Abstract

The local electric field distribution and the effect of surface-enhanced Raman spectroscopy (SERS) were investigated on the quasi-3D (Q3D) plasmonic nanostructures formed by gold nanohole and nanodisc array layers physically separated by a dielectric medium. The local electric fields at the top gold nanoholes and bottom gold nanodiscs as a function of the dielectric medium, substrate, and depth of Q3D plasmonic nanostructures upon the irradiation of a 785 nm laser were calculated using the three-dimensional finite-difference time-domain (3D-FDTD) method. The intensity of the maximum local electric fields was shown to oscillate with the depth and the stronger local electric fields occurring at the top or bottom gold layer strongly depend on the dielectric medium, substrate, and depth of the nanostructure. This phenomenon was determined to be related to the Fabry-Pérot interference effect and the interaction of localized surface plasmons (LSPs). The enhancement factors (EFs) of SERS obtained from the 3D-FDTD simulations were compared to those calculated from the SERS experiments conducted on the Q3D plasmonic nanostructures fabricated on silicon and ITO coated glass substrates with different depths. The same trend was obtained from both methods. The capabilities of tuning not only the intensity but also the location of the maximum local electric fields by varying the depth, dielectric medium, and substrate make Q3D plasmonic nanostructures well suited for highly sensitive and reproducible SERS detection and analysis.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
    [CrossRef] [PubMed]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  3. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
    [CrossRef]
  4. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [CrossRef] [PubMed]
  5. J. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G. Nuzzo, “Functional nanostructured plasmonic materials,” Adv. Mater. (Deerfield Beach Fla.) 22(10), 1102–1110 (2010).
    [CrossRef] [PubMed]
  6. A. Artar, A. A. Yanik, and H. Altug, “Fabry-pérot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phys. Lett. 95(5), 051105 (2009).
    [CrossRef]
  7. Q. M. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays,” Nano Lett. 8(7), 1923–1928 (2008).
    [CrossRef] [PubMed]
  8. J. J. Xu, L. Zhang, H. Gong, J. Homola, and Q. M. Yu, “Tailoring Plasmonic Nanostructures for Optimal SERS Sensing of Small Molecules and Large Microorganisms,” Small 7(3), 371–376 (2011).
    [CrossRef] [PubMed]
  9. J. J. Xu, P. Guan, P. Kvasnička, H. Gong, J. Homola, and Q. M. Yu, “Light Transmission and Surface-Enhanced Raman Scattering of Quasi-3D Plasmonic Nanostructure Arrays with Deep and Shallow Fabry-Pérot Nanocavities,” J. Phys. Chem. C 115, 10996–11002 (2011).
  10. Q. M. Yu, S. Braswell, B. Christin, J. J. Xu, P. M. Wallace, H. Gong, and D. Kaminsky, “Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays,” Nanotechnology 21(35), 355301 (2010).
    [CrossRef] [PubMed]
  11. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [CrossRef] [PubMed]
  12. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
    [CrossRef] [PubMed]
  13. K. S. Lee and M. A. El-Sayed, “Dependence of the Enhanced Optical Scattering Efficiency Relative to that of Absorption for Gold Metal Nanorods on Aspect Ratio, Size, End-Cap Shape, and Medium Refractive Index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
    [CrossRef] [PubMed]
  14. A. Baptiste, A. Bulou, J. F. Bardeau, J. Nouet, A. Gibaud, K. Wen, S. Hoeppener, R. Maoz, and J. Sagiv, “Substrate-induced modulation of the Raman scattering signals from self-assembled organic nanometric films,” Langmuir 20(15), 6232–6237 (2004).
    [CrossRef] [PubMed]
  15. Lumerical FDTD Solution, FDTD Solutions 6.5, http://www.lumerical.com/fdtd.php .
  16. W. M. Haynes and D. R. Lide, Handbook of chemistry and physics (CRC Press, Boca Raton, 2003).
  17. K.-P. S. Dancil, D. P. Greiner, and M. J. Sailor, “A Porous Silicon Optical Biosensor: Detection of Reversible Binding of IgG to a Protein A-Modified Surface,” J. Am. Chem. Soc. 121(34), 7925–7930 (1999).
    [CrossRef]
  18. A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express 17(5), 3741–3753 (2009).
    [CrossRef] [PubMed]
  19. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [CrossRef] [PubMed]
  20. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [CrossRef]
  21. A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
    [CrossRef]

2011 (2)

J. J. Xu, L. Zhang, H. Gong, J. Homola, and Q. M. Yu, “Tailoring Plasmonic Nanostructures for Optimal SERS Sensing of Small Molecules and Large Microorganisms,” Small 7(3), 371–376 (2011).
[CrossRef] [PubMed]

J. J. Xu, P. Guan, P. Kvasnička, H. Gong, J. Homola, and Q. M. Yu, “Light Transmission and Surface-Enhanced Raman Scattering of Quasi-3D Plasmonic Nanostructure Arrays with Deep and Shallow Fabry-Pérot Nanocavities,” J. Phys. Chem. C 115, 10996–11002 (2011).

