Abstract

We report a high-speed ring modulator that fits many of the ideal qualities for optical interconnect in future exascale supercomputers. The device was fabricated in a 130nm SOI CMOS process, with 7.5μm ring radius. Its high-speed section, employing PN junction that works at carrier-depletion mode, enables 25Gb/s modulation and an extinction ratio >5dB with only 1V peak-to-peak driving. Its thermal tuning section allows the device to work in broad wavelength range, with a tuning efficiency of 0.19nm/mW. Based on microwave characterization and circuit modeling, the modulation energy is estimated ~7fJ/bit. The whole device fits in a compact 400μm2 footprint.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Kogge, “Next-generation supercomputers,” IEEE Spectrum, (February, 2011), http://spectrum.ieee.org/computing/hardware/nextgeneration-supercomputers .
  2. P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. J. Offrein, and A. Benner, “Low power and high density optical interconnects for future supercomputers,” in Optical Fiber Communication Conference (OFC2010), paper OThX2.
  3. A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
    [CrossRef]
  4. D. A. B. Miller, “Device requirements for optical interconnects to Silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [CrossRef]
  5. S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18Gb/s silicon micro-ring electro-optic modulator,” in IEEE LEOS Annual Meeting (2007), pp. 537–538.
  6. J. Rosenberg, W. M. Green, A. Rylyakov, C. Schow, S. Assefa, B. G. Lee, C. Jahnes, and Y. Vlasov, “Ultra-low-voltage micro-ring modulator integrated with a CMOS feed-forward equalization driver,” in Optical Fiber Communication Conference 2011 (2011), paper OWQ4.
  7. S. Manipatruni, K. Preston, L. Chen, and M. Lipson, “Ultra-low voltage, ultra-small mode volume silicon microring modulator,” Opt. Express 18(17), 18235–18242 (2010).
    [CrossRef] [PubMed]
  8. M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicom microdisk modulators and switches,” in IEEE Conference on Group IV Photonics (2008), pp. 4–8.
  9. J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
    [CrossRef]
  10. A. E.-J. Lim, T.-Y. Liow, F. Qing, N. Duan, L. Ding, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Novel evanescent-coupled germanium electro-absorption modulator featuring monolithic integration with germanium p-i-n photodetector,” Opt. Express 19(6), 5040–5046 (2011).
    [CrossRef] [PubMed]
  11. N.-N. Feng, D. Feng, S. Liao, X. Wang, P. Dong, H. Liang, C.-C. Kung, W. Qian, J. Fong, R. Shafiiha, Y. Luo, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “30GHz Ge electro-absorption modulator integrated with 3 μm silicon-on-insulator waveguide,” Opt. Express 19(8), 7062–7067 (2011).
    [CrossRef] [PubMed]
  12. J. E. Roth, O. Fidaner, R. K. Schaevitz, Y. H. Kuo, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Optical modulator on silicon employing germanium quantum wells,” Opt. Express 15(9), 5851–5859 (2007).
    [CrossRef] [PubMed]
  13. Y. Tang, H. Chen, J. Peters, U. Westergren, and J. Bowers, “Over 40 GHz traveling-wave electroabsorption modulator based on hybrid silicon platform,” in Optical Fiber Communication Conference 2011 (2011), paper OWQ3.
  14. I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-state Circuits 45(1), 235–248 (2010).
    [CrossRef]
  15. P. Dong, R. Shafiiha, S. Liao, H. Liang, N. N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18(11), 10941–10946 (2010).
    [CrossRef] [PubMed]
  16. P. Dong, S. Liao, H. Liang, W. Qian, X. Wang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “High-speed and compact silicon modulator based on a racetrack resonator with a 1 V drive voltage,” Opt. Lett. 35(19), 3246–3248 (2010).
    [CrossRef] [PubMed]
  17. G. Li, X. Zheng, J. Lexau, Y. Luo, H. Thacker, P. Dong, S. Liao, D. Feng, M. Asghari, J. Yao, J. Shi, P. Amberg, N. Pinckney, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultralow-power, high-performance Si photonic transmitter,” in Optical Fiber Communication Conference (OFC 2010) (2010), paper OMI2.
  18. X. Zheng, F. Liu, J. Lexau, D. Patil, G. Li, Y. Luo, H. Thacker, I. Shubin, J. Yao, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-low power arrayed CMOS Silicon photonic transceivers for an 80 Gbps WDM optical link,” in Optical Fiber Communication Conference (OFC 2011) (2011), paper PDPA1.
  19. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010).
    [CrossRef] [PubMed]
  20. J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
    [CrossRef] [PubMed]
  21. A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3, 567–579 (2011).
  22. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-microm radius,” Opt. Express 16(6), 4309–4315 (2008).
    [CrossRef] [PubMed]
  23. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (John Wiley & Sons, 1981).

2011 (3)

2010 (6)

2009 (2)

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

D. A. B. Miller, “Device requirements for optical interconnects to Silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[CrossRef]

2008 (2)

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[CrossRef]

Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-microm radius,” Opt. Express 16(6), 4309–4315 (2008).
[CrossRef] [PubMed]

2007 (1)

Asghari, M.

