Abstract

Optical planar waveguide-mode sensor is a promising candidate for highly sensitive biosensing techniques in fields such as protein adsorption, receptor-ligand interaction and surface bacteria adhesion. To make the waveguide-mode sensor system more realistic, a spectral readout type waveguide sensor is proposed to take advantage of its high speed, compactness and low cost. Based on our previously proposed monolithic waveguide-mode sensor composed of a SiO2 waveguide layer and a single crystalline Si layer [1], the mechanism for achieving high sensitivity is revealed by numerical simulations. The optimal achievable sensitivities for a series of waveguide structures are summarized in a contour map, and they are found to be better than those of previously reported angle-scan type waveguide sensors.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, Y. Koganezawa, Y. Ohki, and T. Komatsubara, “Silica-based monolithic sensing plates for waveguide-mode sensors,” Opt. Express 16, 6408–6416 (2008).
    [CrossRef] [PubMed]
  2. W. Knoll, “Optical characterization of organic thin films and interfaces with evanescent waves,” MRS Bull. 16, 29–39 (1991).
  3. M. Osterfeld, H. Franke, and C. Feger, “Optical gas detection using metal film enhanced leaky mode spectroscopy,” Appl. Phys. Lett. 62, 2310–2312 (1993).
    [CrossRef]
  4. T. Okamoto and I. Yamaguchi, “Absorption measurement using a leaky waveguide mode,” Opt. Rev. 4, 354–357 (1997).
    [CrossRef]
  5. W. Knoll, “Interfaces and thin films as seen by bound electromagnetic waves,” Annu. Rev. Phys. Chem. 49, 569–638 (1998).
    [CrossRef]
  6. N. Skivesen, R. Horvath, and H. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B 106, 668–676 (2005).
    [CrossRef]
  7. M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, T. Ikeda, Y. Koganezawa, and Y. Ohki, “Biomolecular sensors utilizing waveguide modes excited by evanescent fields,” J. Microsc. 229, 320–326 (2008).
    [CrossRef] [PubMed]
  8. M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, N. Fukuda, Y. Koganezawa, and Y. Ohki, “The design of evanescent-field-coupled waveguide-mode sensors,” Nanotechnology 19, 095503 (2008).
    [CrossRef] [PubMed]
  9. T. Hayashi, H. Fukumoto, T. Okamoto, M. Haraguchi, and M. Fukui, “Experimental instrument for observing angle-and frequency-scanned attenuated total reflection spectra,” Rev. Sci. Instrum. 67, 3039–3043 (1996).
    [CrossRef]
  10. I. Stemmler, A. Brecht, and G. Gauglitz, “Compact surface plasmon resonance-transducers with spectral readout for biosensing applications,” Sens. Actuators B 54, 98–105 (1999).
    [CrossRef]
  11. O. Bolduc, L. Live, and J. Masson, “High-resolution surface plasmon resonance sensors based on a dove prism,” Talanta 77, 1680–1687 (2009).
    [CrossRef] [PubMed]
  12. E. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic Press, 1998).
  13. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed. (Pergamon Press Ltd., 1986). (Reprinted, with corrections).
    [PubMed]

2009 (1)

O. Bolduc, L. Live, and J. Masson, “High-resolution surface plasmon resonance sensors based on a dove prism,” Talanta 77, 1680–1687 (2009).
[CrossRef] [PubMed]

2008 (3)

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, Y. Koganezawa, Y. Ohki, and T. Komatsubara, “Silica-based monolithic sensing plates for waveguide-mode sensors,” Opt. Express 16, 6408–6416 (2008).
[CrossRef] [PubMed]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, T. Ikeda, Y. Koganezawa, and Y. Ohki, “Biomolecular sensors utilizing waveguide modes excited by evanescent fields,” J. Microsc. 229, 320–326 (2008).
[CrossRef] [PubMed]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, N. Fukuda, Y. Koganezawa, and Y. Ohki, “The design of evanescent-field-coupled waveguide-mode sensors,” Nanotechnology 19, 095503 (2008).
[CrossRef] [PubMed]

2005 (1)

N. Skivesen, R. Horvath, and H. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B 106, 668–676 (2005).
[CrossRef]

1999 (1)

