezers,” J. of Nonlin. Opt. Phys. and Mat. 18, 167–194 (2009).
[CrossRef]

Breitenstein, O.

O. Breitenstein, J. Bauer, K. Bothe, W. Kwapil, D. Lausch, U. Rau, J. Schmidt, M. Schneemann, M. C. Schubert, J.-M. Wagner, and W. Warta, “Understanding junction breakdown in multicrystalline solar cells,” J. Appl. Phys. 109, 071101 (2011).
[CrossRef]

Bressel, L.

Buividas, R.

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

Cerullo, G.

Chen, R.

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451, 163 – 167 (2008).
[CrossRef] [PubMed]

Cheng, G.

Chichkov, B.

M. Farsari and B. Chichkov, “Materials processing: Two-photon fabrication,” Nature Photonics 3, 450 – 452 (2009).
[CrossRef]

Day, D.

de la Cruz, A. R.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. R. de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

de Ligny, D.

Dekker, P.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3, 535–544 (2009).
[CrossRef]

Delgado, R. D.

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451, 163 – 167 (2008).
[CrossRef] [PubMed]

Dugan, M.

Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, “Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses,” Appl. Phys. Lett. 89, 161911 (2006).
[CrossRef]

Eaton, S.

Farrer, R. A.

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95, 6072–6076 (2004).
[CrossRef]

Farsari, M.

M. Farsari and B. Chichkov, “Materials processing: Two-photon fabrication,” Nature Photonics 3, 450 – 452 (2009).
[CrossRef]

Fernandez, H.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. R. de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

Ferrer, A.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. R. de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

Fourkas, J. T.

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95, 6072–6076 (2004).
[CrossRef]

Gamaly, E.

E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B 81, 054113 (2010).
[CrossRef]

Gamaly, E. G.

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89, 062903 (2006).
[CrossRef]

L. Hallo, C. Mézel, A. Bourgeade, D. Hébert, E. G. Gamaly, and S. Juodkazis, Laser-Matter Interaction in Transparent Materials: Confined Micro-explosion and Jet Formation, 121–146. NATO Science for Peace and Security Series B: Physics and Biophysics, Springer Netherlands, 2009.

Gan, X.

Garnett, E. C.

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451, 163 – 167 (2008).
[CrossRef] [PubMed]

Gawelda, W.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. R. de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

Gu, M.

Gu, Y.

Y. Gu, X. Tang, Y. Xu, and I. Hatta, “Ingenious method for eliminating effects of heat loss in measurements of thermal diffusivity by ac calorimetric method,” Jpn. J. Appl. Phys. 32, L1365 – L1367 (1993).
[CrossRef]

Hallo, L.

L. Hallo, C. Mézel, A. Bourgeade, D. Hébert, E. G. Gamaly, and S. Juodkazis, Laser-Matter Interaction in Transparent Materials: Confined Micro-explosion and Jet Formation, 121–146. NATO Science for Peace and Security Series B: Physics and Biophysics, Springer Netherlands, 2009.

Hashimoto, T.

J. Morikawa, A. Orie, Y. Hikima, T. Hashimoto, and S. Juodkazis, “Influence of ordering change on the optical and thermal properties of inflation polyethylene films,” Appl. Surf. Sci. 257, 5439–5442 (2011).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of femtosecond laser-structured PMMA,” Appl. Phys. A 101, 27–31 (2010).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys. A. 98(3), 551–556 (2010).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions of sapphire,” Opt. Express 18, 8300–8310 (2010).
[CrossRef] [PubMed]

J. Morikawa and T. Hashimoto, “Thermal diffusivity of aromatic polyimide thin films by temperature wave analysis,” J. Appl. Phys. 105, 113506 (2009).
[CrossRef]

Hatta, I.

Y. Gu, X. Tang, Y. Xu, and I. Hatta, “Ingenious method for eliminating effects of heat loss in measurements of thermal diffusivity by ac calorimetric method,” Jpn. J. Appl. Phys. 32, L1365 – L1367 (1993).
[CrossRef]

Hébert, D.

