Abstract

We introduce the passive all-optical polarization switch, which modulates light with light. That switch is used to construct all the binary logic gates of two or more inputs. We discuss the design concepts and the operation of the AND, OR, NAND, and NOR gates as examples. The rest of the 16 logic gates are similarly designed. Cascading of such gates is straightforward as we show and discuss. Cascading in itself does not require a power source, but feedback at this stage of development does. The design and operation of an SR Latch is presented as one of the popular basic sequential devices used for memory cells. That completes the essential components of an all-optical polarization digital processor. The speed of such devices is well above 10 GHz for bulk implementations and is much higher for chip-size implementations. In addition, the presented devices do have the four essential characteristics previously thought unique to the microelectronic ones.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010).
    [CrossRef]
  2. R. S. Tucker, “The role of optics in computing,” Nat. Photonics 4(7), 405 (2010).
    [CrossRef]
  3. D. A. B. Miller, “Are optical transistors the logical next step,” Nat. Photonics 4(1), 3–5 (2010).
    [CrossRef]
  4. D. A. B. Miller, “Device requirements for digital optical processing,” SPIE Critical Reviews of Optical Science and Technology CR35, 67–76 (1990).
  5. J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460(7251), 76–80 (2009).
    [CrossRef] [PubMed]
  6. F. Xiong, A. D. Liao, D. Estrada, and E. Pop, “Low-power switching of phase-change materials with carbon nanotube electrodes,” Science 332(6029), 568–570 (2011).
    [CrossRef] [PubMed]
  7. L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Throurhout, R. Baets, and G. Morthier, “An Ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
    [CrossRef]
  8. P. W. Smith, “Hybrid bistable optical devices,” Opt. Eng. 19, 456–462 (1980).
  9. M. T. Fatehi, K. C. Wasmundt, and S. A. Collins., “Optical logic gates using liquid crystal light valve: implementation and application example,” Appl. Opt. 20(13), 2250–2256 (1981).
    [CrossRef] [PubMed]
  10. V. I. Vlad, “Opto-electronic bistable devices for image processing,” Opt. Acta (Lond.) 32, 1235–1250 (1985).
  11. A. W. Lohmann, “Polarization and optical logic,” Appl. Opt. 25(10), 1594–1597 (1986).
    [CrossRef] [PubMed]
  12. A. W. Lohmann and J. Weigelt, “Spatial filtering logic based on polarization,” Appl. Opt. 26(1), 131–135 (1987).
    [CrossRef] [PubMed]
  13. M. A. Handschy, K. M. Johnson, W. T. Cathey, and L. A. Pagano-Stauffer, “Polarization-based optical parallel logic gate utilizing ferroelectric liquid crystals,” Opt. Lett. 12(8), 611–613 (1987).
    [CrossRef] [PubMed]
  14. M. A. Karim, A. A. S. Awwal, and A. K. Cherri, “Polarization-encoded optical shadow-casting logic units: design,” Appl. Opt. 26(14), 2720–2725 (1987).
    [CrossRef] [PubMed]
  15. M. S. Alam and M. A. Karim, “Multiple-valued logic based multiprocessor using polarization-encoded optical shadow-casting,” Opt. Commun. 96(1-3), 164–173 (1993).
    [CrossRef]
  16. G. R. Kumar, B. P. Singh, K. D. Rao, and K. K. Sharma, “Polarization-based optical logic using laser-excited gratings,” Opt. Lett. 15(4), 245–247 (1990).
    [CrossRef] [PubMed]
  17. M. A. Habli and K. Leonik, “Polarization-coded optical logic gates for N-inputs,” Optik (Stuttg.) 91, 100–102 (1992).