I. Stemmler, A. Brecht, and G. Gauglitz, “Compact surface plasmon resonance-transducers with spectral readout for biosensing applications,” Sens. Actuators B 54, 98–105 (1999).
[CrossRef]

1998 (1)

W. Knoll, “Interfaces and thin films as seen by bound electromagnetic waves,” Annu. Rev. Phys. Chem. 49, 569–638 (1998).
[CrossRef]

1997 (1)

T. Okamoto and I. Yamaguchi, “Absorption measurement using a leaky waveguide mode,” Opt. Rev. 4, 354–357 (1997).
[CrossRef]

1996 (1)

T. Hayashi, H. Fukumoto, T. Okamoto, M. Haraguchi, and M. Fukui, “Experimental instrument for observing angle-and frequency-scanned attenuated total reflection spectra,” Rev. Sci. Instrum. 67, 3039–3043 (1996).
[CrossRef]

1993 (1)

M. Osterfeld, H. Franke, and C. Feger, “Optical gas detection using metal film enhanced leaky mode spectroscopy,” Appl. Phys. Lett. 62, 2310–2312 (1993).
[CrossRef]

1991 (1)

W. Knoll, “Optical characterization of organic thin films and interfaces with evanescent waves,” MRS Bull. 16, 29–39 (1991).

Awazu, K.

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, Y. Koganezawa, Y. Ohki, and T. Komatsubara, “Silica-based monolithic sensing plates for waveguide-mode sensors,” Opt. Express 16, 6408–6416 (2008).
[CrossRef] [PubMed]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, T. Ikeda, Y. Koganezawa, and Y. Ohki, “Biomolecular sensors utilizing waveguide modes excited by evanescent fields,” J. Microsc. 229, 320–326 (2008).
[CrossRef] [PubMed]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, N. Fukuda, Y. Koganezawa, and Y. Ohki, “The design of evanescent-field-coupled waveguide-mode sensors,” Nanotechnology 19, 095503 (2008).
[CrossRef] [PubMed]

Bolduc, O.

O. Bolduc, L. Live, and J. Masson, “High-resolution surface plasmon resonance sensors based on a dove prism,” Talanta 77, 1680–1687 (2009).
[CrossRef] [PubMed]

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed. (Pergamon Press Ltd., 1986). (Reprinted, with corrections).
[PubMed]

Brecht, A.

I. Stemmler, A. Brecht, and G. Gauglitz, “Compact surface plasmon resonance-transducers with spectral readout for biosensing applications,” Sens. Actuators B 54, 98–105 (1999).
[CrossRef]

Feger, C.

M. Osterfeld, H. Franke, and C. Feger, “Optical gas detection using metal film enhanced leaky mode spectroscopy,” Appl. Phys. Lett. 62, 2310–2312 (1993).
[CrossRef]

Franke, H.

M. Osterfeld, H. Franke, and C. Feger, “Optical gas detection using metal film enhanced leaky mode spectroscopy,” Appl. Phys. Lett. 62, 2310–2312 (1993).
[CrossRef]

Fujimaki, M.

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, Y. Koganezawa, Y. Ohki, and T. Komatsubara, “Silica-based monolithic sensing plates for waveguide-mode sensors,” Opt. Express 16, 6408–6416 (2008).
[CrossRef] [PubMed]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, T. Ikeda, Y. Koganezawa, and Y. Ohki, “Biomolecular sensors utilizing waveguide modes excited by evanescent fields,” J. Microsc. 229, 320–326 (2008).
[CrossRef] [PubMed]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, N. Fukuda, Y. Koganezawa, and Y. Ohki, “The design of evanescent-field-coupled waveguide-mode sensors,” Nanotechnology 19, 095503 (2008).
[CrossRef] [PubMed]

Fukuda, N.

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, N. Fukuda, Y. Koganezawa, and Y. Ohki, “The design of evanescent-field-coupled waveguide-mode sensors,” Nanotechnology 19, 095503 (2008).
[CrossRef] [PubMed]

Fukui, M.

T. Hayashi, H. Fukumoto, T. Okamoto, M. Haraguchi, and M. Fukui, “Experimental instrument for observing angle-and frequency-scanned attenuated total reflection spectra,” Rev. Sci. Instrum. 67, 3039–3043 (1996).
[CrossRef]

Fukumoto, H.

