Abstract

We describe the full characterization of the biaxial nonlinear crystal BiB3O6 (BiBO) as a polarization entangled photon source using non-collinear type-II parametric down-conversion. We consider the relevant parameters for crystal design, such as cutting angles, polarization of the photons, effective nonlinearity, spatial and temporal walk-offs, crystal thickness and the effect of the pump laser bandwidth. Experimental results showing entanglement generation with high rates and a comparison to the well investigated β-BaB2O4 (BBO) crystal are presented as well. Changing the down-conversion crystal of a polarization entangled photon source from BBO to BiBO enhances the generation rate as if the pump power was increased by 2.5 times. Such an improvement is currently required for the generation of multiphoton entangled states.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Ghosh and L. Mandel, “Observation of nonclassical effects in the interference of two photons,” Phys. Rev. Lett. 59, 1903–1905 (1987).
    [CrossRef] [PubMed]
  2. R. W. Boyd, Nonlinear Optics, 2nd edition (Academic Press, 2003).
  3. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
    [CrossRef] [PubMed]
  4. P. Becker, “Borate materials in nonlinear optics,” Adv. Mater. 10, 979–992 (1998).
    [CrossRef]
  5. R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3 and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
    [CrossRef]
  6. D. Bouwmeester, J. -W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575–579 (1997).
    [CrossRef]
  7. J. -W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
    [CrossRef]
  8. J. -W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, “Experimental demonstration of four-photon entanglement and high-fidelity teleportation,” Phys. Rev. Lett. 86, 4435–4438 (2001).
    [CrossRef] [PubMed]
  9. D. Bouwmeester, J. -W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of three-photon Greenberger-Horne-Zeilinger entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999).
    [CrossRef]
  10. A. Lamas-Linares, J. C. Howell, and D. Bouwmeester, “Stimulated emission of polarization-entangled photons,” Nature (London) 412, 887–890 (2001).
    [CrossRef]
  11. A. Halevy, E. Megidish, T. Shacahm, L. Dovrat, and H. S. Eisenberg, “Projection of two biphoton qutrits onto a maximally entangled state,” Phys. Rev. Lett. 106, 130502 (2011).
    [CrossRef] [PubMed]
  12. C. -Y. Lu, X. -Q. Zhou, O. Gühne, W. -B. Gao, J. Zhang, Z. -S. Yuan, A. Goebel, T. Yang, and J. -W. Pan, “Experimental entanglement of six photons in graph states,” Nature Physics 3, 91–95 (2007).
    [CrossRef]
  13. M. Rådmark, M. Wieśniak, M. Żukowski, and M. Bourennane, “Experimental filtering of two-, four-, and six-photon singlets from a single parametric down-conversion source,” Phys. Rev. A 80, 040302(R) (2009).
    [CrossRef]
  14. C. Wagenknecht, C. -M. Li, A. Reingruber, X. -H. Bao, A. Goebe, Y. -A. Chen, Q. Zhang, K. Chen, and J. -W. Pan, “Experimental demonstration of a heralded entanglement source,” Nature Photonics 4, 549–552 (2010).
    [CrossRef]
  15. S. Barz, G. Cronenberg, A. Zeilinger, and P. Walther, “Heralded generation of entangled photon pairs,” Nature Photonics 4, 553–556 (2010).
    [CrossRef]
  16. X. -C. Yao, T. -X. Wang, P. Xu, H. Lu, G. -S. Pan, X. -H. Bao, C. -Z. Peng, C. -Y. Lu, Y. -A. Chen, and J. -W. Pan, “Observation of eight-photon entanglement,” arXiv:1105.6318 (2011).
  17. R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nature Photonics 4, 170–173 (2010).
    [CrossRef]
  18. H. Hellwig, J. Liebertz, and L. Bohatý, “Exceptional large nonlinear coefficients in the monoclinic Bismuth Borate BiB3O6,” Solid State Commun. 109, 249–251 (1999).
    [CrossRef]
  19. H. Hellwig, J. Liebertz, and L. Bohatý, “Linear optical properties of the monoclinic bismuth BiB3O6,” Appl. Phys. 88, 240–244 (2000).
    [CrossRef]
  20. V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser & Photon. Rev. 4, 1–46 (2009).
    [PubMed]
  21. B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, “Entanglement-free Heisenberg-limited phase estimation,” Nature 450, 393–396 (2007).
    [CrossRef] [PubMed]
  22. R. Rangarajan, M. Goggin, and P. Kwiat, “Optimizing type-I polarization-entangled photons,” Opt. Express 77, 18920–18933 (2009).
    [CrossRef]
  23. R. Fröhlich, L. Bohatý, and J. Liebertz, “Die Kristallstruktur von Wismutborat, BiB3O6,” Acta Crystallogr. Sec. C 40, 343–344 (1985).
    [CrossRef]
  24. IEEE Standard Boards and American National Standard Institute, IEEE Standard on Piezoelectricity 176-1987, (American National Standard Institute, 1987).
  25. S. Haussühl, L. Bohatý, and P. Becker, “Piezoelectric and elastic properties of the nonlinear optical material bismuth triborate, BiB3O6,” Appl. Phys. A 82, 495–502 (2006).
    [CrossRef]
  26. M. V. Hobden, “Phase-matched second-harmonic generation in biaxial crystals,” J. Appl. Phys. 38, 4365–4372 (1967).
    [CrossRef]
  27. N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guérin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000).
    [CrossRef]
  28. A. Yariv and P. Yeh, Optical Waves in Crystals (John Wiley & Sons, 2003).
  29. F. Zernike and J. E. Midwinter, Applied Nonlinear Optics (John Wiley & Sons, 1973).
  30. P. Tzankov and V. Petrov, “Effective second-order nonlinearity in acentric optical crystals with low symmetry,” Appl. Opt. 44, 6971–6985 (2005).
    [CrossRef] [PubMed]
  31. M. Ghotbi and M. Ebrahim-Zadeh, “Optical second harmonic generation properties of BiB3O6,” Opt. Express 12, 6002–6019 (2004).
    [CrossRef] [PubMed]
  32. M. Born and E. Wolf, Principles of Optics, 6th edition (Pergamon Press, 1993).
  33. P. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University Press, 1990).
  34. Y. -H. Kim, S. P. Kulik, M. V. Chekhova, W. P. Grice, and Y. Shih, “Experimental entanglement concentration and universal Bell-state synthesizer,” Phys. Rev. A 67, 010301(R) (2003).
    [CrossRef]
  35. W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
    [CrossRef]
  36. C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High-efficiency entangled photon pair collection in type-II parametric fluorescence,” Phys. Rev. A 62, 023802 (2001).
    [CrossRef]
  37. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
    [CrossRef]
  38. J. B. Altepeter, E. R. Jeffrey, and P. G. Kwiat, “Photonic state tomography,” Adv. At. Mol. Opt. Phys. 52, 105–159 (2005).