  18. W. Wu, S. Campbell, S. Zhou, and P. Yeh, “Polarization-encoded optical logic operations in photorefractive media,” Opt. Lett. 18(20), 1742–1744 (1993).
    [CrossRef] [PubMed]
  19. F. Yu and G. Zheng, “An improved polarization-encoded logic algebra (PLA) used for the design of an optical logic gate for a 2D data array: theory,” Opt. Commun. 115(5-6), 585–596 (1995).
    [CrossRef]
  20. M. M. Mano and C. R. Kime, Logic and Computer Design Fundamentals, 2nd Ed. (Prentice Hall, 2001).
  21. H. Peng, L. Liu, Y. Yin, and Z. Wang, “Integrated polarization-optical logic processor,” Opt. Commun. 112(3-4), 131–135 (1994).
    [CrossRef]
  22. R. Torroba, R. Henao, and C. Carletti, “Digital polarization-encoding technique for optical logic operations,” Opt. Lett. 21(23), 1918–1920 (1996).
    [CrossRef] [PubMed]
  23. R. Torroba, R. Henao, and C. Carletti, “Polarization encoded architecture for optical logic operations,” Optik (Stuttg.) 107, 41–43 (1997).
  24. N. Nishimura, Y. Awatsuji, and T. Kubota, “Analysis and evaluations of logical instructions called in parallel digital optical operations based on optical array logic,” Appl. Opt. 42(14), 2532–2545 (2003).
    [CrossRef] [PubMed]
  25. J. Hardy and J. Shamir, “Optics inspired logic architecture,” Opt. Express 15(1), 150–165 (2007).
    [CrossRef] [PubMed]
  26. Y. Miyoshi, K. Ikeda, H. Tobioka, T. Inoue, S. Namiki, and K.- Kitayama, “Ultrafast all-optical logic gate using a nonlinear optical loop mirror based multi-periodic transfer function,” Opt. Express 16(4), 2570–2577 (2008).
    [CrossRef]
  27. Y. A. Zaghloul and A. R. M. Zaghloul, “Unforced polarization-based optical implementation of Binary logic,” Opt. Express 14(16), 7252–7269 (2006).
    [CrossRef] [PubMed]
  28. Y. A. Zaghloul and A. R. M. Zaghloul, “Complete all-optical processing polarization-based binary logic gates and optical processors,” Opt. Express 14(21), 9879–9895 (2006).
    [CrossRef] [PubMed]
  29. W. A. Shurcliff, Polarized Light (Harvard, 1962).
  30. F. L. Pedrotti, L. S. Pedrotti, and L. M. Pedrotti, Introduction to Optics, 3rd Ed. (Prentice Hall, 2007).
  31. E. Hecht, Optics, 4th Ed. (Addison Wesley, 2002).
  32. R. Clark Jones, “A new calculus for the treatment of optical systems I. Description and discussion of the calculus,” J. Opt. Soc. Am. 31, 488–493 (1941).
  33. A. Kumar and A. Ghatak, Polarization of Ligt and Applications in Optical Fibers (SPIE, 2011).
  34. E. Collette, Field Guide to Polarization (SPIE, 2005).
  35. O. Solgaard, “Miniaturization of free space optical systems,” Appl. Opt. 49(25), F18–F31 (2010).
    [CrossRef] [PubMed]
  36. General Photonics Corporation, 5228 Edison Ave, Chino, CA 91710, USA. ( www.generalphotonics.com ).
  37. Infinera, 169 Java Drive, Sunnyvale, CA 94089, USA. ( www.infinera.com ).
  38. IMEC, Kapeldreef 75, B-3001 Leuven, Belgium. ( www2.imec.be ).
  39. J. Zhang, M. Yu, G.-Q. Lo, and D.-L Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16, 53–60 (2010).
  40. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
    [CrossRef]
  41. T. Barwicz, M. A. Popovic, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, “Fabrication of add-drop filters based on frequency-matched microring resonators,” IEEE J. Lightwave Technol. 24(5), 2207–2218 (2006).
    [CrossRef]
  42. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).
  43. A. R. M. Zaghloul, D. A. Keeling, W. A. Berzett, and J. S. Mason, “Design of reflection retarders by use of nonnegative film-substrate systems,” J. Opt. Soc. Am. A 22(8), 1637–1645 (2005).
    [CrossRef] [PubMed]