Beals, M.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[CrossRef]

Beausoleil, R. G.

Bernardis, S.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[CrossRef]

Block, B. A.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-state Circuits 45(1), 235–248 (2010).
[CrossRef]

Chang, P. L. D.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-state Circuits 45(1), 235–248 (2010).
[CrossRef]

Chen, L.

Cheng, J.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[CrossRef]

Cunningham, J.

Cunningham, J. E.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3, 567–579 (2011).

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[CrossRef] [PubMed]

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010).
[CrossRef] [PubMed]

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Ding, L.

Dong, P.

Duan, N.

Fattal, D.

Feng, D.

Feng, N. N.

Feng, N.-N.

Fidaner, O.

Fong, J.

Harris, J. S.

Ho, R.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Kamins, T. I.

Kern, A. M.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-state Circuits 45(1), 235–248 (2010).
[CrossRef]

Kimerling, L. C.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[CrossRef]

Koka, P.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Krishnamoorthy, A. V.

N.-N. Feng, D. Feng, S. Liao, X. Wang, P. Dong, H. Liang, C.-C. Kung, W. Qian, J. Fong, R. Shafiiha, Y. Luo, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “30GHz Ge electro-absorption modulator integrated with 3 μm silicon-on-insulator waveguide,” Opt. Express 19(8), 7062–7067 (2011).
[CrossRef] [PubMed]

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3, 567–579 (2011).

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[CrossRef] [PubMed]

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010).
[CrossRef] [PubMed]

P. Dong, S. Liao, H. Liang, W. Qian, X. Wang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “High-speed and compact silicon modulator based on a racetrack resonator with a 1 V drive voltage,” Opt. Lett. 35(19), 3246–3248 (2010).
[CrossRef] [PubMed]

P. Dong, R. Shafiiha, S. Liao, H. Liang, N. N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18(11), 10941–10946 (2010).
[CrossRef] [PubMed]

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Kung, C.-C.

Kuo, Y. H.

Kwong, D.-L.

Lexau, J.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Li, G.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3, 567–579 (2011).

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[CrossRef] [PubMed]

P. Dong, S. Liao, H. Liang, W. Qian, X. Wang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “High-speed and compact silicon modulator based on a racetrack resonator with a 1 V drive voltage,” Opt. Lett. 35(19), 3246–3248 (2010).
[CrossRef] [PubMed]

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010).
[CrossRef] [PubMed]

P. Dong, R. Shafiiha, S. Liao, H. Liang, N. N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18(11), 10941–10946 (2010).
[CrossRef] [PubMed]

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Liang, H.

Liao, J. T. S.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-state Circuits 45(1), 235–248 (2010).
[CrossRef]

Liao, S.

Lim, A. E.-J.

Liow, T.-Y.

Lipson, M.

Liu, J.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[CrossRef]

Lo, G.-Q.

Luo, Y.

Manipatruni, S.

Mekis, A.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3, 567–579 (2011).

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[CrossRef] [PubMed]

Michel, J.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[CrossRef]

Miller, D. A. B.

Mohammed, E.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-state Circuits 45(1), 235–248 (2010).
[CrossRef]

Palermo, S.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-state Circuits 45(1), 235–248 (2010).
[CrossRef]

Pinguet, T.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3, 567–579 (2011).

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[CrossRef] [PubMed]

Pomerene, A.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[CrossRef]

Preston, K.

Qian, W.

Qing, F.

Raj, K.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3, 567–579 (2011).

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[CrossRef] [PubMed]

Reshotko, M. R.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-state Circuits 45(1), 235–248 (2010).
[CrossRef]

Roth, J. E.

Schaevitz, R. K.

Schwetman, H.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Shafiiha, R.

Shubin, I.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3, 567–579 (2011).

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[CrossRef] [PubMed]

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

Sun, R.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[CrossRef]

Thacker, H.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3, 567–579 (2011).

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[CrossRef] [PubMed]

Wang, X.

Xu, Q.

Yao, J.

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3, 567–579 (2011).

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[CrossRef] [PubMed]

Young, I. A.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-state Circuits 45(1), 235–248 (2010).
[CrossRef]

Yu, M.

Zheng, X.

IEEE J. Solid-state Circuits (1)

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid-state Circuits 45(1), 235–248 (2010).
[CrossRef]

IEEE Photon. J. (1)

A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, and J. E. Cunningham, “Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices,” IEEE Photon. J. 3, 567–579 (2011).