2011

A. Halevy, E. Megidish, T. Shacahm, L. Dovrat, and H. S. Eisenberg, “Projection of two biphoton qutrits onto a maximally entangled state,” Phys. Rev. Lett. 106, 130502 (2011).
[CrossRef] [PubMed]

2010

C. Wagenknecht, C. -M. Li, A. Reingruber, X. -H. Bao, A. Goebe, Y. -A. Chen, Q. Zhang, K. Chen, and J. -W. Pan, “Experimental demonstration of a heralded entanglement source,” Nature Photonics 4, 549–552 (2010).
[CrossRef]

S. Barz, G. Cronenberg, A. Zeilinger, and P. Walther, “Heralded generation of entangled photon pairs,” Nature Photonics 4, 553–556 (2010).
[CrossRef]

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nature Photonics 4, 170–173 (2010).
[CrossRef]

2009

M. Rådmark, M. Wieśniak, M. Żukowski, and M. Bourennane, “Experimental filtering of two-, four-, and six-photon singlets from a single parametric down-conversion source,” Phys. Rev. A 80, 040302(R) (2009).
[CrossRef]

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser & Photon. Rev. 4, 1–46 (2009).
[PubMed]

R. Rangarajan, M. Goggin, and P. Kwiat, “Optimizing type-I polarization-entangled photons,” Opt. Express 77, 18920–18933 (2009).
[CrossRef]

2007

B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, “Entanglement-free Heisenberg-limited phase estimation,” Nature 450, 393–396 (2007).
[CrossRef] [PubMed]

C. -Y. Lu, X. -Q. Zhou, O. Gühne, W. -B. Gao, J. Zhang, Z. -S. Yuan, A. Goebel, T. Yang, and J. -W. Pan, “Experimental entanglement of six photons in graph states,” Nature Physics 3, 91–95 (2007).
[CrossRef]

2006

S. Haussühl, L. Bohatý, and P. Becker, “Piezoelectric and elastic properties of the nonlinear optical material bismuth triborate, BiB3O6,” Appl. Phys. A 82, 495–502 (2006).
[CrossRef]

2005

P. Tzankov and V. Petrov, “Effective second-order nonlinearity in acentric optical crystals with low symmetry,” Appl. Opt. 44, 6971–6985 (2005).
[CrossRef] [PubMed]

J. B. Altepeter, E. R. Jeffrey, and P. G. Kwiat, “Photonic state tomography,” Adv. At. Mol. Opt. Phys. 52, 105–159 (2005).

2004

2003

Y. -H. Kim, S. P. Kulik, M. V. Chekhova, W. P. Grice, and Y. Shih, “Experimental entanglement concentration and universal Bell-state synthesizer,” Phys. Rev. A 67, 010301(R) (2003).
[CrossRef]

2001

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High-efficiency entangled photon pair collection in type-II parametric fluorescence,” Phys. Rev. A 62, 023802 (2001).
[CrossRef]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[CrossRef]

A. Lamas-Linares, J. C. Howell, and D. Bouwmeester, “Stimulated emission of polarization-entangled photons,” Nature (London) 412, 887–890 (2001).
[CrossRef]

J. -W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, “Experimental demonstration of four-photon entanglement and high-fidelity teleportation,” Phys. Rev. Lett. 86, 4435–4438 (2001).
[CrossRef] [PubMed]

2000

H. Hellwig, J. Liebertz, and L. Bohatý, “Linear optical properties of the monoclinic bismuth BiB3O6,” Appl. Phys. 88, 240–244 (2000).
[CrossRef]

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guérin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000).
[CrossRef]

1999

D. Bouwmeester, J. -W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of three-photon Greenberger-Horne-Zeilinger entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999).
[CrossRef]

H. Hellwig, J. Liebertz, and L. Bohatý, “Exceptional large nonlinear coefficients in the monoclinic Bismuth Borate BiB3O6,” Solid State Commun. 109, 249–251 (1999).
[CrossRef]

1998

J. -W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[CrossRef]

P. Becker, “Borate materials in nonlinear optics,” Adv. Mater. 10, 979–992 (1998).
[CrossRef]

1997

D. Bouwmeester, J. -W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575–579 (1997).
[CrossRef]

W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
[CrossRef]

1995

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

1990

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3 and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

1987

R. Ghosh and L. Mandel, “Observation of nonclassical effects in the interference of two photons,” Phys. Rev. Lett. 59, 1903–1905 (1987).
[CrossRef] [PubMed]

1985

R. Fröhlich, L. Bohatý, and J. Liebertz, “Die Kristallstruktur von Wismutborat, BiB3O6,” Acta Crystallogr. Sec. C 40, 343–344 (1985).
[CrossRef]

1967

M. V. Hobden, “Phase-matched second-harmonic generation in biaxial crystals,” J. Appl. Phys. 38, 4365–4372 (1967).
[CrossRef]

Altepeter, J. B.

J. B. Altepeter, E. R. Jeffrey, and P. G. Kwiat, “Photonic state tomography,” Adv. At. Mol. Opt. Phys. 52, 105–159 (2005).

Bao, X. -H.

C. Wagenknecht, C. -M. Li, A. Reingruber, X. -H. Bao, A. Goebe, Y. -A. Chen, Q. Zhang, K. Chen, and J. -W. Pan, “Experimental demonstration of a heralded entanglement source,” Nature Photonics 4, 549–552 (2010).
[CrossRef]

X. -C. Yao, T. -X. Wang, P. Xu, H. Lu, G. -S. Pan, X. -H. Bao, C. -Z. Peng, C. -Y. Lu, Y. -A. Chen, and J. -W. Pan, “Observation of eight-photon entanglement,” arXiv:1105.6318 (2011).

Bartlett, S. D.

B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, “Entanglement-free Heisenberg-limited phase estimation,” Nature 450, 393–396 (2007).
[CrossRef] [PubMed]

Barz, S.