T. Hayashi, H. Fukumoto, T. Okamoto, M. Haraguchi, and M. Fukui, “Experimental instrument for observing angle-and frequency-scanned attenuated total reflection spectra,” Rev. Sci. Instrum. 67, 3039–3043 (1996).
[CrossRef]

Gauglitz, G.

I. Stemmler, A. Brecht, and G. Gauglitz, “Compact surface plasmon resonance-transducers with spectral readout for biosensing applications,” Sens. Actuators B 54, 98–105 (1999).
[CrossRef]

Ghosh, G.

E. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic Press, 1998).

Haraguchi, M.

T. Hayashi, H. Fukumoto, T. Okamoto, M. Haraguchi, and M. Fukui, “Experimental instrument for observing angle-and frequency-scanned attenuated total reflection spectra,” Rev. Sci. Instrum. 67, 3039–3043 (1996).
[CrossRef]

Hayashi, T.

T. Hayashi, H. Fukumoto, T. Okamoto, M. Haraguchi, and M. Fukui, “Experimental instrument for observing angle-and frequency-scanned attenuated total reflection spectra,” Rev. Sci. Instrum. 67, 3039–3043 (1996).
[CrossRef]

Horvath, R.

N. Skivesen, R. Horvath, and H. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B 106, 668–676 (2005).
[CrossRef]

Ikeda, T.

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, T. Ikeda, Y. Koganezawa, and Y. Ohki, “Biomolecular sensors utilizing waveguide modes excited by evanescent fields,” J. Microsc. 229, 320–326 (2008).
[CrossRef] [PubMed]

Knoll, W.

W. Knoll, “Interfaces and thin films as seen by bound electromagnetic waves,” Annu. Rev. Phys. Chem. 49, 569–638 (1998).
[CrossRef]

W. Knoll, “Optical characterization of organic thin films and interfaces with evanescent waves,” MRS Bull. 16, 29–39 (1991).

Koganezawa, Y.

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, Y. Koganezawa, Y. Ohki, and T. Komatsubara, “Silica-based monolithic sensing plates for waveguide-mode sensors,” Opt. Express 16, 6408–6416 (2008).
[CrossRef] [PubMed]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, T. Ikeda, Y. Koganezawa, and Y. Ohki, “Biomolecular sensors utilizing waveguide modes excited by evanescent fields,” J. Microsc. 229, 320–326 (2008).
[CrossRef] [PubMed]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, N. Fukuda, Y. Koganezawa, and Y. Ohki, “The design of evanescent-field-coupled waveguide-mode sensors,” Nanotechnology 19, 095503 (2008).
[CrossRef] [PubMed]

Komatsubara, T.

Live, L.

O. Bolduc, L. Live, and J. Masson, “High-resolution surface plasmon resonance sensors based on a dove prism,” Talanta 77, 1680–1687 (2009).
[CrossRef] [PubMed]

Masson, J.

O. Bolduc, L. Live, and J. Masson, “High-resolution surface plasmon resonance sensors based on a dove prism,” Talanta 77, 1680–1687 (2009).
[CrossRef] [PubMed]

Ohki, Y.

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, Y. Koganezawa, Y. Ohki, and T. Komatsubara, “Silica-based monolithic sensing plates for waveguide-mode sensors,” Opt. Express 16, 6408–6416 (2008).
[CrossRef] [PubMed]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, N. Fukuda, Y. Koganezawa, and Y. Ohki, “The design of evanescent-field-coupled waveguide-mode sensors,” Nanotechnology 19, 095503 (2008).
[CrossRef] [PubMed]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, T. Ikeda, Y. Koganezawa, and Y. Ohki, “Biomolecular sensors utilizing waveguide modes excited by evanescent fields,” J. Microsc. 229, 320–326 (2008).
[CrossRef] [PubMed]

Okamoto, T.