L. Hallo, C. Mézel, A. Bourgeade, D. Hébert, E. G. Gamaly, and S. Juodkazis, Laser-Matter Interaction in Transparent Materials: Confined Micro-explosion and Jet Formation, 121–146. NATO Science for Peace and Security Series B: Physics and Biophysics, Springer Netherlands, 2009.

Herman, P.

Hikima, Y.

J. Morikawa, A. Orie, Y. Hikima, T. Hashimoto, and S. Juodkazis, “Influence of ordering change on the optical and thermal properties of inflation polyethylene films,” Appl. Surf. Sci. 257, 5439–5442 (2011).
[CrossRef]

Hochbaum, A. I.

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451, 163 – 167 (2008).
[CrossRef] [PubMed]

Ikuta, K.

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76, 2656–2658 (2000).
[CrossRef]

Jarutis, V.

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89, 024106 (2006).
[CrossRef]

Jelmakas, E.

K. Juodkazis, J. Juodkazytė, P. Kalinauskas, E. Jelmakas, and S. Juodkazis, “Photoelectrolysis of water: Solar hydrogen - achievements and perspectives,” Opt. Express: energy express 18, A147–A160 (2010).
[CrossRef]

Juodkazis, K.

K. Juodkazis, J. Juodkazytė, P. Kalinauskas, E. Jelmakas, and S. Juodkazis, “Photoelectrolysis of water: Solar hydrogen - achievements and perspectives,” Opt. Express: energy express 18, A147–A160 (2010).
[CrossRef]

Juodkazis, S.

J. Morikawa, A. Orie, Y. Hikima, T. Hashimoto, and S. Juodkazis, “Influence of ordering change on the optical and thermal properties of inflation polyethylene films,” Appl. Surf. Sci. 257, 5439–5442 (2011).
[CrossRef]

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express 1, 605–613 (2011).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions of sapphire,” Opt. Express 18, 8300–8310 (2010).
[CrossRef] [PubMed]

T. Kudrius, G. Šlekys, and S. Juodkazis, “Surface-texturing of sapphire by femtosecond laser pulses for photonic applications,” J. Phys. D: Appl. Phys. 43, 145501 (2010).
[CrossRef]

E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B 81, 054113 (2010).
[CrossRef]

K. Juodkazis, J. Juodkazytė, P. Kalinauskas, E. Jelmakas, and S. Juodkazis, “Photoelectrolysis of water: Solar hydrogen - achievements and perspectives,” Opt. Express: energy express 18, A147–A160 (2010).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of femtosecond laser-structured PMMA,” Appl. Phys. A 101, 27–31 (2010).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys. A. 98(3), 551–556 (2010).
[CrossRef]

E. Brasselet and S. Juodkazis, “Optical angular manipulation of liquid crystal droplets in laser tweezers,” J. of Nonlin. Opt. Phys. and Mat. 18, 167–194 (2009).
[CrossRef]

O. A. Louchev, S. Juodkazis, N. Murazawa, S. Wada, and H. Misawa, “Coupled laser molecular trapping, cluster assembly, and deposition fed by laser-induced Marangoni convection,” Opt. Express 16, 5673–5680 (2008).
[CrossRef] [PubMed]

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89, 062903 (2006).
[CrossRef]

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89, 024106 (2006).
[CrossRef]

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Efficient microvalve driven by a Si-Ni bimorph,” Jpn. J. Appl. Phys. 42(part 1, No.7A), 4464–4468 (2003).
[CrossRef]

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Miniaturization of a thermally driven Ni|Si bimorph,” Jpn. J. Appl. Phys. 42(part 1, No.7A), 4593–4597 (2003).
[CrossRef]

H. Misawa and S. Juodkazis, “Photophysics and photochemistry of a laser manipulated microparticle,” Prog. Polym. Sci. 24, 665–697 (1999).
[CrossRef]

L. Hallo, C. Mézel, A. Bourgeade, D. Hébert, E. G. Gamaly, and S. Juodkazis, Laser-Matter Interaction in Transparent Materials: Confined Micro-explosion and Jet Formation, 121–146. NATO Science for Peace and Security Series B: Physics and Biophysics, Springer Netherlands, 2009.