2011 (2)

F. Xiong, A. D. Liao, D. Estrada, and E. Pop, “Low-power switching of phase-change materials with carbon nanotube electrodes,” Science 332(6029), 568–570 (2011).
[CrossRef] [PubMed]

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

2010 (6)

O. Solgaard, “Miniaturization of free space optical systems,” Appl. Opt. 49(25), F18–F31 (2010).
[CrossRef] [PubMed]

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Throurhout, R. Baets, and G. Morthier, “An Ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[CrossRef]

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010).
[CrossRef]

R. S. Tucker, “The role of optics in computing,” Nat. Photonics 4(7), 405 (2010).
[CrossRef]

D. A. B. Miller, “Are optical transistors the logical next step,” Nat. Photonics 4(1), 3–5 (2010).
[CrossRef]

J. Zhang, M. Yu, G.-Q. Lo, and D.-L Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16, 53–60 (2010).

2009 (1)

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460(7251), 76–80 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (2)

J. Hardy and J. Shamir, “Optics inspired logic architecture,” Opt. Express 15(1), 150–165 (2007).
[CrossRef] [PubMed]

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

2006 (3)

T. Barwicz, M. A. Popovic, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, “Fabrication of add-drop filters based on frequency-matched microring resonators,” IEEE J. Lightwave Technol. 24(5), 2207–2218 (2006).
[CrossRef]

Y. A. Zaghloul and A. R. M. Zaghloul, “Complete all-optical processing polarization-based binary logic gates and optical processors,” Opt. Express 14(21), 9879–9895 (2006).
[CrossRef] [PubMed]

Y. A. Zaghloul and A. R. M. Zaghloul, “Unforced polarization-based optical implementation of Binary logic,” Opt. Express 14(16), 7252–7269 (2006).
[CrossRef] [PubMed]

2005 (1)

2003 (1)

1997 (1)

R. Torroba, R. Henao, and C. Carletti, “Polarization encoded architecture for optical logic operations,” Optik (Stuttg.) 107, 41–43 (1997).

1996 (1)

1995 (1)

F. Yu and G. Zheng, “An improved polarization-encoded logic algebra (PLA) used for the design of an optical logic gate for a 2D data array: theory,” Opt. Commun. 115(5-6), 585–596 (1995).
[CrossRef]

1994 (1)

H. Peng, L. Liu, Y. Yin, and Z. Wang, “Integrated polarization-optical logic processor,” Opt. Commun. 112(3-4), 131–135 (1994).
[CrossRef]

1993 (2)

M. S. Alam and M. A. Karim, “Multiple-valued logic based multiprocessor using polarization-encoded optical shadow-casting,” Opt. Commun. 96(1-3), 164–173 (1993).
[CrossRef]

W. Wu, S. Campbell, S. Zhou, and P. Yeh, “Polarization-encoded optical logic operations in photorefractive media,” Opt. Lett. 18(20), 1742–1744 (1993).
[CrossRef] [PubMed]

1992 (1)

M. A. Habli and K. Leonik, “Polarization-coded optical logic gates for N-inputs,” Optik (Stuttg.) 91, 100–102 (1992).

1990 (2)

D. A. B. Miller, “Device requirements for digital optical processing,” SPIE Critical Reviews of Optical Science and Technology CR35, 67–76 (1990).

G. R. Kumar, B. P. Singh, K. D. Rao, and K. K. Sharma, “Polarization-based optical logic using laser-excited gratings,” Opt. Lett. 15(4), 245–247 (1990).
[CrossRef] [PubMed]

1987 (3)

1986 (1)

1985 (1)

V. I. Vlad, “Opto-electronic bistable devices for image processing,” Opt. Acta (Lond.) 32, 1235–1250 (1985).

1981 (1)

1980 (1)

P. W. Smith, “Hybrid bistable optical devices,” Opt. Eng. 19, 456–462 (1980).

1941 (1)

R. Clark Jones, “A new calculus for the treatment of optical systems I. Description and discussion of the calculus,” J. Opt. Soc. Am. 31, 488–493 (1941).