T. Okamoto and I. Yamaguchi, “Absorption measurement using a leaky waveguide mode,” Opt. Rev. 4, 354–357 (1997).
[CrossRef]

T. Hayashi, H. Fukumoto, T. Okamoto, M. Haraguchi, and M. Fukui, “Experimental instrument for observing angle-and frequency-scanned attenuated total reflection spectra,” Rev. Sci. Instrum. 67, 3039–3043 (1996).
[CrossRef]

Osterfeld, M.

M. Osterfeld, H. Franke, and C. Feger, “Optical gas detection using metal film enhanced leaky mode spectroscopy,” Appl. Phys. Lett. 62, 2310–2312 (1993).
[CrossRef]

Palik, E.

E. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic Press, 1998).

Pedersen, H.

N. Skivesen, R. Horvath, and H. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B 106, 668–676 (2005).
[CrossRef]

Rockstuhl, C.

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, Y. Koganezawa, Y. Ohki, and T. Komatsubara, “Silica-based monolithic sensing plates for waveguide-mode sensors,” Opt. Express 16, 6408–6416 (2008).
[CrossRef] [PubMed]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, N. Fukuda, Y. Koganezawa, and Y. Ohki, “The design of evanescent-field-coupled waveguide-mode sensors,” Nanotechnology 19, 095503 (2008).
[CrossRef] [PubMed]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, T. Ikeda, Y. Koganezawa, and Y. Ohki, “Biomolecular sensors utilizing waveguide modes excited by evanescent fields,” J. Microsc. 229, 320–326 (2008).
[CrossRef] [PubMed]

Skivesen, N.

N. Skivesen, R. Horvath, and H. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B 106, 668–676 (2005).
[CrossRef]

Stemmler, I.

I. Stemmler, A. Brecht, and G. Gauglitz, “Compact surface plasmon resonance-transducers with spectral readout for biosensing applications,” Sens. Actuators B 54, 98–105 (1999).
[CrossRef]

Tominaga, J.

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, Y. Koganezawa, Y. Ohki, and T. Komatsubara, “Silica-based monolithic sensing plates for waveguide-mode sensors,” Opt. Express 16, 6408–6416 (2008).
[CrossRef] [PubMed]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, T. Ikeda, Y. Koganezawa, and Y. Ohki, “Biomolecular sensors utilizing waveguide modes excited by evanescent fields,” J. Microsc. 229, 320–326 (2008).
[CrossRef] [PubMed]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, N. Fukuda, Y. Koganezawa, and Y. Ohki, “The design of evanescent-field-coupled waveguide-mode sensors,” Nanotechnology 19, 095503 (2008).
[CrossRef] [PubMed]

Wang, X.

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, T. Ikeda, Y. Koganezawa, and Y. Ohki, “Biomolecular sensors utilizing waveguide modes excited by evanescent fields,” J. Microsc. 229, 320–326 (2008).
[CrossRef] [PubMed]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, N. Fukuda, Y. Koganezawa, and Y. Ohki, “The design of evanescent-field-coupled waveguide-mode sensors,” Nanotechnology 19, 095503 (2008).
[CrossRef] [PubMed]

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, Y. Koganezawa, Y. Ohki, and T. Komatsubara, “Silica-based monolithic sensing plates for waveguide-mode sensors,” Opt. Express 16, 6408–6416 (2008).
[CrossRef] [PubMed]

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed. (Pergamon Press Ltd., 1986). (Reprinted, with corrections).
[PubMed]

Yamaguchi, I.

T. Okamoto and I. Yamaguchi, “Absorption measurement using a leaky waveguide mode,” Opt. Rev. 4, 354–357 (1997).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

W. Knoll, “Interfaces and thin films as seen by bound electromagnetic waves,” Annu. Rev. Phys. Chem. 49, 569–638 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

M. Osterfeld, H. Franke, and C. Feger, “Optical gas detection using metal film enhanced leaky mode spectroscopy,” Appl. Phys. Lett. 62, 2310–2312 (1993).
[CrossRef]

J. Microsc. (1)

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, T. Ikeda, Y. Koganezawa, and Y. Ohki, “Biomolecular sensors utilizing waveguide modes excited by evanescent fields,” J. Microsc. 229, 320–326 (2008).
[CrossRef] [PubMed]

MRS Bull. (1)

W. Knoll, “Optical characterization of organic thin films and interfaces with evanescent waves,” MRS Bull. 16, 29–39 (1991).