2010 (3)

Q. M. Yu, S. Braswell, B. Christin, J. J. Xu, P. M. Wallace, H. Gong, and D. Kaminsky, “Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays,” Nanotechnology 21(35), 355301 (2010).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

J. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G. Nuzzo, “Functional nanostructured plasmonic materials,” Adv. Mater. (Deerfield Beach Fla.) 22(10), 1102–1110 (2010).
[CrossRef] [PubMed]

2009 (2)

A. Artar, A. A. Yanik, and H. Altug, “Fabry-pérot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phys. Lett. 95(5), 051105 (2009).
[CrossRef]

A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express 17(5), 3741–3753 (2009).
[CrossRef] [PubMed]

2008 (3)

Q. M. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays,” Nano Lett. 8(7), 1923–1928 (2008).
[CrossRef] [PubMed]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

2007 (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

2006 (1)

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

2005 (1)

K. S. Lee and M. A. El-Sayed, “Dependence of the Enhanced Optical Scattering Efficiency Relative to that of Absorption for Gold Metal Nanorods on Aspect Ratio, Size, End-Cap Shape, and Medium Refractive Index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
[CrossRef] [PubMed]

2004 (1)

A. Baptiste, A. Bulou, J. F. Bardeau, J. Nouet, A. Gibaud, K. Wen, S. Hoeppener, R. Maoz, and J. Sagiv, “Substrate-induced modulation of the Raman scattering signals from self-assembled organic nanometric films,” Langmuir 20(15), 6232–6237 (2004).
[CrossRef] [PubMed]

1999 (1)

K.-P. S. Dancil, D. P. Greiner, and M. J. Sailor, “A Porous Silicon Optical Biosensor: Detection of Reversible Binding of IgG to a Protein A-Modified Surface,” J. Am. Chem. Soc. 121(34), 7925–7930 (1999).
[CrossRef]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[CrossRef]

1997 (2)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Altug, H.

A. Artar, A. A. Yanik, and H. Altug, “Fabry-pérot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phys. Lett. 95(5), 051105 (2009).
[CrossRef]

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Artar, A.

A. Artar, A. A. Yanik, and H. Altug, “Fabry-pérot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phys. Lett. 95(5), 051105 (2009).
[CrossRef]

Baptiste, A.

A. Baptiste, A. Bulou, J. F. Bardeau, J. Nouet, A. Gibaud, K. Wen, S. Hoeppener, R. Maoz, and J. Sagiv, “Substrate-induced modulation of the Raman scattering signals from self-assembled organic nanometric films,” Langmuir 20(15), 6232–6237 (2004).
[CrossRef] [PubMed]

Bardeau, J. F.

A. Baptiste, A. Bulou, J. F. Bardeau, J. Nouet, A. Gibaud, K. Wen, S. Hoeppener, R. Maoz, and J. Sagiv, “Substrate-induced modulation of the Raman scattering signals from self-assembled organic nanometric films,” Langmuir 20(15), 6232–6237 (2004).
[CrossRef] [PubMed]

Boriskina, S. V.

Braswell, S.

Q. M. Yu, S. Braswell, B. Christin, J. J. Xu, P. M. Wallace, H. Gong, and D. Kaminsky, “Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays,” Nanotechnology 21(35), 355301 (2010).
[CrossRef] [PubMed]

Bulou, A.

A. Baptiste, A. Bulou, J. F. Bardeau, J. Nouet, A. Gibaud, K. Wen, S. Hoeppener, R. Maoz, and J. Sagiv, “Substrate-induced modulation of the Raman scattering signals from self-assembled organic nanometric films,” Langmuir 20(15), 6232–6237 (2004).
[CrossRef] [PubMed]

Campion, A.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[CrossRef]

Christin, B.