Juodkazyte, J.

K. Juodkazis, J. Juodkazytė, P. Kalinauskas, E. Jelmakas, and S. Juodkazis, “Photoelectrolysis of water: Solar hydrogen - achievements and perspectives,” Opt. Express: energy express 18, A147–A160 (2010).
[CrossRef]

Kalinauskas, P.

K. Juodkazis, J. Juodkazytė, P. Kalinauskas, E. Jelmakas, and S. Juodkazis, “Photoelectrolysis of water: Solar hydrogen - achievements and perspectives,” Opt. Express: energy express 18, A147–A160 (2010).
[CrossRef]

Kamakura, M.

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Miniaturization of a thermally driven Ni|Si bimorph,” Jpn. J. Appl. Phys. 42(part 1, No.7A), 4593–4597 (2003).
[CrossRef]

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Efficient microvalve driven by a Si-Ni bimorph,” Jpn. J. Appl. Phys. 42(part 1, No.7A), 4464–4468 (2003).
[CrossRef]

Kawada, H.

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Efficient microvalve driven by a Si-Ni bimorph,” Jpn. J. Appl. Phys. 42(part 1, No.7A), 4464–4468 (2003).
[CrossRef]

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Miniaturization of a thermally driven Ni|Si bimorph,” Jpn. J. Appl. Phys. 42(part 1, No.7A), 4593–4597 (2003).
[CrossRef]

Kawahito, K.

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Miniaturization of a thermally driven Ni|Si bimorph,” Jpn. J. Appl. Phys. 42(part 1, No.7A), 4593–4597 (2003).
[CrossRef]

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Efficient microvalve driven by a Si-Ni bimorph,” Jpn. J. Appl. Phys. 42(part 1, No.7A), 4464–4468 (2003).
[CrossRef]

Kawata, S.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697–698 (2001).
[CrossRef] [PubMed]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 2, 132 – 134 (1997).
[CrossRef]

Kitamura, K.

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89, 062903 (2006).
[CrossRef]

Krishnan, R.

R. Krishnan, S. Shirota, Y. Tanaka, and N. Nishiguchi, “High-efficient acoustic wave rectifier,” Sol. State Comm. 144, 194–197 (2007).
[CrossRef]

Krolokowski, W.

E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B 81, 054113 (2010).
[CrossRef]

Kudrius, T.

T. Kudrius, G. Šlekys, and S. Juodkazis, “Surface-texturing of sapphire by femtosecond laser pulses for photonic applications,” J. Phys. D: Appl. Phys. 43, 145501 (2010).
[CrossRef]

Kwapil, W.

O. Breitenstein, J. Bauer, K. Bothe, W. Kwapil, D. Lausch, U. Rau, J. Schmidt, M. Schneemann, M. C. Schubert, J.-M. Wagner, and W. Warta, “Understanding junction breakdown in multicrystalline solar cells,” J. Appl. Phys. 109, 071101 (2011).
[CrossRef]

LaFratta, C. N.

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95, 6072–6076 (2004).
[CrossRef]

Laporta, P.

Lausch, D.

O. Breitenstein, J. Bauer, K. Bothe, W. Kwapil, D. Lausch, U. Rau, J. Schmidt, M. Schneemann, M. C. Schubert, J.-M. Wagner, and W. Warta, “Understanding junction breakdown in multicrystalline solar cells,” J. Appl. Phys. 109, 071101 (2011).
[CrossRef]

Leiderer, P.