Alam, M. S.

M. S. Alam and M. A. Karim, “Multiple-valued logic based multiprocessor using polarization-encoded optical shadow-casting,” Opt. Commun. 96(1-3), 164–173 (1993).
[CrossRef]

Awatsuji, Y.

Awwal, A. A. S.

Baets, R.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Throurhout, R. Baets, and G. Morthier, “An Ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[CrossRef]

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

T. Barwicz, M. A. Popovic, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, “Fabrication of add-drop filters based on frequency-matched microring resonators,” IEEE J. Lightwave Technol. 24(5), 2207–2218 (2006).
[CrossRef]

Becker, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Ben Ezra, S.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Berzett, W. A.

Bonk, R.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Campbell, S.

Carletti, C.

R. Torroba, R. Henao, and C. Carletti, “Polarization encoded architecture for optical logic operations,” Optik (Stuttg.) 107, 41–43 (1997).

R. Torroba, R. Henao, and C. Carletti, “Digital polarization-encoding technique for optical logic operations,” Opt. Lett. 21(23), 1918–1920 (1996).
[CrossRef] [PubMed]

Cathey, W. T.

Caulfield, H. J.

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010).
[CrossRef]

Cherri, A. K.

Clark Jones, R.

R. Clark Jones, “A new calculus for the treatment of optical systems I. Description and discussion of the calculus,” J. Opt. Soc. Am. 31, 488–493 (1941).

Collins, S. A.

de Vries, T.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Throurhout, R. Baets, and G. Morthier, “An Ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[CrossRef]

Dolev, S.

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010).
[CrossRef]

Dreschmann, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Ellermeyer, T.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Estrada, D.

F. Xiong, A. D. Liao, D. Estrada, and E. Pop, “Low-power switching of phase-change materials with carbon nanotube electrodes,” Science 332(6029), 568–570 (2011).
[CrossRef] [PubMed]

Fatehi, M. T.

Freude, W.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Frey, F.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Geluk, E.-J.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Throurhout, R. Baets, and G. Morthier, “An Ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[CrossRef]

Götzinger, S.

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460(7251), 76–80 (2009).
[CrossRef] [PubMed]

Habli, M. A.

M. A. Habli and K. Leonik, “Polarization-coded optical logic gates for N-inputs,” Optik (Stuttg.) 91, 100–102 (1992).

Handschy, M. A.

Hardy, J.

Henao, R.

R. Torroba, R. Henao, and C. Carletti, “Polarization encoded architecture for optical logic operations,” Optik (Stuttg.) 107, 41–43 (1997).

R. Torroba, R. Henao, and C. Carletti, “Digital polarization-encoding technique for optical logic operations,” Opt. Lett. 21(23), 1918–1920 (1996).
[CrossRef] [PubMed]

Hillerkuss, D.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Hoh, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Huber, G.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Huebner, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Huybrechts, K.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Throurhout, R. Baets, and G. Morthier, “An Ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[CrossRef]

Hwang, J.

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460(7251), 76–80 (2009).
[CrossRef] [PubMed]

Ikeda, K.

Inoue, T.

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

T. Barwicz, M. A. Popovic, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, “Fabrication of add-drop filters based on frequency-matched microring resonators,” IEEE J. Lightwave Technol. 24(5), 2207–2218 (2006).
[CrossRef]

Johnson, K. M.

Jordan, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Karim, M. A.

M. S. Alam and M. A. Karim, “Multiple-valued logic based multiprocessor using polarization-encoded optical shadow-casting,” Opt. Commun. 96(1-3), 164–173 (1993).
[CrossRef]

M. A. Karim, A. A. S. Awwal, and A. K. Cherri, “Polarization-encoded optical shadow-casting logic units: design,” Appl. Opt. 26(14), 2720–2725 (1987).
[CrossRef] [PubMed]

Kartner, F. X.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Keeling, D. A.