Q. M. Yu, S. Braswell, B. Christin, J. J. Xu, P. M. Wallace, H. Gong, and D. Kaminsky, “Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays,” Nanotechnology 21(35), 355301 (2010).
[CrossRef] [PubMed]

Dal Negro, L.

Dancil, K.-P. S.

K.-P. S. Dancil, D. P. Greiner, and M. J. Sailor, “A Porous Silicon Optical Biosensor: Detection of Reversible Binding of IgG to a Protein A-Modified Surface,” J. Am. Chem. Soc. 121(34), 7925–7930 (1999).
[CrossRef]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

El-Sayed, M. A.

K. S. Lee and M. A. El-Sayed, “Dependence of the Enhanced Optical Scattering Efficiency Relative to that of Absorption for Gold Metal Nanorods on Aspect Ratio, Size, End-Cap Shape, and Medium Refractive Index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
[CrossRef] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Gibaud, A.

A. Baptiste, A. Bulou, J. F. Bardeau, J. Nouet, A. Gibaud, K. Wen, S. Hoeppener, R. Maoz, and J. Sagiv, “Substrate-induced modulation of the Raman scattering signals from self-assembled organic nanometric films,” Langmuir 20(15), 6232–6237 (2004).
[CrossRef] [PubMed]

Golden, G.

Q. M. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays,” Nano Lett. 8(7), 1923–1928 (2008).
[CrossRef] [PubMed]

Gong, H.

J. J. Xu, P. Guan, P. Kvasnička, H. Gong, J. Homola, and Q. M. Yu, “Light Transmission and Surface-Enhanced Raman Scattering of Quasi-3D Plasmonic Nanostructure Arrays with Deep and Shallow Fabry-Pérot Nanocavities,” J. Phys. Chem. C 115, 10996–11002 (2011).

J. J. Xu, L. Zhang, H. Gong, J. Homola, and Q. M. Yu, “Tailoring Plasmonic Nanostructures for Optimal SERS Sensing of Small Molecules and Large Microorganisms,” Small 7(3), 371–376 (2011).
[CrossRef] [PubMed]

Q. M. Yu, S. Braswell, B. Christin, J. J. Xu, P. M. Wallace, H. Gong, and D. Kaminsky, “Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays,” Nanotechnology 21(35), 355301 (2010).
[CrossRef] [PubMed]

Gopinath, A.

Gray, S. K.

J. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G. Nuzzo, “Functional nanostructured plasmonic materials,” Adv. Mater. (Deerfield Beach Fla.) 22(10), 1102–1110 (2010).
[CrossRef] [PubMed]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Greiner, D. P.

K.-P. S. Dancil, D. P. Greiner, and M. J. Sailor, “A Porous Silicon Optical Biosensor: Detection of Reversible Binding of IgG to a Protein A-Modified Surface,” J. Am. Chem. Soc. 121(34), 7925–7930 (1999).
[CrossRef]

Guan, P.

J. J. Xu, P. Guan, P. Kvasnička, H. Gong, J. Homola, and Q. M. Yu, “Light Transmission and Surface-Enhanced Raman Scattering of Quasi-3D Plasmonic Nanostructure Arrays with Deep and Shallow Fabry-Pérot Nanocavities,” J. Phys. Chem. C 115, 10996–11002 (2011).

Q. M. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays,” Nano Lett. 8(7), 1923–1928 (2008).
[CrossRef] [PubMed]

Hoeppener, S.

A. Baptiste, A. Bulou, J. F. Bardeau, J. Nouet, A. Gibaud, K. Wen, S. Hoeppener, R. Maoz, and J. Sagiv, “Substrate-induced modulation of the Raman scattering signals from self-assembled organic nanometric films,” Langmuir 20(15), 6232–6237 (2004).
[CrossRef] [PubMed]

Homola, J.

J. J. Xu, L. Zhang, H. Gong, J. Homola, and Q. M. Yu, “Tailoring Plasmonic Nanostructures for Optimal SERS Sensing of Small Molecules and Large Microorganisms,” Small 7(3), 371–376 (2011).
[CrossRef] [PubMed]

J. J. Xu, P. Guan, P. Kvasnička, H. Gong, J. Homola, and Q. M. Yu, “Light Transmission and Surface-Enhanced Raman Scattering of Quasi-3D Plasmonic Nanostructure Arrays with Deep and Shallow Fabry-Pérot Nanocavities,” J. Phys. Chem. C 115, 10996–11002 (2011).

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Kambhampati, P.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[CrossRef]

Kaminsky, D.