S. Barz, G. Cronenberg, A. Zeilinger, and P. Walther, “Heralded generation of entangled photon pairs,” Nature Photonics 4, 553–556 (2010).
[CrossRef]

Becker, P.

S. Haussühl, L. Bohatý, and P. Becker, “Piezoelectric and elastic properties of the nonlinear optical material bismuth triborate, BiB3O6,” Appl. Phys. A 82, 495–502 (2006).
[CrossRef]

P. Becker, “Borate materials in nonlinear optics,” Adv. Mater. 10, 979–992 (1998).
[CrossRef]

Berry, D. W.

B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, “Entanglement-free Heisenberg-limited phase estimation,” Nature 450, 393–396 (2007).
[CrossRef] [PubMed]

Boeuf, N.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guérin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000).
[CrossRef]

Bohatý, L.

S. Haussühl, L. Bohatý, and P. Becker, “Piezoelectric and elastic properties of the nonlinear optical material bismuth triborate, BiB3O6,” Appl. Phys. A 82, 495–502 (2006).
[CrossRef]

H. Hellwig, J. Liebertz, and L. Bohatý, “Linear optical properties of the monoclinic bismuth BiB3O6,” Appl. Phys. 88, 240–244 (2000).
[CrossRef]

H. Hellwig, J. Liebertz, and L. Bohatý, “Exceptional large nonlinear coefficients in the monoclinic Bismuth Borate BiB3O6,” Solid State Commun. 109, 249–251 (1999).
[CrossRef]

R. Fröhlich, L. Bohatý, and J. Liebertz, “Die Kristallstruktur von Wismutborat, BiB3O6,” Acta Crystallogr. Sec. C 40, 343–344 (1985).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 6th edition (Pergamon Press, 1993).

Bourennane, M.

M. Rådmark, M. Wieśniak, M. Żukowski, and M. Bourennane, “Experimental filtering of two-, four-, and six-photon singlets from a single parametric down-conversion source,” Phys. Rev. A 80, 040302(R) (2009).
[CrossRef]

Bouwmeester, D.

A. Lamas-Linares, J. C. Howell, and D. Bouwmeester, “Stimulated emission of polarization-entangled photons,” Nature (London) 412, 887–890 (2001).
[CrossRef]

D. Bouwmeester, J. -W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of three-photon Greenberger-Horne-Zeilinger entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999).
[CrossRef]

J. -W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[CrossRef]

D. Bouwmeester, J. -W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575–579 (1997).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 2nd edition (Academic Press, 2003).

Branning, D.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guérin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000).
[CrossRef]

Buchvarov, I.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser & Photon. Rev. 4, 1–46 (2009).
[PubMed]

Butcher, P.

P. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University Press, 1990).

Byer, R. L.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3 and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

Chaperot, I.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guérin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000).
[CrossRef]

Chekhova, M. V.

Y. -H. Kim, S. P. Kulik, M. V. Chekhova, W. P. Grice, and Y. Shih, “Experimental entanglement concentration and universal Bell-state synthesizer,” Phys. Rev. A 67, 010301(R) (2003).
[CrossRef]

Chen, K.

C. Wagenknecht, C. -M. Li, A. Reingruber, X. -H. Bao, A. Goebe, Y. -A. Chen, Q. Zhang, K. Chen, and J. -W. Pan, “Experimental demonstration of a heralded entanglement source,” Nature Photonics 4, 549–552 (2010).
[CrossRef]

Chen, Y. -A.

C. Wagenknecht, C. -M. Li, A. Reingruber, X. -H. Bao, A. Goebe, Y. -A. Chen, Q. Zhang, K. Chen, and J. -W. Pan, “Experimental demonstration of a heralded entanglement source,” Nature Photonics 4, 549–552 (2010).
[CrossRef]

X. -C. Yao, T. -X. Wang, P. Xu, H. Lu, G. -S. Pan, X. -H. Bao, C. -Z. Peng, C. -Y. Lu, Y. -A. Chen, and J. -W. Pan, “Observation of eight-photon entanglement,” arXiv:1105.6318 (2011).

Cotter, D.

P. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University Press, 1990).

Cronenberg, G.

S. Barz, G. Cronenberg, A. Zeilinger, and P. Walther, “Heralded generation of entangled photon pairs,” Nature Photonics 4, 553–556 (2010).
[CrossRef]

Daniell, M.

J. -W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, “Experimental demonstration of four-photon entanglement and high-fidelity teleportation,” Phys. Rev. Lett. 86, 4435–4438 (2001).
[CrossRef] [PubMed]

D. Bouwmeester, J. -W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of three-photon Greenberger-Horne-Zeilinger entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999).
[CrossRef]

Dauler, E.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guérin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000).
[CrossRef]

Dovrat, L.

A. Halevy, E. Megidish, T. Shacahm, L. Dovrat, and H. S. Eisenberg, “Projection of two biphoton qutrits onto a maximally entangled state,” Phys. Rev. Lett. 106, 130502 (2011).
[CrossRef] [PubMed]

Ebrahim-Zadeh, M.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser & Photon. Rev. 4, 1–46 (2009).
[PubMed]

M. Ghotbi and M. Ebrahim-Zadeh, “Optical second harmonic generation properties of BiB3O6,” Opt. Express 12, 6002–6019 (2004).
[CrossRef] [PubMed]

Eckardt, R. C.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3 and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

Eibl, M.

D. Bouwmeester, J. -W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575–579 (1997).
[CrossRef]

Eisenberg, H. S.

A. Halevy, E. Megidish, T. Shacahm, L. Dovrat, and H. S. Eisenberg, “Projection of two biphoton qutrits onto a maximally entangled state,” Phys. Rev. Lett. 106, 130502 (2011).
[CrossRef] [PubMed]

Esteban-Martin, A.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser & Photon. Rev. 4, 1–46 (2009).
[PubMed]

Fan, Y. X.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3 and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

Fröhlich, R.

R. Fröhlich, L. Bohatý, and J. Liebertz, “Die Kristallstruktur von Wismutborat, BiB3O6,” Acta Crystallogr. Sec. C 40, 343–344 (1985).
[CrossRef]

Gao, W. -B.

C. -Y. Lu, X. -Q. Zhou, O. Gühne, W. -B. Gao, J. Zhang, Z. -S. Yuan, A. Goebel, T. Yang, and J. -W. Pan, “Experimental entanglement of six photons in graph states,” Nature Physics 3, 91–95 (2007).
[CrossRef]

Gasparoni, S.