Kitayama, K.-

Kleinow, P.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Koenig, S.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Koos, C.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Kubota, T.

Kumar, G. R.

Kumar, R.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Throurhout, R. Baets, and G. Morthier, “An Ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[CrossRef]

Kwong, D.-L

J. Zhang, M. Yu, G.-Q. Lo, and D.-L Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16, 53–60 (2010).

Leonik, K.

M. A. Habli and K. Leonik, “Polarization-coded optical logic gates for N-inputs,” Optik (Stuttg.) 91, 100–102 (1992).

Lettow, R.

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460(7251), 76–80 (2009).
[CrossRef] [PubMed]

Leuthold, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Li, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Liao, A. D.

F. Xiong, A. D. Liao, D. Estrada, and E. Pop, “Low-power switching of phase-change materials with carbon nanotube electrodes,” Science 332(6029), 568–570 (2011).
[CrossRef] [PubMed]

Liu, L.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Throurhout, R. Baets, and G. Morthier, “An Ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[CrossRef]

H. Peng, L. Liu, Y. Yin, and Z. Wang, “Integrated polarization-optical logic processor,” Opt. Commun. 112(3-4), 131–135 (1994).
[CrossRef]

Lo, G.-Q.

J. Zhang, M. Yu, G.-Q. Lo, and D.-L Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16, 53–60 (2010).

Lohmann, A. W.

Ludwig, A.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Lutz, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Marculescu, A.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Mason, J. S.

Meyer, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Miller, D. A. B.

D. A. B. Miller, “Are optical transistors the logical next step,” Nat. Photonics 4(1), 3–5 (2010).
[CrossRef]

D. A. B. Miller, “Device requirements for digital optical processing,” SPIE Critical Reviews of Optical Science and Technology CR35, 67–76 (1990).

Miyoshi, Y.

Moeller, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Morthier, G.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Throurhout, R. Baets, and G. Morthier, “An Ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[CrossRef]

Namiki, S.

Narkiss, N.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Nebendahl, B.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Nishimura, N.

Oehler, A.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Pagano-Stauffer, L. A.

Parmigiani, F.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Peng, H.

H. Peng, L. Liu, Y. Yin, and Z. Wang, “Integrated polarization-optical logic processor,” Opt. Commun. 112(3-4), 131–135 (1994).
[CrossRef]

Petropoulos, P.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Pop, E.

F. Xiong, A. D. Liao, D. Estrada, and E. Pop, “Low-power switching of phase-change materials with carbon nanotube electrodes,” Science 332(6029), 568–570 (2011).
[CrossRef] [PubMed]

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

T. Barwicz, M. A. Popovic, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, “Fabrication of add-drop filters based on frequency-matched microring resonators,” IEEE J. Lightwave Technol. 24(5), 2207–2218 (2006).
[CrossRef]

Pototschnig, M.

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460(7251), 76–80 (2009).
[CrossRef] [PubMed]

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

T. Barwicz, M. A. Popovic, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, “Fabrication of add-drop filters based on frequency-matched microring resonators,” IEEE J. Lightwave Technol. 24(5), 2207–2218 (2006).
[CrossRef]

Rao, K. D.

Regreny, P.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Throurhout, R. Baets, and G. Morthier, “An Ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[CrossRef]

Renn, A.

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460(7251), 76–80 (2009).
[CrossRef] [PubMed]

Resan, B.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Roeger, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Roelkens, G.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Throurhout, R. Baets, and G. Morthier, “An Ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[CrossRef]

Sandoghdar, V.

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460(7251), 76–80 (2009).
[CrossRef] [PubMed]

Schellinger, T.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Schmogrow, R.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Shamir, J.

Sharma, K. K.

Singh, B. P.

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

T. Barwicz, M. A. Popovic, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, “Fabrication of add-drop filters based on frequency-matched microring resonators,” IEEE J. Lightwave Technol. 24(5), 2207–2218 (2006).
[CrossRef]

Smith, P. W.

P. W. Smith, “Hybrid bistable optical devices,” Opt. Eng. 19, 456–462 (1980).

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Solgaard, O.