Q. M. Yu, S. Braswell, B. Christin, J. J. Xu, P. M. Wallace, H. Gong, and D. Kaminsky, “Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays,” Nanotechnology 21(35), 355301 (2010).
[CrossRef] [PubMed]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

Kvasnicka, P.

J. J. Xu, P. Guan, P. Kvasnička, H. Gong, J. Homola, and Q. M. Yu, “Light Transmission and Surface-Enhanced Raman Scattering of Quasi-3D Plasmonic Nanostructure Arrays with Deep and Shallow Fabry-Pérot Nanocavities,” J. Phys. Chem. C 115, 10996–11002 (2011).

Le, A. P.

J. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G. Nuzzo, “Functional nanostructured plasmonic materials,” Adv. Mater. (Deerfield Beach Fla.) 22(10), 1102–1110 (2010).
[CrossRef] [PubMed]

Lee, K. S.

K. S. Lee and M. A. El-Sayed, “Dependence of the Enhanced Optical Scattering Efficiency Relative to that of Absorption for Gold Metal Nanorods on Aspect Ratio, Size, End-Cap Shape, and Medium Refractive Index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
[CrossRef] [PubMed]

Lee, T. W.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Mack, N. H.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Malyarchuk, V.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Maoz, R.

A. Baptiste, A. Bulou, J. F. Bardeau, J. Nouet, A. Gibaud, K. Wen, S. Hoeppener, R. Maoz, and J. Sagiv, “Substrate-induced modulation of the Raman scattering signals from self-assembled organic nanometric films,” Langmuir 20(15), 6232–6237 (2004).
[CrossRef] [PubMed]

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

Moore, J. S.

J. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G. Nuzzo, “Functional nanostructured plasmonic materials,” Adv. Mater. (Deerfield Beach Fla.) 22(10), 1102–1110 (2010).
[CrossRef] [PubMed]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Nouet, J.

A. Baptiste, A. Bulou, J. F. Bardeau, J. Nouet, A. Gibaud, K. Wen, S. Hoeppener, R. Maoz, and J. Sagiv, “Substrate-induced modulation of the Raman scattering signals from self-assembled organic nanometric films,” Langmuir 20(15), 6232–6237 (2004).
[CrossRef] [PubMed]

Nuzzo, R. G.

J. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G. Nuzzo, “Functional nanostructured plasmonic materials,” Adv. Mater. (Deerfield Beach Fla.) 22(10), 1102–1110 (2010).
[CrossRef] [PubMed]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Qin, D.

Q. M. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays,” Nano Lett. 8(7), 1923–1928 (2008).
[CrossRef] [PubMed]

Reinhard, B. M.

Rogers, J. A.

J. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G. Nuzzo, “Functional nanostructured plasmonic materials,” Adv. Mater. (Deerfield Beach Fla.) 22(10), 1102–1110 (2010).
[CrossRef] [PubMed]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Sagiv, J.

A. Baptiste, A. Bulou, J. F. Bardeau, J. Nouet, A. Gibaud, K. Wen, S. Hoeppener, R. Maoz, and J. Sagiv, “Substrate-induced modulation of the Raman scattering signals from self-assembled organic nanometric films,” Langmuir 20(15), 6232–6237 (2004).
[CrossRef] [PubMed]

Sailor, M. J.

K.-P. S. Dancil, D. P. Greiner, and M. J. Sailor, “A Porous Silicon Optical Biosensor: Detection of Reversible Binding of IgG to a Protein A-Modified Surface,” J. Am. Chem. Soc. 121(34), 7925–7930 (1999).
[CrossRef]

Soares, J. A. N. T.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

Wallace, P. M.

Q. M. Yu, S. Braswell, B. Christin, J. J. Xu, P. M. Wallace, H. Gong, and D. Kaminsky, “Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays,” Nanotechnology 21(35), 355301 (2010).
[CrossRef] [PubMed]

Q. M. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays,” Nano Lett. 8(7), 1923–1928 (2008).
[CrossRef] [PubMed]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Wen, K.

A. Baptiste, A. Bulou, J. F. Bardeau, J. Nouet, A. Gibaud, K. Wen, S. Hoeppener, R. Maoz, and J. Sagiv, “Substrate-induced modulation of the Raman scattering signals from self-assembled organic nanometric films,” Langmuir 20(15), 6232–6237 (2004).
[CrossRef] [PubMed]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Xu, J. J.