M. Schmotz, P. Bookjans, E. Scheer, and P. Leiderer, “Optical temperature measurements on thin freestanding silicon membranes,” Rev. Sci. Instrum. 81, 114903 (2010).
[CrossRef] [PubMed]

Liang, W.

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451, 163 – 167 (2008).
[CrossRef] [PubMed]

Liu, Y.

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89, 062903 (2006).
[CrossRef]

Louchev, O. A.

O. A. Louchev, S. Juodkazis, N. Murazawa, S. Wada, and H. Misawa, “Coupled laser molecular trapping, cluster assembly, and deposition fed by laser-induced Marangoni convection,” Opt. Express 16, 5673–5680 (2008).
[CrossRef] [PubMed]

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89, 062903 (2006).
[CrossRef]

Majumdar, A.

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451, 163 – 167 (2008).
[CrossRef] [PubMed]

Marangoni, M.

Marshall, G. D.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3, 535–544 (2009).
[CrossRef]

Martinez-Andrieux, V.

Maruo, S.

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76, 2656–2658 (2000).
[CrossRef]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 2, 132 – 134 (1997).
[CrossRef]

Mauclair, C.

Mézel, C.

L. Hallo, C. Mézel, A. Bourgeade, D. Hébert, E. G. Gamaly, and S. Juodkazis, Laser-Matter Interaction in Transparent Materials: Confined Micro-explosion and Jet Formation, 121–146. NATO Science for Peace and Security Series B: Physics and Biophysics, Springer Netherlands, 2009.

Misawa, H.

E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B 81, 054113 (2010).
[CrossRef]

O. A. Louchev, S. Juodkazis, N. Murazawa, S. Wada, and H. Misawa, “Coupled laser molecular trapping, cluster assembly, and deposition fed by laser-induced Marangoni convection,” Opt. Express 16, 5673–5680 (2008).
[CrossRef] [PubMed]

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89, 062903 (2006).
[CrossRef]

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89, 024106 (2006).
[CrossRef]

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Miniaturization of a thermally driven Ni|Si bimorph,” Jpn. J. Appl. Phys. 42(part 1, No.7A), 4593–4597 (2003).
[CrossRef]

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Efficient microvalve driven by a Si-Ni bimorph,” Jpn. J. Appl. Phys. 42(part 1, No.7A), 4464–4468 (2003).
[CrossRef]

H. Misawa and S. Juodkazis, “Photophysics and photochemistry of a laser manipulated microparticle,” Prog. Polym. Sci. 24, 665–697 (1999).
[CrossRef]

Mishchik, K.

Mizeikis, V.

L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express 1, 605–613 (2011).
[CrossRef]

E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B 81, 054113 (2010).
[CrossRef]

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89, 062903 (2006).
[CrossRef]

Morikawa, J.

J. Morikawa, A. Orie, Y. Hikima, T. Hashimoto, and S. Juodkazis, “Influence of ordering change on the optical and thermal properties of inflation polyethylene films,” Appl. Surf. Sci. 257, 5439–5442 (2011).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of femtosecond laser-structured PMMA,” Appl. Phys. A 101, 27–31 (2010).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys. A. 98(3), 551–556 (2010).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions of sapphire,” Opt. Express 18, 8300–8310 (2010).
[CrossRef] [PubMed]

J. Morikawa and T. Hashimoto, “Thermal diffusivity of aromatic polyimide thin films by temperature wave analysis,” J. Appl. Phys. 105, 113506 (2009).
[CrossRef]

Murazawa, N.

Najarian, M.

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451, 163 – 167 (2008).
[CrossRef] [PubMed]

Nakamura, O.

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 2, 132 – 134 (1997).
[CrossRef]

Naughton, M. J.

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95, 6072–6076 (2004).
[CrossRef]

Nishiguchi, N.

R. Krishnan, S. Shirota, Y. Tanaka, and N. Nishiguchi, “High-efficient acoustic wave rectifier,” Sol. State Comm. 144, 194–197 (2007).
[CrossRef]

Nolte, S.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

Orie, A.