Spuesens, T.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Throurhout, R. Baets, and G. Morthier, “An Ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[CrossRef]

Tobioka, H.

Torroba, R.

R. Torroba, R. Henao, and C. Carletti, “Polarization encoded architecture for optical logic operations,” Optik (Stuttg.) 107, 41–43 (1997).

R. Torroba, R. Henao, and C. Carletti, “Digital polarization-encoding technique for optical logic operations,” Opt. Lett. 21(23), 1918–1920 (1996).
[CrossRef] [PubMed]

Tucker, R. S.

R. S. Tucker, “The role of optics in computing,” Nat. Photonics 4(7), 405 (2010).
[CrossRef]

Vallaitis, T.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Van Throurhout, D.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Throurhout, R. Baets, and G. Morthier, “An Ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[CrossRef]

Vlad, V. I.

V. I. Vlad, “Opto-electronic bistable devices for image processing,” Opt. Acta (Lond.) 32, 1235–1250 (1985).

Wang, Z.

H. Peng, L. Liu, Y. Yin, and Z. Wang, “Integrated polarization-optical logic processor,” Opt. Commun. 112(3-4), 131–135 (1994).
[CrossRef]

Wasmundt, K. C.

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

T. Barwicz, M. A. Popovic, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, “Fabrication of add-drop filters based on frequency-matched microring resonators,” IEEE J. Lightwave Technol. 24(5), 2207–2218 (2006).
[CrossRef]

Weigelt, J.

Weingarten, K.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Winter, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Wu, W.

Xiong, F.

F. Xiong, A. D. Liao, D. Estrada, and E. Pop, “Low-power switching of phase-change materials with carbon nanotube electrodes,” Science 332(6029), 568–570 (2011).
[CrossRef] [PubMed]

Yeh, P.

Yin, Y.

H. Peng, L. Liu, Y. Yin, and Z. Wang, “Integrated polarization-optical logic processor,” Opt. Commun. 112(3-4), 131–135 (1994).
[CrossRef]

Yu, F.

F. Yu and G. Zheng, “An improved polarization-encoded logic algebra (PLA) used for the design of an optical logic gate for a 2D data array: theory,” Opt. Commun. 115(5-6), 585–596 (1995).
[CrossRef]

Yu, M.

J. Zhang, M. Yu, G.-Q. Lo, and D.-L Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16, 53–60 (2010).

Zaghloul, A. R. M.

Zaghloul, Y. A.

Y. A. Zaghloul and A. R. M. Zaghloul, “Complete all-optical processing polarization-based binary logic gates and optical processors,” Opt. Express 14(21), 9879–9895 (2006).
[CrossRef] [PubMed]

Y. A. Zaghloul and A. R. M. Zaghloul, “Unforced polarization-based optical implementation of Binary logic,” Opt. Express 14(16), 7252–7269 (2006).
[CrossRef] [PubMed]

Zhang, J.

J. Zhang, M. Yu, G.-Q. Lo, and D.-L Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16, 53–60 (2010).

Zheng, G.

F. Yu and G. Zheng, “An improved polarization-encoded logic algebra (PLA) used for the design of an optical logic gate for a 2D data array: theory,” Opt. Commun. 115(5-6), 585–596 (1995).
[CrossRef]

Zhou, S.

Zumofen, G.

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460(7251), 76–80 (2009).
[CrossRef] [PubMed]

Appl. Opt. (6)

IEEE J. Lightwave Technol. (1)

T. Barwicz, M. A. Popovic, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, “Fabrication of add-drop filters based on frequency-matched microring resonators,” IEEE J. Lightwave Technol. 24(5), 2207–2218 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Zhang, M. Yu, G.-Q. Lo, and D.-L Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16, 53–60 (2010).

J. Opt. Soc. Am. (1)

R. Clark Jones, “A new calculus for the treatment of optical systems I. Description and discussion of the calculus,” J. Opt. Soc. Am. 31, 488–493 (1941).