J. J. Xu, P. Guan, P. Kvasnička, H. Gong, J. Homola, and Q. M. Yu, “Light Transmission and Surface-Enhanced Raman Scattering of Quasi-3D Plasmonic Nanostructure Arrays with Deep and Shallow Fabry-Pérot Nanocavities,” J. Phys. Chem. C 115, 10996–11002 (2011).

J. J. Xu, L. Zhang, H. Gong, J. Homola, and Q. M. Yu, “Tailoring Plasmonic Nanostructures for Optimal SERS Sensing of Small Molecules and Large Microorganisms,” Small 7(3), 371–376 (2011).
[CrossRef] [PubMed]

Q. M. Yu, S. Braswell, B. Christin, J. J. Xu, P. M. Wallace, H. Gong, and D. Kaminsky, “Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays,” Nanotechnology 21(35), 355301 (2010).
[CrossRef] [PubMed]

Yanik, A. A.

A. Artar, A. A. Yanik, and H. Altug, “Fabry-pérot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phys. Lett. 95(5), 051105 (2009).
[CrossRef]

Yao, J.

J. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G. Nuzzo, “Functional nanostructured plasmonic materials,” Adv. Mater. (Deerfield Beach Fla.) 22(10), 1102–1110 (2010).
[CrossRef] [PubMed]

Yu, Q. M.

J. J. Xu, P. Guan, P. Kvasnička, H. Gong, J. Homola, and Q. M. Yu, “Light Transmission and Surface-Enhanced Raman Scattering of Quasi-3D Plasmonic Nanostructure Arrays with Deep and Shallow Fabry-Pérot Nanocavities,” J. Phys. Chem. C 115, 10996–11002 (2011).

J. J. Xu, L. Zhang, H. Gong, J. Homola, and Q. M. Yu, “Tailoring Plasmonic Nanostructures for Optimal SERS Sensing of Small Molecules and Large Microorganisms,” Small 7(3), 371–376 (2011).
[CrossRef] [PubMed]

Q. M. Yu, S. Braswell, B. Christin, J. J. Xu, P. M. Wallace, H. Gong, and D. Kaminsky, “Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays,” Nanotechnology 21(35), 355301 (2010).
[CrossRef] [PubMed]

Q. M. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays,” Nano Lett. 8(7), 1923–1928 (2008).
[CrossRef] [PubMed]

Zhang, L.

J. J. Xu, L. Zhang, H. Gong, J. Homola, and Q. M. Yu, “Tailoring Plasmonic Nanostructures for Optimal SERS Sensing of Small Molecules and Large Microorganisms,” Small 7(3), 371–376 (2011).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

J. Yao, A. P. Le, S. K. Gray, J. S. Moore, J. A. Rogers, and R. G. Nuzzo, “Functional nanostructured plasmonic materials,” Adv. Mater. (Deerfield Beach Fla.) 22(10), 1102–1110 (2010).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

A. Artar, A. A. Yanik, and H. Altug, “Fabry-pérot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phys. Lett. 95(5), 051105 (2009).
[CrossRef]

Chem. Rev. (2)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[CrossRef] [PubMed]

Chem. Soc. Rev. (1)

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[CrossRef]

J. Am. Chem. Soc. (1)

K.-P. S. Dancil, D. P. Greiner, and M. J. Sailor, “A Porous Silicon Optical Biosensor: Detection of Reversible Binding of IgG to a Protein A-Modified Surface,” J. Am. Chem. Soc. 121(34), 7925–7930 (1999).
[CrossRef]

J. Phys. Chem. B (1)

K. S. Lee and M. A. El-Sayed, “Dependence of the Enhanced Optical Scattering Efficiency Relative to that of Absorption for Gold Metal Nanorods on Aspect Ratio, Size, End-Cap Shape, and Medium Refractive Index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

J. J. Xu, P. Guan, P. Kvasnička, H. Gong, J. Homola, and Q. M. Yu, “Light Transmission and Surface-Enhanced Raman Scattering of Quasi-3D Plasmonic Nanostructure Arrays with Deep and Shallow Fabry-Pérot Nanocavities,” J. Phys. Chem. C 115, 10996–11002 (2011).

