Abstract

We report a simple all-fiber design of an Er-doped laser system that is capable of generating widely tunable two-cycle pulses. In particular, 13-fs pulses at a wavelength of 1.7 μm are produced. The mechanism of pulse shortening is identical to the higher-order soliton compression and is supported by modeling based on the slowly evolving wave approximation, which is well suited for down to single-cycle pulse propagation in nonlinear dispersion-shifted fibers.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Wegener, Extreme Nonlinear Optics (Springer-Verlag, Berlin, 2005).
  2. S. Rausch, T. Binhammer, A. Harth, J. Kim, R. Ell, F.X. Kartner, and U. Morgner, “Controlled waveforms on the single-cycle scale from a femtosecond oscillator,” Opt. Express16, 9739–9745 (2008).
    [CrossRef] [PubMed]
  3. A. Sell, G. Krauss, R. Scheu, R. Huber, and A. Leitenstorfer, “8-fs pulses from a compact Er:fiber system: quantitative modeling and experimental implementation,” Opt. Express17, 1070–1077 (2009).
    [CrossRef] [PubMed]
  4. A. Andrianov, A. Kim, S. Muraviov, and A. Sysoliatin, “Wavelength-tunable few-cycle optical pulses directly from an all-fiber Er-doped laser setup,” Opt. Lett.15, 3193–3195 (2009).
    [CrossRef]
  5. F.X. Kärtner, Few-Cycle Laser Pulse Generation and Its Applications (New York: Springer, 2004).
  6. A. Baltuška, M.S. Pshenichnikov, and D.A. Wiersma, “Amplitude and phase characterization of 4.5-fs pulses by frequency-resolved optical gating,” Opt. Lett.23, 1474–1476 (1998).
    [CrossRef]
  7. K. Kieu, R. Jason Jones, and N. Peyghambarian, “Generation of few-cycle pulses from an amplified carbon nanotube mode-locked fiber laser system,” IEEE Photon. Technol. Lett.22, 1521–1523 (2010).
    [CrossRef]
  8. A.A. Amorim, M.V. Tognetti, P. Oliveira, J.L. Silva, L.M. Bernardo, F.X. Kärtner, and H.M. Crespo, “Sub-two-cycle pulses by soliton selfcompression in highly nonlinear photonic crystal fibers,” Opt. Lett.34, 3851–3853 (2009).
    [CrossRef] [PubMed]
  9. M.A. Foster, A.L. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express13, 6848–6855 (2005).
    [CrossRef] [PubMed]
  10. G. Krauss1, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photon. 4, 33–36 (2010).
    [CrossRef]
  11. M. Yamashita, K. Yamane, and R. Morita, “Quasi-Automatic Phase-Control Technique for Chirp Compensation of Pulses With Over-One-Octave BandwidthGeneration of Few- to Mono-Cycle Optical Pulses,” IEEE J. Selec. Top. Quantum. Electron. 12213–222 (2006).
    [CrossRef]
  12. G.P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  13. A.V. Andrianov, E.A. Anashkina, S.V. Muraviov, and A.V. Kim, “All-fiber design of hybrid Er-doped laser/Yb-doped amplifier system for high power ultrashort pulse generation,” Opt. Lett.35, 3805–3807 (2010).
    [CrossRef] [PubMed]
  14. G. Taft, A. Rundquist, M.M. Murnane, I.P. Christov, H.C. Kapteyn, K.W. DeLong, D.N. Fittinghoff, M.A. Krumbügel, J.N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron.2, 575–585 (1996).
    [CrossRef]
  15. T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, “Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse,” J. Opt. Soc. Am. B 21, 1969–1980 (2004).
    [CrossRef]
  16. F. Tauser, F. Adler, and A. Leitenstorfer, “Widely tunable sub-30-fs pulses from a compact erbium-doped fiber source,” Opt. Lett. 29, 516–518 (2004).
    [CrossRef] [PubMed]
  17. Guoqing Chang, Li-Jin Chen, and Franz X. Krtner, “Fiber-optic Cherenkov radiation in the few-cycle regime,” Opt. Express 19, 6635–6647 (2011).
    [CrossRef] [PubMed]
  18. T. Brabec and F. Krausz, “Nonlinear Optical Pulse Propagation in the Single-Cycle Regime,” Phys. Rev. Lett. 78, 3282–3285 (1997).
    [CrossRef]
  19. A.V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett.87, 203901–203904 (2001).
    [CrossRef] [PubMed]
  20. R.W. Helwarth, A. Owyoung, and N. George, “Origin of the nonlinear refractive index of liquid CCl4,” Phys. Rev. A4, 2342–2347 (1971).
    [CrossRef]
  21. R.W. Helwarth, J. Cherlow, and T.T. Yang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B11, 964–967 (1975).
    [CrossRef]
  22. K.J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron.25, 2665–2673 (1989).
    [CrossRef]
  23. S.A. Skobelev, D.V. Kartashov, and A.V. Kim, “Few-optical-cycle solitons and pulse self-compression in a Kerr medium,” Phys. Rev. Lett.99, 203902–203905 (2007).
    [CrossRef]
  24. A.V. Kim, S.A. Skobelev, D. Anderson, T. Hansson, and M. Lisak, “Extreme nonlinear optics in a Kerr medium: Exact soliton solutions for a few cycles,” Phys. Rev. A77, 043823 (2008).
    [CrossRef]
  25. K. Kieu, R.J. Jones, and N. Peyghambarian, “High power femtosecond source near 1 micron based on an all-fiber Er-doped mode-locked laser,” Opt. Express18, 21350–21355 (2010).
    [CrossRef] [PubMed]