J. Opt. Soc. Am. A (1)

Nat. Photonics (5)

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010).
[CrossRef]

R. S. Tucker, “The role of optics in computing,” Nat. Photonics 4(7), 405 (2010).
[CrossRef]

D. A. B. Miller, “Are optical transistors the logical next step,” Nat. Photonics 4(1), 3–5 (2010).
[CrossRef]

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Throurhout, R. Baets, and G. Morthier, “An Ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[CrossRef]

Nature (1)

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature 460(7251), 76–80 (2009).
[CrossRef] [PubMed]

Nature Photon. (1)

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nature Photon. 5, 364-371 (2011).

Opt. Commun. (1)

M. S. Alam and M. A. Karim, “Multiple-valued logic based multiprocessor using polarization-encoded optical shadow-casting,” Opt. Commun. 96(1-3), 164–173 (1993).
[CrossRef]

Opt. Express (1)

Y. A. Zaghloul and A. R. M. Zaghloul, “Complete all-optical processing polarization-based binary logic gates and optical processors,” Opt. Express 14(21), 9879–9895 (2006).
[CrossRef] [PubMed]

Opt. Acta (Lond.) (1)

V. I. Vlad, “Opto-electronic bistable devices for image processing,” Opt. Acta (Lond.) 32, 1235–1250 (1985).

Opt. Commun. (2)

F. Yu and G. Zheng, “An improved polarization-encoded logic algebra (PLA) used for the design of an optical logic gate for a 2D data array: theory,” Opt. Commun. 115(5-6), 585–596 (1995).
[CrossRef]

H. Peng, L. Liu, Y. Yin, and Z. Wang, “Integrated polarization-optical logic processor,” Opt. Commun. 112(3-4), 131–135 (1994).
[CrossRef]

Opt. Eng. (1)

P. W. Smith, “Hybrid bistable optical devices,” Opt. Eng. 19, 456–462 (1980).

Opt. Express (3)

Opt. Lett. (4)

Optik (Stuttg.) (2)

R. Torroba, R. Henao, and C. Carletti, “Polarization encoded architecture for optical logic operations,” Optik (Stuttg.) 107, 41–43 (1997).

M. A. Habli and K. Leonik, “Polarization-coded optical logic gates for N-inputs,” Optik (Stuttg.) 91, 100–102 (1992).

Science (1)

F. Xiong, A. D. Liao, D. Estrada, and E. Pop, “Low-power switching of phase-change materials with carbon nanotube electrodes,” Science 332(6029), 568–570 (2011).
[CrossRef] [PubMed]

SPIE Critical Reviews of Optical Science and Technology (1)

D. A. B. Miller, “Device requirements for digital optical processing,” SPIE Critical Reviews of Optical Science and Technology CR35, 67–76 (1990).

Other (9)

M. M. Mano and C. R. Kime, Logic and Computer Design Fundamentals, 2nd Ed. (Prentice Hall, 2001).

W. A. Shurcliff, Polarized Light (Harvard, 1962).

F. L. Pedrotti, L. S. Pedrotti, and L. M. Pedrotti, Introduction to Optics, 3rd Ed. (Prentice Hall, 2007).

E. Hecht, Optics, 4th Ed. (Addison Wesley, 2002).

A. Kumar and A. Ghatak, Polarization of Ligt and Applications in Optical Fibers (SPIE, 2011).

E. Collette, Field Guide to Polarization (SPIE, 2005).

General Photonics Corporation, 5228 Edison Ave, Chino, CA 91710, USA. ( www.generalphotonics.com ).

Infinera, 169 Java Drive, Sunnyvale, CA 94089, USA. ( www.infinera.com ).

IMEC, Kapeldreef 75, B-3001 Leuven, Belgium. ( www2.imec.be ).