J. -W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, “Experimental demonstration of four-photon entanglement and high-fidelity teleportation,” Phys. Rev. Lett. 86, 4435–4438 (2001).
[CrossRef] [PubMed]

Gaydardzhiev, A.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser & Photon. Rev. 4, 1–46 (2009).
[PubMed]

Ghosh, R.

R. Ghosh and L. Mandel, “Observation of nonclassical effects in the interference of two photons,” Phys. Rev. Lett. 59, 1903–1905 (1987).
[CrossRef] [PubMed]

Ghotbi, M.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser & Photon. Rev. 4, 1–46 (2009).
[PubMed]

M. Ghotbi and M. Ebrahim-Zadeh, “Optical second harmonic generation properties of BiB3O6,” Opt. Express 12, 6002–6019 (2004).
[CrossRef] [PubMed]

Goebe, A.

C. Wagenknecht, C. -M. Li, A. Reingruber, X. -H. Bao, A. Goebe, Y. -A. Chen, Q. Zhang, K. Chen, and J. -W. Pan, “Experimental demonstration of a heralded entanglement source,” Nature Photonics 4, 549–552 (2010).
[CrossRef]

Goebel, A.

C. -Y. Lu, X. -Q. Zhou, O. Gühne, W. -B. Gao, J. Zhang, Z. -S. Yuan, A. Goebel, T. Yang, and J. -W. Pan, “Experimental entanglement of six photons in graph states,” Nature Physics 3, 91–95 (2007).
[CrossRef]

Goggin, M.

R. Rangarajan, M. Goggin, and P. Kwiat, “Optimizing type-I polarization-entangled photons,” Opt. Express 77, 18920–18933 (2009).
[CrossRef]

Grice, W. P.

Y. -H. Kim, S. P. Kulik, M. V. Chekhova, W. P. Grice, and Y. Shih, “Experimental entanglement concentration and universal Bell-state synthesizer,” Phys. Rev. A 67, 010301(R) (2003).
[CrossRef]

W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
[CrossRef]

Guérin, S.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guérin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000).
[CrossRef]

Gühne, O.

C. -Y. Lu, X. -Q. Zhou, O. Gühne, W. -B. Gao, J. Zhang, Z. -S. Yuan, A. Goebel, T. Yang, and J. -W. Pan, “Experimental entanglement of six photons in graph states,” Nature Physics 3, 91–95 (2007).
[CrossRef]

Halevy, A.

A. Halevy, E. Megidish, T. Shacahm, L. Dovrat, and H. S. Eisenberg, “Projection of two biphoton qutrits onto a maximally entangled state,” Phys. Rev. Lett. 106, 130502 (2011).
[CrossRef] [PubMed]

Haussühl, S.

S. Haussühl, L. Bohatý, and P. Becker, “Piezoelectric and elastic properties of the nonlinear optical material bismuth triborate, BiB3O6,” Appl. Phys. A 82, 495–502 (2006).
[CrossRef]

Hellwig, H.

H. Hellwig, J. Liebertz, and L. Bohatý, “Linear optical properties of the monoclinic bismuth BiB3O6,” Appl. Phys. 88, 240–244 (2000).
[CrossRef]

H. Hellwig, J. Liebertz, and L. Bohatý, “Exceptional large nonlinear coefficients in the monoclinic Bismuth Borate BiB3O6,” Solid State Commun. 109, 249–251 (1999).
[CrossRef]

Higgins, B. L.

B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, “Entanglement-free Heisenberg-limited phase estimation,” Nature 450, 393–396 (2007).
[CrossRef] [PubMed]

Hobden, M. V.

M. V. Hobden, “Phase-matched second-harmonic generation in biaxial crystals,” J. Appl. Phys. 38, 4365–4372 (1967).
[CrossRef]

Howell, J. C.

A. Lamas-Linares, J. C. Howell, and D. Bouwmeester, “Stimulated emission of polarization-entangled photons,” Nature (London) 412, 887–890 (2001).
[CrossRef]

Jaeger, G.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guérin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000).
[CrossRef]

James, D. F. V.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[CrossRef]

Jeffrey, E. R.

J. B. Altepeter, E. R. Jeffrey, and P. G. Kwiat, “Photonic state tomography,” Adv. At. Mol. Opt. Phys. 52, 105–159 (2005).

Kiesel, N.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nature Photonics 4, 170–173 (2010).
[CrossRef]

Kim, Y. -H.

Y. -H. Kim, S. P. Kulik, M. V. Chekhova, W. P. Grice, and Y. Shih, “Experimental entanglement concentration and universal Bell-state synthesizer,” Phys. Rev. A 67, 010301(R) (2003).
[CrossRef]

Kityk, I. V.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser & Photon. Rev. 4, 1–46 (2009).
[PubMed]

Kokabee, O.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser & Photon. Rev. 4, 1–46 (2009).
[PubMed]

Krischek, R.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nature Photonics 4, 170–173 (2010).
[CrossRef]

Kulik, S. P.

Y. -H. Kim, S. P. Kulik, M. V. Chekhova, W. P. Grice, and Y. Shih, “Experimental entanglement concentration and universal Bell-state synthesizer,” Phys. Rev. A 67, 010301(R) (2003).
[CrossRef]

Kurtsiefer, C.

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High-efficiency entangled photon pair collection in type-II parametric fluorescence,” Phys. Rev. A 62, 023802 (2001).
[CrossRef]

Kwiat, P.

R. Rangarajan, M. Goggin, and P. Kwiat, “Optimizing type-I polarization-entangled photons,” Opt. Express 77, 18920–18933 (2009).
[CrossRef]

Kwiat, P. G.

J. B. Altepeter, E. R. Jeffrey, and P. G. Kwiat, “Photonic state tomography,” Adv. At. Mol. Opt. Phys. 52, 105–159 (2005).

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Lamas-Linares, A.

A. Lamas-Linares, J. C. Howell, and D. Bouwmeester, “Stimulated emission of polarization-entangled photons,” Nature (London) 412, 887–890 (2001).
[CrossRef]

Li, C. -M.

C. Wagenknecht, C. -M. Li, A. Reingruber, X. -H. Bao, A. Goebe, Y. -A. Chen, Q. Zhang, K. Chen, and J. -W. Pan, “Experimental demonstration of a heralded entanglement source,” Nature Photonics 4, 549–552 (2010).
[CrossRef]

Liebertz, J.