Nanotechnology (1)

M. Fujimaki, C. Rockstuhl, X. Wang, K. Awazu, J. Tominaga, N. Fukuda, Y. Koganezawa, and Y. Ohki, “The design of evanescent-field-coupled waveguide-mode sensors,” Nanotechnology 19, 095503 (2008).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Rev. (1)

T. Okamoto and I. Yamaguchi, “Absorption measurement using a leaky waveguide mode,” Opt. Rev. 4, 354–357 (1997).
[CrossRef]

Rev. Sci. Instrum. (1)

T. Hayashi, H. Fukumoto, T. Okamoto, M. Haraguchi, and M. Fukui, “Experimental instrument for observing angle-and frequency-scanned attenuated total reflection spectra,” Rev. Sci. Instrum. 67, 3039–3043 (1996).
[CrossRef]

Sens. Actuators B (2)

I. Stemmler, A. Brecht, and G. Gauglitz, “Compact surface plasmon resonance-transducers with spectral readout for biosensing applications,” Sens. Actuators B 54, 98–105 (1999).
[CrossRef]

N. Skivesen, R. Horvath, and H. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B 106, 668–676 (2005).
[CrossRef]

Talanta (1)

O. Bolduc, L. Live, and J. Masson, “High-resolution surface plasmon resonance sensors based on a dove prism,” Talanta 77, 1680–1687 (2009).
[CrossRef] [PubMed]

Other (2)

E. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic Press, 1998).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed. (Pergamon Press Ltd., 1986). (Reprinted, with corrections).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the waveguide-mode sensor (a) and the wavelength dependent refractive indices of the materials used (b). The thicknesses of thin film layers are exaggerated for easy viewing. When the incidence angle θ is large enough and at suitable resonance condition, the incident optical power is partially reflected, partially coupled to waveguide mode, and also partially absorbed by the lossy layer (c-Si layer). The reflectivity responds sensitively to the presence of the adlayer.

Fig. 2
Fig. 2

(a) Simulated angular reflectivity spectra of a monolithic waveguide-mode sensor with a 220 nm thick c-Si layer and a 350 nm thick SiO2 layer. The light wavelength λ is fixed at 632.8 nm. (b) The wavelength resolved spectra for the same waveguide sensor but with a white light source. Only s-polarization results are shown and the incidence angle θ is assumed to be 67.70°. The red and blue lines represent the spectra with and without the 5 nm thick adlayer of n = 1.45. (c) The values of ΔR by subtracting the blue spectrum from the red one in (b).

Fig. 3
Fig. 3

Contour maps corresponding to the spectrum before the adsorption of adlayer (a) and the differential curve (b) of Fig. 2, for a series of SiO2 waveguide thicknesses. Other parameters are the same as those used in Fig. 2. The amplitudes of reflectivity R and ΔR are indicated by the corresponding color bars. The white dots (i), (ii) and (iii) are three structures to be further examined.

Fig. 4
Fig. 4

Electric field distributions for the three points marked as (i), (ii) and (iii) in Fig. 3. They represent three waveguide structures with the same thickness for c-Si layer (tSi = 220 nm), but different thicknesses for the SiO2 waveguide layer. The strengths of the electric field are normalized by the incident electric field amplitude, indicated by the scale bars in (a)–(c) and numerically plotted in (d) for a comparison. The glass prism, the c-Si layer, the SiO2 waveguide layer and the water layer are lined up along the positive z-direction with the interfaces indicated by green lines. In (d), the waveguide surfaces are marked by vertical dotted lines with the same color as that of the corresponding |E| curves.

Fig. 5
Fig. 5

Optimized sensitivity (a) and the corresponding optimal operation wavelength (c), incidence angle (d) for a spectral readout type monolithic waveguide-mode sensor. They are plotted as functions of the thicknesses of c-Si layer and SiO2 layer. The optimal sensitivity for an angle-scan type monolithic waveguide-mode sensor working at 632.8 nm is given in (b) as a comparison. The small noisy area seen in (c) and (d) for tSi ≈ 50 nm tWG < 300 nm is due to numerical errors in the automatic maximum searching.

Metrics