Supplementary Material (3)

» Media 1: MOV (4017 KB)     
» Media 2: MOV (2547 KB)     
» Media 3: MOV (4206 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) (Media 1) Passive all-optical polarization switch (PAOPS), where X1 and X2 are two coherent input signals (of the same source). HP and VP are horizontal and vertical polarizers, and Z is the output signal. (b) (Media 2) A birefringent-polarizer implementation of the passive all-optical polarization switch (PAOPS), where the dot and two-sided-arrow represent the horizontal and vertical components of the input signals (+/− 45°), respectively. The operation of this device is mathematically represented by Eq. (2), where X1 = C and X2 = D.

Fig. 2
Fig. 2

Passive all-optical polarization AND (PAOP AND) gate. (Media 3) A and B are the two coherent input signals. Out1and Out2 combined by abeam collector to give the output signal. PBS is a polarization beamsplitter, BS is a beamsplitter, P is a polarizer, L is an attenuator, and PAOPS is a passive all-optical polarization switch (see Fig. 1).

Fig. 3
Fig. 3

Same as in Fig. 2, but for a passive all-optical polarization (PAOP) OR gate, see Table 3.

Fig. 4
Fig. 4

Same as in Fig. 2, but for a passive all-optical polarization (PAOP) NAND gate, where R is a 180° retarder (e.g., a half-wave plate: HWP).

Fig. 5
Fig. 5

Same as in Fig. 2, but for a passive all-optical polarization (PAOP) NOR gate.

Fig. 6
Fig. 6

Same as in Fig. 2, but for an all-optical polarization (AOP) AND gate with an output signal of the same intensity as that of the input signals. X is an amplifier, BC is a beam collector, and BS13 is a ¼ and ¾ beam splitter, which is easily implemented using a polarization preserving device (PPD) [43].

Fig. 7
Fig. 7

All-optical polarization (AOP) set/rest (SR) Latch: two cross-connected all-optical polarization (AOP) NOR gates, see Fig. 5.

Tables (3)

Tables Icon

Table 1 Truth Table of the PAOP switch of Fig. 1.

Tables Icon

Table 2 Operation table of a PAOP AND gate showing the polarization state of the signal beam at different points through the gate, see Fig. 2. The output signal intensity Iout is also shown, as a ratio of the input intensity Io, for the 4 logic states of the gate. The polarization of the output signal of the gate Z is given, which is the output of a beam collector (BC) collecting the two signals Out1 and Out2 (not shown in Fig. 2)

Tables Icon

Table 3 Same as in Table 2, but for a PAOP OR gate, see Fig. 3.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

A = [ 1 ± 1 ] , B = [ 1 ± 1 ] ,
D = [ 1 0 0 0 ] C + [ 0 0 0 1 ] B ,
1 4 L = 1 2 .
1 2 [ 1 1 1 1 ] ,
( C , D , E ) = ( P + 45 A , P H C + P V B , P 45 A ) ,
( X 1 ' , X 2 ' , F ) = ( P + 45 D , 1 2 E , P H X 1 ' + P V X 2 ' ) ,
( O u t 1 , O u t 2 , O u t ) = ( P + 45 F , P 45 D , O u t 1 + O u t 2 ) .
C = 1 2 [ 1 1 1 1 ] [ 1 1 ] = [ 0 0 ] ,
E = 1 2 [ 1 1 1 1 ] [ 1 1 ] = [ 1 1 ] ,
D = [ 1 0 0 0 ] [ 0 0 ] + [ 0 0 0 1 ] [ 1 1 ] = [ 0 1 ] .
X 1 ' = 1 2 [ 1 1 1 1 ] [ 0 1 ] = 1 2 [ 1 1 ] = 1 2 [ 1 1 ] .
X 2 ' = 1 2 [ 1 1 ] ,
F = [ 1 0 0 0 ] 1 2 [ 1 1 ] + [ 0 0 0 1 ] 1 2 [ 1 1 ] = 1 2 [ 1 1 ] .
O u t 1 = 1 2 [ 1 1 1 1 ] 1 2 [ 1 1 ] = [ 0 0 ] .
O u t 2 = 1 2 [ 1 1 1 1 ] [ 0 1 ] = 1 2 [ 1 1 ] .

Metrics