H. Hellwig, J. Liebertz, and L. Bohatý, “Linear optical properties of the monoclinic bismuth BiB3O6,” Appl. Phys. 88, 240–244 (2000).
[CrossRef]

H. Hellwig, J. Liebertz, and L. Bohatý, “Exceptional large nonlinear coefficients in the monoclinic Bismuth Borate BiB3O6,” Solid State Commun. 109, 249–251 (1999).
[CrossRef]

R. Fröhlich, L. Bohatý, and J. Liebertz, “Die Kristallstruktur von Wismutborat, BiB3O6,” Acta Crystallogr. Sec. C 40, 343–344 (1985).
[CrossRef]

Lu, C. -Y.

C. -Y. Lu, X. -Q. Zhou, O. Gühne, W. -B. Gao, J. Zhang, Z. -S. Yuan, A. Goebel, T. Yang, and J. -W. Pan, “Experimental entanglement of six photons in graph states,” Nature Physics 3, 91–95 (2007).
[CrossRef]

X. -C. Yao, T. -X. Wang, P. Xu, H. Lu, G. -S. Pan, X. -H. Bao, C. -Z. Peng, C. -Y. Lu, Y. -A. Chen, and J. -W. Pan, “Observation of eight-photon entanglement,” arXiv:1105.6318 (2011).

Lu, H.

X. -C. Yao, T. -X. Wang, P. Xu, H. Lu, G. -S. Pan, X. -H. Bao, C. -Z. Peng, C. -Y. Lu, Y. -A. Chen, and J. -W. Pan, “Observation of eight-photon entanglement,” arXiv:1105.6318 (2011).

Majchrowski, A.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser & Photon. Rev. 4, 1–46 (2009).
[PubMed]

Mandel, L.

R. Ghosh and L. Mandel, “Observation of nonclassical effects in the interference of two photons,” Phys. Rev. Lett. 59, 1903–1905 (1987).
[CrossRef] [PubMed]

Masuda, H.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3 and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

Mattle, K.

D. Bouwmeester, J. -W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575–579 (1997).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Megidish, E.

A. Halevy, E. Megidish, T. Shacahm, L. Dovrat, and H. S. Eisenberg, “Projection of two biphoton qutrits onto a maximally entangled state,” Phys. Rev. Lett. 106, 130502 (2011).
[CrossRef] [PubMed]

Michalski, E.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser & Photon. Rev. 4, 1–46 (2009).
[PubMed]

Michelberger, P.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nature Photonics 4, 170–173 (2010).
[CrossRef]

Midwinter, J. E.

F. Zernike and J. E. Midwinter, Applied Nonlinear Optics (John Wiley & Sons, 1973).

Migdall, A.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guérin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000).
[CrossRef]

Miyata, K.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser & Photon. Rev. 4, 1–46 (2009).
[PubMed]

Muller, A.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guérin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000).
[CrossRef]

Munro, W. J.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[CrossRef]

Nikolov, I.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser & Photon. Rev. 4, 1–46 (2009).
[PubMed]

Noack, F.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser & Photon. Rev. 4, 1–46 (2009).
[PubMed]

Oberparleiter, M.

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High-efficiency entangled photon pair collection in type-II parametric fluorescence,” Phys. Rev. A 62, 023802 (2001).
[CrossRef]

Ozawa, A.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nature Photonics 4, 170–173 (2010).
[CrossRef]

Pan, G. -S.

X. -C. Yao, T. -X. Wang, P. Xu, H. Lu, G. -S. Pan, X. -H. Bao, C. -Z. Peng, C. -Y. Lu, Y. -A. Chen, and J. -W. Pan, “Observation of eight-photon entanglement,” arXiv:1105.6318 (2011).

Pan, J. -W.

C. Wagenknecht, C. -M. Li, A. Reingruber, X. -H. Bao, A. Goebe, Y. -A. Chen, Q. Zhang, K. Chen, and J. -W. Pan, “Experimental demonstration of a heralded entanglement source,” Nature Photonics 4, 549–552 (2010).
[CrossRef]

C. -Y. Lu, X. -Q. Zhou, O. Gühne, W. -B. Gao, J. Zhang, Z. -S. Yuan, A. Goebel, T. Yang, and J. -W. Pan, “Experimental entanglement of six photons in graph states,” Nature Physics 3, 91–95 (2007).
[CrossRef]

J. -W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, “Experimental demonstration of four-photon entanglement and high-fidelity teleportation,” Phys. Rev. Lett. 86, 4435–4438 (2001).
[CrossRef] [PubMed]

D. Bouwmeester, J. -W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of three-photon Greenberger-Horne-Zeilinger entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999).
[CrossRef]

J. -W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[CrossRef]

D. Bouwmeester, J. -W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575–579 (1997).
[CrossRef]

X. -C. Yao, T. -X. Wang, P. Xu, H. Lu, G. -S. Pan, X. -H. Bao, C. -Z. Peng, C. -Y. Lu, Y. -A. Chen, and J. -W. Pan, “Observation of eight-photon entanglement,” arXiv:1105.6318 (2011).

Peng, C. -Z.

X. -C. Yao, T. -X. Wang, P. Xu, H. Lu, G. -S. Pan, X. -H. Bao, C. -Z. Peng, C. -Y. Lu, Y. -A. Chen, and J. -W. Pan, “Observation of eight-photon entanglement,” arXiv:1105.6318 (2011).

Petrov, V.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser & Photon. Rev. 4, 1–46 (2009).
[PubMed]

P. Tzankov and V. Petrov, “Effective second-order nonlinearity in acentric optical crystals with low symmetry,” Appl. Opt. 44, 6971–6985 (2005).
[CrossRef] [PubMed]

Pryde, G. J.

B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, “Entanglement-free Heisenberg-limited phase estimation,” Nature 450, 393–396 (2007).
[CrossRef] [PubMed]

Rådmark, M.

M. Rådmark, M. Wieśniak, M. Żukowski, and M. Bourennane, “Experimental filtering of two-, four-, and six-photon singlets from a single parametric down-conversion source,” Phys. Rev. A 80, 040302(R) (2009).
[CrossRef]

Rangarajan, R.

R. Rangarajan, M. Goggin, and P. Kwiat, “Optimizing type-I polarization-entangled photons,” Opt. Express 77, 18920–18933 (2009).
[CrossRef]

Reingruber, A.