J. Morikawa, A. Orie, Y. Hikima, T. Hashimoto, and S. Juodkazis, “Influence of ordering change on the optical and thermal properties of inflation polyethylene films,” Appl. Surf. Sci. 257, 5439–5442 (2011).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys. A. 98(3), 551–556 (2010).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of femtosecond laser-structured PMMA,” Appl. Phys. A 101, 27–31 (2010).
[CrossRef]

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions of sapphire,” Opt. Express 18, 8300–8310 (2010).
[CrossRef] [PubMed]

Osellame, R.

Piper, J. A.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3, 535–544 (2009).
[CrossRef]

Polli, D.

Puerto, D.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. R. de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

Ramponi, R.

Rau, U.

O. Breitenstein, J. Bauer, K. Bothe, W. Kwapil, D. Lausch, U. Rau, J. Schmidt, M. Schneemann, M. C. Schubert, J.-M. Wagner, and W. Warta, “Understanding junction breakdown in multicrystalline solar cells,” J. Appl. Phys. 109, 071101 (2011).
[CrossRef]

Rode, A.

E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B 81, 054113 (2010).
[CrossRef]

Said, A. A.

Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, “Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses,” Appl. Phys. Lett. 89, 161911 (2006).
[CrossRef]

Saitoh, M.

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Miniaturization of a thermally driven Ni|Si bimorph,” Jpn. J. Appl. Phys. 42(part 1, No.7A), 4593–4597 (2003).
[CrossRef]

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Efficient microvalve driven by a Si-Ni bimorph,” Jpn. J. Appl. Phys. 42(part 1, No.7A), 4464–4468 (2003).
[CrossRef]

Saleh, B. E. A.

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95, 6072–6076 (2004).
[CrossRef]

Scheer, E.

M. Schmotz, P. Bookjans, E. Scheer, and P. Leiderer, “Optical temperature measurements on thin freestanding silicon membranes,” Rev. Sci. Instrum. 81, 114903 (2010).
[CrossRef] [PubMed]

Schmidt, J.

O. Breitenstein, J. Bauer, K. Bothe, W. Kwapil, D. Lausch, U. Rau, J. Schmidt, M. Schneemann, M. C. Schubert, J.-M. Wagner, and W. Warta, “Understanding junction breakdown in multicrystalline solar cells,” J. Appl. Phys. 109, 071101 (2011).
[CrossRef]

Schmotz, M.

M. Schmotz, P. Bookjans, E. Scheer, and P. Leiderer, “Optical temperature measurements on thin freestanding silicon membranes,” Rev. Sci. Instrum. 81, 114903 (2010).
[CrossRef] [PubMed]

Schneemann, M.

O. Breitenstein, J. Bauer, K. Bothe, W. Kwapil, D. Lausch, U. Rau, J. Schmidt, M. Schneemann, M. C. Schubert, J.-M. Wagner, and W. Warta, “Understanding junction breakdown in multicrystalline solar cells,” J. Appl. Phys. 109, 071101 (2011).
[CrossRef]

Schubert, M. C.

O. Breitenstein, J. Bauer, K. Bothe, W. Kwapil, D. Lausch, U. Rau, J. Schmidt, M. Schneemann, M. C. Schubert, J.-M. Wagner, and W. Warta, “Understanding junction breakdown in multicrystalline solar cells,” J. Appl. Phys. 109, 071101 (2011).
[CrossRef]

Seet, K. K.

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89, 024106 (2006).
[CrossRef]

Shah, L.

Shirota, S.

R. Krishnan, S. Shirota, Y. Tanaka, and N. Nishiguchi, “High-efficient acoustic wave rectifier,” Sol. State Comm. 144, 194–197 (2007).
[CrossRef]

Siegel, J.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. R. de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

Silvestri, S. D.

Šlekys, G.