Langmuir (1)

A. Baptiste, A. Bulou, J. F. Bardeau, J. Nouet, A. Gibaud, K. Wen, S. Hoeppener, R. Maoz, and J. Sagiv, “Substrate-induced modulation of the Raman scattering signals from self-assembled organic nanometric films,” Langmuir 20(15), 6232–6237 (2004).
[CrossRef] [PubMed]

Nano Lett. (1)

Q. M. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays,” Nano Lett. 8(7), 1923–1928 (2008).
[CrossRef] [PubMed]

Nanotechnology (1)

Q. M. Yu, S. Braswell, B. Christin, J. J. Xu, P. M. Wallace, H. Gong, and D. Kaminsky, “Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays,” Nanotechnology 21(35), 355301 (2010).
[CrossRef] [PubMed]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Opt. Express (1)

Phys. Rev. Lett. (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. N. T. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Small (1)

J. J. Xu, L. Zhang, H. Gong, J. Homola, and Q. M. Yu, “Tailoring Plasmonic Nanostructures for Optimal SERS Sensing of Small Molecules and Large Microorganisms,” Small 7(3), 371–376 (2011).
[CrossRef] [PubMed]

Other (2)

Lumerical FDTD Solution, FDTD Solutions 6.5, http://www.lumerical.com/fdtd.php .

W. M. Haynes and D. R. Lide, Handbook of chemistry and physics (CRC Press, Boca Raton, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematics of the Q3D gold nanostructure arrays in side-views (a - d) and 3D-perpective (e). Nanostructure arrays were fabricated on (a) Si, ITO, or glass substrate using PMMA resist; (b) ITO coated glass substrate with PMMA resist; (c) homogenous PDMS or PU; and (d) homogeneous Si. All the Q3D nanostructures have the same diameter (400 nm) and the edge-to-edge spacing (100 nm) but varied depth.

Fig. 2
Fig. 2

(a) Comparison of reflectance and transmittance spectra obtained from FDTD simulations of the whole hole-disc array structure (blue lines) and those calculated from Eq. (1) with reflection and transmission coefficients of the free-standing disc and hole layer obtained from FDTD simulations (red lines). (b) Dependence of the excitation field Eexc at the top holes plane and at the bottom discs plane on the depth of the structure in the Fabry-Pérot thin-film interference model.

Fig. 3
Fig. 3

The depth dependence of the fourth power of the maximum local electric field |Etop|4 and |Ebottom|4 obtained from 3D-FDTD simulations for the Q3D built in PMMA resist on the substrates of (a) Si, (b) ITO, (c) glass, and (d) ITO coated glass. The blue, red and green lines are the maximum local electric fields of the top gold nanohole layer, bottom gold nanodisc and the summation of the top and bottom fields, respectively. The diameter and the spacing were maintained 400 and 100 nm, respectively, for all arrays.

Fig. 4
Fig. 4

The 3D-FDTD calculated the square root of the electric field intensities (|E|2) along the x-z plane and the x-y plane at the Au/air interfaces of the top gold nanoholes and the bottom gold nanodiscs of Q3D on Si and ITO coated glass substrates. The depth was varied from 200 to 600 nm while the diameter and the spacing were maintained 400 and 100 nm, respectively. The incident light is 785 nm with the polarization in the x-axis and the amplitude 1 V/m.

Fig. 5
Fig. 5

The depth dependence of the fourth power of the maximum local electric field |Eloc_max/E0|4 obtained from the 3D-FDTD simulations for the Q3D made in homogeneous (a) PDMS, (b) PU and (c) Si media. The blue, red, and green lines are the maximum local electric fields of top gold nanohole layer, bottom gold nanodisc and the summation of the top and bottom, respectively. The diameter and spacing were maintained 400 and 100 nm, respectively.

Fig. 6
Fig. 6

Comparison of the experimental and FDTD simulated EFs of Q3D with different depth fabricated using PMMA resist via EBL on (a) Si and (b) ITO coated glass substrates, respectively. The insets are the SEM images of one nanostructure array showing the diameter of 400 nm and the spacing of 100 nm, which were maintained the same for all arrays.

Fig. 7
Fig. 7

SERS spectra of 4-MP adsorbed on Q3D plasmonic nanostructures with the depth of 300 nm (a) and 370 nm (b) fabricated on Si (blue lines) and ITO coated glass (red lines) substrates via EBL using PMMA resist. The insets are the depth profiles of the Q3D plasmonic nanostructure arrays measured by AFM.

Tables (1)

Tables Icon

Table 1 The optical properties (refractive index, absorption and extinction coefficient) at 785 nm of all materials involved in this study [16].

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

r= r 1 + r 2 t 1 2 e 2ikd 1 r 1 r 2 e 2ikd t= t 1 t 2 e ikd 1 r 1 r 2 e ikd
p=λ/(2n)

Metrics