C. Wagenknecht, C. -M. Li, A. Reingruber, X. -H. Bao, A. Goebe, Y. -A. Chen, Q. Zhang, K. Chen, and J. -W. Pan, “Experimental demonstration of a heralded entanglement source,” Nature Photonics 4, 549–552 (2010).
[CrossRef]

Rotermund, F.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser & Photon. Rev. 4, 1–46 (2009).
[PubMed]

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Shacahm, T.

A. Halevy, E. Megidish, T. Shacahm, L. Dovrat, and H. S. Eisenberg, “Projection of two biphoton qutrits onto a maximally entangled state,” Phys. Rev. Lett. 106, 130502 (2011).
[CrossRef] [PubMed]

Shih, Y.

Y. -H. Kim, S. P. Kulik, M. V. Chekhova, W. P. Grice, and Y. Shih, “Experimental entanglement concentration and universal Bell-state synthesizer,” Phys. Rev. A 67, 010301(R) (2003).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Tzankov, P.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser & Photon. Rev. 4, 1–46 (2009).
[PubMed]

P. Tzankov and V. Petrov, “Effective second-order nonlinearity in acentric optical crystals with low symmetry,” Appl. Opt. 44, 6971–6985 (2005).
[CrossRef] [PubMed]

Udem, T.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nature Photonics 4, 170–173 (2010).
[CrossRef]

Wagenknecht, C.

C. Wagenknecht, C. -M. Li, A. Reingruber, X. -H. Bao, A. Goebe, Y. -A. Chen, Q. Zhang, K. Chen, and J. -W. Pan, “Experimental demonstration of a heralded entanglement source,” Nature Photonics 4, 549–552 (2010).
[CrossRef]

Walmsley, I. A.

W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
[CrossRef]

Walther, P.

S. Barz, G. Cronenberg, A. Zeilinger, and P. Walther, “Heralded generation of entangled photon pairs,” Nature Photonics 4, 553–556 (2010).
[CrossRef]

Wang, T. -X.

X. -C. Yao, T. -X. Wang, P. Xu, H. Lu, G. -S. Pan, X. -H. Bao, C. -Z. Peng, C. -Y. Lu, Y. -A. Chen, and J. -W. Pan, “Observation of eight-photon entanglement,” arXiv:1105.6318 (2011).

Weihs, G.

J. -W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, “Experimental demonstration of four-photon entanglement and high-fidelity teleportation,” Phys. Rev. Lett. 86, 4435–4438 (2001).
[CrossRef] [PubMed]

Weinfurter, H.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nature Photonics 4, 170–173 (2010).
[CrossRef]

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High-efficiency entangled photon pair collection in type-II parametric fluorescence,” Phys. Rev. A 62, 023802 (2001).
[CrossRef]

D. Bouwmeester, J. -W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of three-photon Greenberger-Horne-Zeilinger entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999).
[CrossRef]

J. -W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[CrossRef]

D. Bouwmeester, J. -W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575–579 (1997).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

White, A. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[CrossRef]

Wieczorek, W.

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nature Photonics 4, 170–173 (2010).
[CrossRef]

Wiesniak, M.

M. Rådmark, M. Wieśniak, M. Żukowski, and M. Bourennane, “Experimental filtering of two-, four-, and six-photon singlets from a single parametric down-conversion source,” Phys. Rev. A 80, 040302(R) (2009).
[CrossRef]

Wiseman, H. M.

B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, “Entanglement-free Heisenberg-limited phase estimation,” Nature 450, 393–396 (2007).
[CrossRef] [PubMed]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 6th edition (Pergamon Press, 1993).

Xu, P.

X. -C. Yao, T. -X. Wang, P. Xu, H. Lu, G. -S. Pan, X. -H. Bao, C. -Z. Peng, C. -Y. Lu, Y. -A. Chen, and J. -W. Pan, “Observation of eight-photon entanglement,” arXiv:1105.6318 (2011).

Yang, T.

C. -Y. Lu, X. -Q. Zhou, O. Gühne, W. -B. Gao, J. Zhang, Z. -S. Yuan, A. Goebel, T. Yang, and J. -W. Pan, “Experimental entanglement of six photons in graph states,” Nature Physics 3, 91–95 (2007).
[CrossRef]

Yao, X. -C.

X. -C. Yao, T. -X. Wang, P. Xu, H. Lu, G. -S. Pan, X. -H. Bao, C. -Z. Peng, C. -Y. Lu, Y. -A. Chen, and J. -W. Pan, “Observation of eight-photon entanglement,” arXiv:1105.6318 (2011).

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals (John Wiley & Sons, 2003).

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals (John Wiley & Sons, 2003).

Yuan, Z. -S.

C. -Y. Lu, X. -Q. Zhou, O. Gühne, W. -B. Gao, J. Zhang, Z. -S. Yuan, A. Goebel, T. Yang, and J. -W. Pan, “Experimental entanglement of six photons in graph states,” Nature Physics 3, 91–95 (2007).
[CrossRef]

Zeilinger, A.

S. Barz, G. Cronenberg, A. Zeilinger, and P. Walther, “Heralded generation of entangled photon pairs,” Nature Photonics 4, 553–556 (2010).
[CrossRef]

J. -W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, “Experimental demonstration of four-photon entanglement and high-fidelity teleportation,” Phys. Rev. Lett. 86, 4435–4438 (2001).
[CrossRef] [PubMed]

D. Bouwmeester, J. -W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of three-photon Greenberger-Horne-Zeilinger entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999).
[CrossRef]

J. -W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[CrossRef]

D. Bouwmeester, J. -W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575–579 (1997).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Zernike, F.

F. Zernike and J. E. Midwinter, Applied Nonlinear Optics (John Wiley & Sons, 1973).

Zhang, J.

C. -Y. Lu, X. -Q. Zhou, O. Gühne, W. -B. Gao, J. Zhang, Z. -S. Yuan, A. Goebel, T. Yang, and J. -W. Pan, “Experimental entanglement of six photons in graph states,” Nature Physics 3, 91–95 (2007).
[CrossRef]

Zhang, Q.

C. Wagenknecht, C. -M. Li, A. Reingruber, X. -H. Bao, A. Goebe, Y. -A. Chen, Q. Zhang, K. Chen, and J. -W. Pan, “Experimental demonstration of a heralded entanglement source,” Nature Photonics 4, 549–552 (2010).
[CrossRef]

Zhou, X. -Q.