T. Kudrius, G. Šlekys, and S. Juodkazis, “Surface-texturing of sapphire by femtosecond laser pulses for photonic applications,” J. Phys. D: Appl. Phys. 43, 145501 (2010).
[CrossRef]

Solis, J.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. R. de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

Sonneville, C.

Stoian, R.

Sudzius, M.

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89, 062903 (2006).
[CrossRef]

Sun, H.-B.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697–698 (2001).
[CrossRef] [PubMed]

Taccheo, S.

Takada, K.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697–698 (2001).
[CrossRef] [PubMed]

Tanaka, T.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697–698 (2001).
[CrossRef] [PubMed]

Tanaka, Y.

R. Krishnan, S. Shirota, Y. Tanaka, and N. Nishiguchi, “High-efficient acoustic wave rectifier,” Sol. State Comm. 144, 194–197 (2007).
[CrossRef]

Tang, X.

Y. Gu, X. Tang, Y. Xu, and I. Hatta, “Ingenious method for eliminating effects of heat loss in measurements of thermal diffusivity by ac calorimetric method,” Jpn. J. Appl. Phys. 32, L1365 – L1367 (1993).
[CrossRef]

Teich, M. C.

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95, 6072–6076 (2004).
[CrossRef]

Tomonari, S.

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Efficient microvalve driven by a Si-Ni bimorph,” Jpn. J. Appl. Phys. 42(part 1, No.7A), 4464–4468 (2003).
[CrossRef]

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Miniaturization of a thermally driven Ni|Si bimorph,” Jpn. J. Appl. Phys. 42(part 1, No.7A), 4593–4597 (2003).
[CrossRef]

Tünnermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

Wada, S.

Wagner, J.-M.

O. Breitenstein, J. Bauer, K. Bothe, W. Kwapil, D. Lausch, U. Rau, J. Schmidt, M. Schneemann, M. C. Schubert, J.-M. Wagner, and W. Warta, “Understanding junction breakdown in multicrystalline solar cells,” J. Appl. Phys. 109, 071101 (2011).
[CrossRef]

Warta, W.

O. Breitenstein, J. Bauer, K. Bothe, W. Kwapil, D. Lausch, U. Rau, J. Schmidt, M. Schneemann, M. C. Schubert, J.-M. Wagner, and W. Warta, “Understanding junction breakdown in multicrystalline solar cells,” J. Appl. Phys. 109, 071101 (2011).
[CrossRef]

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

Withford, M. J.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3, 535–544 (2009).
[CrossRef]

Wu, J.

Xu, Y.

Y. Gu, X. Tang, Y. Xu, and I. Hatta, “Ingenious method for eliminating effects of heat loss in measurements of thermal diffusivity by ac calorimetric method,” Jpn. J. Appl. Phys. 32, L1365 – L1367 (1993).
[CrossRef]

Yang, P.

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451, 163 – 167 (2008).
[CrossRef] [PubMed]

Yoshida, H.

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Efficient microvalve driven by a Si-Ni bimorph,” Jpn. J. Appl. Phys. 42(part 1, No.7A), 4464–4468 (2003).
[CrossRef]

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Miniaturization of a thermally driven Ni|Si bimorph,” Jpn. J. Appl. Phys. 42(part 1, No.7A), 4593–4597 (2003).
[CrossRef]

Yoshida, K.

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Efficient microvalve driven by a Si-Ni bimorph,” Jpn. J. Appl. Phys. 42(part 1, No.7A), 4464–4468 (2003).
[CrossRef]

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Miniaturization of a thermally driven Ni|Si bimorph,” Jpn. J. Appl. Phys. 42(part 1, No.7A), 4593–4597 (2003).
[CrossRef]

Appl. Phys. A

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of femtosecond laser-structured PMMA,” Appl. Phys. A 101, 27–31 (2010).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

Appl. Phys. A.

J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys. A. 98(3), 551–556 (2010).
[CrossRef]

Appl. Phys. Lett.