2011 (1)

2010 (1)

G. Krauss1, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photon. 4, 33–36 (2010).
[CrossRef]

2006 (1)

M. Yamashita, K. Yamane, and R. Morita, “Quasi-Automatic Phase-Control Technique for Chirp Compensation of Pulses With Over-One-Octave BandwidthGeneration of Few- to Mono-Cycle Optical Pulses,” IEEE J. Selec. Top. Quantum. Electron. 12213–222 (2006).
[CrossRef]

2004 (2)

1997 (1)

T. Brabec and F. Krausz, “Nonlinear Optical Pulse Propagation in the Single-Cycle Regime,” Phys. Rev. Lett. 78, 3282–3285 (1997).
[CrossRef]

Adler, F.

Agrawal, G.P.

G.P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Amorim, A.A.

A.A. Amorim, M.V. Tognetti, P. Oliveira, J.L. Silva, L.M. Bernardo, F.X. Kärtner, and H.M. Crespo, “Sub-two-cycle pulses by soliton selfcompression in highly nonlinear photonic crystal fibers,” Opt. Lett.34, 3851–3853 (2009).
[CrossRef] [PubMed]

Anashkina, E.A.

A.V. Andrianov, E.A. Anashkina, S.V. Muraviov, and A.V. Kim, “All-fiber design of hybrid Er-doped laser/Yb-doped amplifier system for high power ultrashort pulse generation,” Opt. Lett.35, 3805–3807 (2010).
[CrossRef] [PubMed]

Anderson, D.

A.V. Kim, S.A. Skobelev, D. Anderson, T. Hansson, and M. Lisak, “Extreme nonlinear optics in a Kerr medium: Exact soliton solutions for a few cycles,” Phys. Rev. A77, 043823 (2008).
[CrossRef]

Andrianov, A.

A. Andrianov, A. Kim, S. Muraviov, and A. Sysoliatin, “Wavelength-tunable few-cycle optical pulses directly from an all-fiber Er-doped laser setup,” Opt. Lett.15, 3193–3195 (2009).
[CrossRef]

Andrianov, A.V.

A.V. Andrianov, E.A. Anashkina, S.V. Muraviov, and A.V. Kim, “All-fiber design of hybrid Er-doped laser/Yb-doped amplifier system for high power ultrashort pulse generation,” Opt. Lett.35, 3805–3807 (2010).
[CrossRef] [PubMed]

Baltuška, A.

A. Baltuška, M.S. Pshenichnikov, and D.A. Wiersma, “Amplitude and phase characterization of 4.5-fs pulses by frequency-resolved optical gating,” Opt. Lett.23, 1474–1476 (1998).
[CrossRef]

Bernardo, L.M.