C. -Y. Lu, X. -Q. Zhou, O. Gühne, W. -B. Gao, J. Zhang, Z. -S. Yuan, A. Goebel, T. Yang, and J. -W. Pan, “Experimental entanglement of six photons in graph states,” Nature Physics 3, 91–95 (2007).
[CrossRef]

Zukowski, M.

M. Rådmark, M. Wieśniak, M. Żukowski, and M. Bourennane, “Experimental filtering of two-, four-, and six-photon singlets from a single parametric down-conversion source,” Phys. Rev. A 80, 040302(R) (2009).
[CrossRef]

Acta Crystallogr. Sec. C

R. Fröhlich, L. Bohatý, and J. Liebertz, “Die Kristallstruktur von Wismutborat, BiB3O6,” Acta Crystallogr. Sec. C 40, 343–344 (1985).
[CrossRef]

Adv. At. Mol. Opt. Phys.

J. B. Altepeter, E. R. Jeffrey, and P. G. Kwiat, “Photonic state tomography,” Adv. At. Mol. Opt. Phys. 52, 105–159 (2005).

Adv. Mater.

P. Becker, “Borate materials in nonlinear optics,” Adv. Mater. 10, 979–992 (1998).
[CrossRef]

Appl. Opt.

Appl. Phys.

H. Hellwig, J. Liebertz, and L. Bohatý, “Linear optical properties of the monoclinic bismuth BiB3O6,” Appl. Phys. 88, 240–244 (2000).
[CrossRef]

Appl. Phys. A

S. Haussühl, L. Bohatý, and P. Becker, “Piezoelectric and elastic properties of the nonlinear optical material bismuth triborate, BiB3O6,” Appl. Phys. A 82, 495–502 (2006).
[CrossRef]

IEEE J. Quantum Electron.

R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3 and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990).
[CrossRef]

J. Appl. Phys.

M. V. Hobden, “Phase-matched second-harmonic generation in biaxial crystals,” J. Appl. Phys. 38, 4365–4372 (1967).
[CrossRef]

Laser & Photon. Rev.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser & Photon. Rev. 4, 1–46 (2009).
[PubMed]

Nature

B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, “Entanglement-free Heisenberg-limited phase estimation,” Nature 450, 393–396 (2007).
[CrossRef] [PubMed]

Nature (London)

D. Bouwmeester, J. -W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575–579 (1997).
[CrossRef]

A. Lamas-Linares, J. C. Howell, and D. Bouwmeester, “Stimulated emission of polarization-entangled photons,” Nature (London) 412, 887–890 (2001).
[CrossRef]

Nature Photonics

C. Wagenknecht, C. -M. Li, A. Reingruber, X. -H. Bao, A. Goebe, Y. -A. Chen, Q. Zhang, K. Chen, and J. -W. Pan, “Experimental demonstration of a heralded entanglement source,” Nature Photonics 4, 549–552 (2010).
[CrossRef]

S. Barz, G. Cronenberg, A. Zeilinger, and P. Walther, “Heralded generation of entangled photon pairs,” Nature Photonics 4, 553–556 (2010).
[CrossRef]

R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nature Photonics 4, 170–173 (2010).
[CrossRef]

Nature Physics

C. -Y. Lu, X. -Q. Zhou, O. Gühne, W. -B. Gao, J. Zhang, Z. -S. Yuan, A. Goebel, T. Yang, and J. -W. Pan, “Experimental entanglement of six photons in graph states,” Nature Physics 3, 91–95 (2007).
[CrossRef]

Opt. Eng.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guérin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000).
[CrossRef]

Opt. Express

M. Ghotbi and M. Ebrahim-Zadeh, “Optical second harmonic generation properties of BiB3O6,” Opt. Express 12, 6002–6019 (2004).
[CrossRef] [PubMed]

R. Rangarajan, M. Goggin, and P. Kwiat, “Optimizing type-I polarization-entangled photons,” Opt. Express 77, 18920–18933 (2009).
[CrossRef]

Phys. Rev. A

M. Rådmark, M. Wieśniak, M. Żukowski, and M. Bourennane, “Experimental filtering of two-, four-, and six-photon singlets from a single parametric down-conversion source,” Phys. Rev. A 80, 040302(R) (2009).
[CrossRef]

Y. -H. Kim, S. P. Kulik, M. V. Chekhova, W. P. Grice, and Y. Shih, “Experimental entanglement concentration and universal Bell-state synthesizer,” Phys. Rev. A 67, 010301(R) (2003).
[CrossRef]

W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
[CrossRef]

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High-efficiency entangled photon pair collection in type-II parametric fluorescence,” Phys. Rev. A 62, 023802 (2001).
[CrossRef]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[CrossRef]

Phys. Rev. Lett.

A. Halevy, E. Megidish, T. Shacahm, L. Dovrat, and H. S. Eisenberg, “Projection of two biphoton qutrits onto a maximally entangled state,” Phys. Rev. Lett. 106, 130502 (2011).
[CrossRef] [PubMed]

R. Ghosh and L. Mandel, “Observation of nonclassical effects in the interference of two photons,” Phys. Rev. Lett. 59, 1903–1905 (1987).
[CrossRef] [PubMed]

J. -W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80, 3891–3894 (1998).
[CrossRef]

J. -W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, “Experimental demonstration of four-photon entanglement and high-fidelity teleportation,” Phys. Rev. Lett. 86, 4435–4438 (2001).
[CrossRef] [PubMed]

D. Bouwmeester, J. -W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of three-photon Greenberger-Horne-Zeilinger entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Solid State Commun.

H. Hellwig, J. Liebertz, and L. Bohatý, “Exceptional large nonlinear coefficients in the monoclinic Bismuth Borate BiB3O6,” Solid State Commun. 109, 249–251 (1999).
[CrossRef]

Other

IEEE Standard Boards and American National Standard Institute, IEEE Standard on Piezoelectricity 176-1987, (American National Standard Institute, 1987).

A. Yariv and P. Yeh, Optical Waves in Crystals (John Wiley & Sons, 2003).

F. Zernike and J. E. Midwinter, Applied Nonlinear Optics (John Wiley & Sons, 1973).

M. Born and E. Wolf, Principles of Optics, 6th edition (Pergamon Press, 1993).

P. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University Press, 1990).