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89, 024106 (2006).
[CrossRef]

S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76, 2656–2658 (2000).
[CrossRef]

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. R. de la Cruz, H. Fernandez, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93, 121109 (2008).
[CrossRef]

Y. Bellouard, M. Dugan, A. A. Said, and P. Bado, “Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses,” Appl. Phys. Lett. 89, 161911 (2006).
[CrossRef]

S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E. G. Gamaly, Y. Liu, O. A. Louchev, and K. Kitamura, “Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3,” Appl. Phys. Lett. 89, 062903 (2006).
[CrossRef]

Appl. Surf. Sci.

J. Morikawa, A. Orie, Y. Hikima, T. Hashimoto, and S. Juodkazis, “Influence of ordering change on the optical and thermal properties of inflation polyethylene films,” Appl. Surf. Sci. 257, 5439–5442 (2011).
[CrossRef]

J. Appl. Phys.

J. Morikawa and T. Hashimoto, “Thermal diffusivity of aromatic polyimide thin films by temperature wave analysis,” J. Appl. Phys. 105, 113506 (2009).
[CrossRef]

O. Breitenstein, J. Bauer, K. Bothe, W. Kwapil, D. Lausch, U. Rau, J. Schmidt, M. Schneemann, M. C. Schubert, J.-M. Wagner, and W. Warta, “Understanding junction breakdown in multicrystalline solar cells,” J. Appl. Phys. 109, 071101 (2011).
[CrossRef]

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95, 6072–6076 (2004).
[CrossRef]

J. of Nonlin. Opt. Phys. and Mat.

E. Brasselet and S. Juodkazis, “Optical angular manipulation of liquid crystal droplets in laser tweezers,” J. of Nonlin. Opt. Phys. and Mat. 18, 167–194 (2009).
[CrossRef]

J. Phys. D: Appl. Phys.

T. Kudrius, G. Šlekys, and S. Juodkazis, “Surface-texturing of sapphire by femtosecond laser pulses for photonic applications,” J. Phys. D: Appl. Phys. 43, 145501 (2010).
[CrossRef]

Jpn. J. Appl. Phys.

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Efficient microvalve driven by a Si-Ni bimorph,” Jpn. J. Appl. Phys. 42(part 1, No.7A), 4464–4468 (2003).
[CrossRef]

S. Tomonari, H. Yoshida, M. Kamakura, K. Yoshida, K. Kawahito, M. Saitoh, H. Kawada, S. Juodkazis, and H. Misawa, “Miniaturization of a thermally driven Ni|Si bimorph,” Jpn. J. Appl. Phys. 42(part 1, No.7A), 4593–4597 (2003).
[CrossRef]

Y. Gu, X. Tang, Y. Xu, and I. Hatta, “Ingenious method for eliminating effects of heat loss in measurements of thermal diffusivity by ac calorimetric method,” Jpn. J. Appl. Phys. 32, L1365 – L1367 (1993).
[CrossRef]

Laser Photon. Rev.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3, 535–544 (2009).
[CrossRef]

Nature

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697–698 (2001).
[CrossRef] [PubMed]

A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451, 163 – 167 (2008).
[CrossRef] [PubMed]

Nature Photonics

M. Farsari and B. Chichkov, “Materials processing: Two-photon fabrication,” Nature Photonics 3, 450 – 452 (2009).
[CrossRef]

Opt. Express

Opt. Express: energy express

K. Juodkazis, J. Juodkazytė, P. Kalinauskas, E. Jelmakas, and S. Juodkazis, “Photoelectrolysis of water: Solar hydrogen - achievements and perspectives,” Opt. Express: energy express 18, A147–A160 (2010).
[CrossRef]

Opt. Lett.

Opt. Mater. Express

Phys. Rev. B

E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolokowski, “Modification of refractive index by a single fs-pulse confined inside a bulk of a photo-refractive crystal,” Phys. Rev. B 81, 054113 (2010).
[CrossRef]

Prog. Polym. Sci.