Nat. Photonics (1)

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008).
[CrossRef]

Opt. Express (8)

A. E.-J. Lim, T.-Y. Liow, F. Qing, N. Duan, L. Ding, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Novel evanescent-coupled germanium electro-absorption modulator featuring monolithic integration with germanium p-i-n photodetector,” Opt. Express 19(6), 5040–5046 (2011).
[CrossRef] [PubMed]

N.-N. Feng, D. Feng, S. Liao, X. Wang, P. Dong, H. Liang, C.-C. Kung, W. Qian, J. Fong, R. Shafiiha, Y. Luo, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “30GHz Ge electro-absorption modulator integrated with 3 μm silicon-on-insulator waveguide,” Opt. Express 19(8), 7062–7067 (2011).
[CrossRef] [PubMed]

J. E. Roth, O. Fidaner, R. K. Schaevitz, Y. H. Kuo, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Optical modulator on silicon employing germanium quantum wells,” Opt. Express 15(9), 5851–5859 (2007).
[CrossRef] [PubMed]

P. Dong, R. Shafiiha, S. Liao, H. Liang, N. N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18(11), 10941–10946 (2010).
[CrossRef] [PubMed]

S. Manipatruni, K. Preston, L. Chen, and M. Lipson, “Ultra-low voltage, ultra-small mode volume silicon microring modulator,” Opt. Express 18(17), 18235–18242 (2010).
[CrossRef] [PubMed]

Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-microm radius,” Opt. Express 16(6), 4309–4315 (2008).
[CrossRef] [PubMed]

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010).
[CrossRef] [PubMed]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[CrossRef] [PubMed]

Opt. Lett. (1)

Proc. IEEE (2)

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009).
[CrossRef]

D. A. B. Miller, “Device requirements for optical interconnects to Silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[CrossRef]

Other (9)

S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18Gb/s silicon micro-ring electro-optic modulator,” in IEEE LEOS Annual Meeting (2007), pp. 537–538.

J. Rosenberg, W. M. Green, A. Rylyakov, C. Schow, S. Assefa, B. G. Lee, C. Jahnes, and Y. Vlasov, “Ultra-low-voltage micro-ring modulator integrated with a CMOS feed-forward equalization driver,” in Optical Fiber Communication Conference 2011 (2011), paper OWQ4.

M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicom microdisk modulators and switches,” in IEEE Conference on Group IV Photonics (2008), pp. 4–8.

P. Kogge, “Next-generation supercomputers,” IEEE Spectrum, (February, 2011), http://spectrum.ieee.org/computing/hardware/nextgeneration-supercomputers .

P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. J. Offrein, and A. Benner, “Low power and high density optical interconnects for future supercomputers,” in Optical Fiber Communication Conference (OFC2010), paper OThX2.

G. Li, X. Zheng, J. Lexau, Y. Luo, H. Thacker, P. Dong, S. Liao, D. Feng, M. Asghari, J. Yao, J. Shi, P. Amberg, N. Pinckney, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultralow-power, high-performance Si photonic transmitter,” in Optical Fiber Communication Conference (OFC 2010) (2010), paper OMI2.

X. Zheng, F. Liu, J. Lexau, D. Patil, G. Li, Y. Luo, H. Thacker, I. Shubin, J. Yao, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-low power arrayed CMOS Silicon photonic transceivers for an 80 Gbps WDM optical link,” in Optical Fiber Communication Conference (OFC 2011) (2011), paper PDPA1.

Y. Tang, H. Chen, J. Peters, U. Westergren, and J. Bowers, “Over 40 GHz traveling-wave electroabsorption modulator based on hybrid silicon platform,” in Optical Fiber Communication Conference 2011 (2011), paper OWQ3.

S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (John Wiley & Sons, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Modulator energy cost versus modulation speed with different tuning efficiency. A 20 fJ/bit switching energy is assumed; tuning range is assumed 1/8 of FSR.

Fig. 2
Fig. 2

Cross-section diagram of the ring waveguide high-speed section. The color shading represents doping density variations from low (light colors) to high (dark colors).

Fig. 3
Fig. 3

Relationships between ring resonator Q, photon-lifetime-limited bandwidth, resonance wavelength shift, and modulator penalty. The hidden variable is the PN junction doping density. Critical coupling condition and 100% diode coverage of the ring are assumed.

Fig. 4
Fig. 4

Photograph of the ring modulator. The upper-right 25% of the ring is made as a Si resistor heater providing wavelength tuning.

Fig. 5
Fig. 5

(a) Resonant spectrum with different voltages applied to the PN diode. (b) Resonance wavelength shift (relative to 0V) at different bias voltages.

Fig. 6
Fig. 6

(a) Resonant spectrum with different tuning power applied to the Si resistor on the ring. (b) Resonant wavelength versus tuning power showing a 0.19nm/mW tuning efficiency.

Fig. 7
Fig. 7

(a) Small-signal circuit model for the ring modulator with circuit values at 0V bias. (b) Curve-fitting of the measured S11 at 0V using the circuit model in (a). (c) Measured modulator EO (electrical-to-optical) frequency response at 0V.

Fig. 8
Fig. 8

(a) 20Gb/s optical eye from the ring modulator with 1Vpp driving (time scale 10ps/div). (b) 25Gb/s optical eye from the ring modulator with 2Vpp driving (time scale 8ps/div).

Fig. 9
Fig. 9

25Gb/s optical eye from the ring modulator with 1V driving at different laser wavelengths with different tuning powers. The displayed time scale is 8ps/div.

Tables (1)

Tables Icon

Table 1 Desirable Modulator Qualities and References for the Demonstration

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ λ shift Δ λ FWHM N d 1/3 α dop + α other ,where α dop N d

Metrics