R. W. Boyd, Nonlinear Optics, 2nd edition (Academic Press, 2003).

X. -C. Yao, T. -X. Wang, P. Xu, H. Lu, G. -S. Pan, X. -H. Bao, C. -Z. Peng, C. -Y. Lu, Y. -A. Chen, and J. -W. Pan, “Observation of eight-photon entanglement,” arXiv:1105.6318 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

(a) Relative orientation of the crystallographic axes {ai} and the crystal physical axes {ei}. (b) Orientation of the crystal physical axes {ei} and the optical indicatrix main axes { e i 0 }. Φ is the angle of orientational dispersion of the principal axes. (c) The propagation direction of the pump beam T inside the crystal is defined using the two angles ψ and ρ in the wavelength independent {ei} system.

Fig. 2
Fig. 2

(a) Stereographic projection of collinear type-II phase-matching angles for λf =390 nm (black line), with several non-collinear down-converted circles for different propagation directions of the fundamental wave. The chosen working point for this work is marked with X. (b) Stereographic projection of PDC in BiBO for ψ(T) = 63.5° and ρ(T) = 53.5°. The vectors P and R are indicated, as defined in the text.

Fig. 3
Fig. 3

(a) The relevant photon polarization directions for the designed crystal. The elliptical cross-sections of the wavelength dependant indicatrix are marked for the fundamental beam and the two cones intersection directions. Note that the ellipticity of the cross-sections is exaggerated for clarity reasons. The long and short semi-axes of the cross-sections indicate the polarization directions of the slow and fast waves, respectively. (b) Experimental results of the normalized intensity of the down-converted photons as a function of the fundamental wave polarization angle.

Fig. 4
Fig. 4

(a) The calculated deff [pm/V] of BiBO. Each contour line marks a step of 0.14 pm/V. The thick black line represents collinear type-II phase-matching directions for λf =390 nm. The X symbol marks the chosen pump direction in this work. (b) The Spatial walk-off angle [deg.] for BiBO. Each contour line marks a step of 0.45°.

Fig. 5
Fig. 5

(a) Down-converted photon circles through a 3 nm bandpass filter, from a 2 mm thick BBO crystal. (b) Down-converted photon circles through a 3 nm bandpass filter, from a 2.7 mm thick BiBO crystal with different pump wavelengths, as indicated. several lower circles are cropped due to the filter size.

Fig. 6
Fig. 6

(a) Stereographic projection of non-collinear type-II PDC processes in BiBO with different pump wavelengths. The two inner circles originate from a pump beam of λ = 389 nm, while the two outer circles from λ = 391 nm. The thicker ring (left, red) is polarized slow, while the thinner one (right, green) is polarized fast. The X symbol marks the pump direction for the BiBO crystal in this work. (b) Stereographic projection of non-collinear type-II PDC processes in BiBO with a pump wavelength of 390 nm and different down-converted wavelengths. The two inner circles wavelength is 781.51 nm (left, red) and 778.5 nm (right, green) and the two outer circles are of the opposite process.

Fig. 7
Fig. 7

A comparison of the measured (open circles) and calculated (solid circles) normalized down-converted circles radii of the slow (dashed red) and fast (solid blue) photons.

Fig. 8
Fig. 8

The BiBO (a) and BBO (b) collinear type-II PDC spectra. For BiBO (BBO), the spectrum of the fast (extraordinary) photons is presented by a solid blue line, while that of the slow (ordinary) photons’ by a dashed red line. In both cases, the crystals’ thickness is 2 mm, the filter bandwidth is 3 nm, and the pump bandwidth is 2 nm. Spectral overlap is 89.6% for BiBO and 98.2% for BBO. Insets: Phase-matching spectral dependency between the slow (ordinary) and the fast (extraordinary) photons from BiBO (BBO). The spectra aspect ratios are 1:3 and 2:3 for BiBO and BBO, respectively.

Fig. 9
Fig. 9

(a) Spectra overlap as a function of the crystal thickness with a 3 nm bandpass filter for BiBO (blue squares, solid line) and BBO (red circles, dashed line) crystals. (b) Spectra overlap as a function of the filter bandwidth for 2 mm thick BiBO (blue squares, solid line) and BBO (red circles, dashed line) crystals.

Fig. 10
Fig. 10

The experimental setup. See text for details.

Fig. 11
Fig. 11

Results with configuration I. (a) Visibilities vs. the twofold coincidence rate in three polarization bases: HV (black squares), PM (red circles), and RL (blue triangles). Straight lines represent linear fits, calculated without the last three points, where stimulation is more significant. (b) Twofold coincidence rates vs. pump power. The solid black line represents the quadratic fit and the dashed red line the linear slope at low pump powers.

Fig. 13
Fig. 13

Real parts of the measured density matrices for the two configurations. Imaginary values are smaller than 0.08 and therefore not presented. (a) Configuration I, 40 mW pump. (b) Configuration I, 300 mW pump. (c) Configuration II, 42 mW pump. (d) Configuration II, 310 mW pump.

Fig. 12
Fig. 12

Results with configuration II. (a) Visibilities vs. the twofold coincidence rate in three polarization bases: HV (black squares), PM (red circles), and RL (blue triangles). Straight lines represent linear fits. (b) Twofold coincidence rates as a function of the optical path difference. The red circles correspond to a projection to the |ϕ+〉 state and the black squares, a projection to the |ϕ〉 state. Blue triangles represent coincidence events from the same side.

Tables (1)

Tables Icon

Table 1 dn d λ for λ = 780 nm in nm−1

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ k = k signal + k idler k f = 0 ,
D i x : D i y : D i z = n x 2 x ( n i 2 n x 2 ) : n y 2 y ( n i 2 n y 2 ) : n z 2 z ( n i 2 n z 2 ) ,
δ T = L v s L v f = L ( n r s c n r f c ) = L Δ n r c ,
fast ( 389 nm ) slow ( 780 nm ) + fast ( 776.01 nm ) , fast ( 389 nm ) slow ( 776.01 nm ) + fast ( 780 nm ) , fast ( 391 nm ) slow ( 780 nm ) + fast ( 784.01 nm ) , fast ( 391 nm ) slow ( 784.01 nm ) + fast ( 780 nm ) .
fast ( 390 nm ) slow ( 778.5 nm ) + fast ( 781.51 nm ) , fast ( 390 nm ) slow ( 781.51 nm ) + fast ( 778.5 nm ) .

Metrics