H. Misawa and S. Juodkazis, “Photophysics and photochemistry of a laser manipulated microparticle,” Prog. Polym. Sci. 24, 665–697 (1999).
[CrossRef]

Rev. Sci. Instrum.

M. Schmotz, P. Bookjans, E. Scheer, and P. Leiderer, “Optical temperature measurements on thin freestanding silicon membranes,” Rev. Sci. Instrum. 81, 114903 (2010).
[CrossRef] [PubMed]

Sol. State Comm.

R. Krishnan, S. Shirota, Y. Tanaka, and N. Nishiguchi, “High-efficient acoustic wave rectifier,” Sol. State Comm. 144, 194–197 (2007).
[CrossRef]

Other

L. Hallo, C. Mézel, A. Bourgeade, D. Hébert, E. G. Gamaly, and S. Juodkazis, Laser-Matter Interaction in Transparent Materials: Confined Micro-explosion and Jet Formation, 121–146. NATO Science for Peace and Security Series B: Physics and Biophysics, Springer Netherlands, 2009.

Supplementary Material (3)

» Media 1: MPG (2620 KB)     
» Media 2: MPG (4372 KB)     
» Media 3: MPG (559 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Setup used for thermal imaging. Laser diode of 0.1 W power at 630 nm wavelength was used as a heat source; focusing was carried out by a lens of numerical aperture NA = 0.5. Data acquisition was performed on a personal computer (PC).

Fig. 2
Fig. 2

(a–c) Thermal imaging of a heat wave in a 50-μm-thick Kapton film launched from the laser structured area shown in the inset polariscopy image; the inset color scale bar shows relative birefringence in a 1 – 247 range. Amplitude (b) and phase (c) distributions. The cross-hair markers show centers of the 50-μm-diameter laser structured regions; the left-side region was illuminated by the LD to create heat wave and was modulated at 0.21 Hz frequency. The temperature amplitude was ΔTmax ≃ 2°C in unstructured Kapton (point Heating in (d)). (d–f) Same as (a–c) only with heating source placed outside the structured regions; modulation at 0.43 Hz. Regions A, B (in (a)) have been filled with opal-like arrangement of void-structures at 200 and 160 nJ per pulse, respectively (see, inset in (a)). Online video is available for (a) Media 1 and (d) Media 2.

Fig. 3
Fig. 3

Retrieved phase and amplitude cross sections when: (a) region A was heated (see, Fig. 1(a–c)) and (b) when heating was outside the laser structured area (Fig. 1(d–f)). Darker shade marks location of the heating source, the lighter shades show locations of laser-structured areas A, B; γm,n marks the slope of phase, Δθ, in the laser modified and unirradiated regions, respectively; Δθ is proportional to the temperature diffusivity.

Fig. 4
Fig. 4

Temperature wave; a stationary heat source. Localization of temperature and diffusion in laser-structured regions. (a) Thermo-image of a grating structure recorded in a 75-μm-thick PI-Kapton film by scanning 800 nm/150 fs laser pulses at three different depths separated by ∼ 10 μm, which is approximately the axial length of modification; focusing was carried out by an objective lens of numerical aperture NA = 0.5. The phase Δ θ 1 2 χ (b–c) and amplitude ∝ ɛT4 (d–e) images; equal phase (c) and amplitude (e) contour plots reveals more detailed features as compared to the FT data (b) and (d), respectively. Heat source was laser diode emitting at 630 nm and was modulated at 0.91 Hz. Online video is available for (a) Media 3.

Fig. 5
Fig. 5

Temperature wave; a moving heat source. The thermal image, its Fourier amplitude and phase at the fundamental driving frequency of LD 1ω = 0.93 Hz, and its second harmonics 2ω (the same sample as in the Fig. 4). Scale bar represents 0 - π span for the phase and 0 – 1 for the amplitude. Sample is scanned from the edge of the laser structured pattern (point 1) along the structured region (along the arrow) at speed of 79.5 μm/s.

Metrics