A.A. Amorim, M.V. Tognetti, P. Oliveira, J.L. Silva, L.M. Bernardo, F.X. Kärtner, and H.M. Crespo, “Sub-two-cycle pulses by soliton selfcompression in highly nonlinear photonic crystal fibers,” Opt. Lett.34, 3851–3853 (2009).
[CrossRef] [PubMed]

Binhammer, T.

S. Rausch, T. Binhammer, A. Harth, J. Kim, R. Ell, F.X. Kartner, and U. Morgner, “Controlled waveforms on the single-cycle scale from a femtosecond oscillator,” Opt. Express16, 9739–9745 (2008).
[CrossRef] [PubMed]

Blow, K.J.

K.J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron.25, 2665–2673 (1989).
[CrossRef]

Brabec, T.

T. Brabec and F. Krausz, “Nonlinear Optical Pulse Propagation in the Single-Cycle Regime,” Phys. Rev. Lett. 78, 3282–3285 (1997).
[CrossRef]

Cao, Q.

M.A. Foster, A.L. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express13, 6848–6855 (2005).
[CrossRef] [PubMed]

Chang, Guoqing

Chen, Li-Jin

Cherlow, J.

R.W. Helwarth, J. Cherlow, and T.T. Yang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B11, 964–967 (1975).
[CrossRef]

Christov, I.P.

G. Taft, A. Rundquist, M.M. Murnane, I.P. Christov, H.C. Kapteyn, K.W. DeLong, D.N. Fittinghoff, M.A. Krumbügel, J.N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron.2, 575–585 (1996).
[CrossRef]

Crespo, H.M.

A.A. Amorim, M.V. Tognetti, P. Oliveira, J.L. Silva, L.M. Bernardo, F.X. Kärtner, and H.M. Crespo, “Sub-two-cycle pulses by soliton selfcompression in highly nonlinear photonic crystal fibers,” Opt. Lett.34, 3851–3853 (2009).
[CrossRef] [PubMed]

DeLong, K.W.

G. Taft, A. Rundquist, M.M. Murnane, I.P. Christov, H.C. Kapteyn, K.W. DeLong, D.N. Fittinghoff, M.A. Krumbügel, J.N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron.2, 575–585 (1996).
[CrossRef]

Eggert, S.

G. Krauss1, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photon. 4, 33–36 (2010).
[CrossRef]

Ell, R.

S. Rausch, T. Binhammer, A. Harth, J. Kim, R. Ell, F.X. Kartner, and U. Morgner, “Controlled waveforms on the single-cycle scale from a femtosecond oscillator,” Opt. Express16, 9739–9745 (2008).
[CrossRef] [PubMed]

Fittinghoff, D.N.

G. Taft, A. Rundquist, M.M. Murnane, I.P. Christov, H.C. Kapteyn, K.W. DeLong, D.N. Fittinghoff, M.A. Krumbügel, J.N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron.2, 575–585 (1996).
[CrossRef]

Foster, M.A.

M.A. Foster, A.L. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express13, 6848–6855 (2005).
[CrossRef] [PubMed]

Gaeta, A.L.

M.A. Foster, A.L. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express13, 6848–6855 (2005).
[CrossRef] [PubMed]

George, N.

R.W. Helwarth, A. Owyoung, and N. George, “Origin of the nonlinear refractive index of liquid CCl4,” Phys. Rev. A4, 2342–2347 (1971).
[CrossRef]

Goto, T.

Hanke, T.

G. Krauss1, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photon. 4, 33–36 (2010).
[CrossRef]

Hansson, T.

A.V. Kim, S.A. Skobelev, D. Anderson, T. Hansson, and M. Lisak, “Extreme nonlinear optics in a Kerr medium: Exact soliton solutions for a few cycles,” Phys. Rev. A77, 043823 (2008).
[CrossRef]

Harth, A.

S. Rausch, T. Binhammer, A. Harth, J. Kim, R. Ell, F.X. Kartner, and U. Morgner, “Controlled waveforms on the single-cycle scale from a femtosecond oscillator,” Opt. Express16, 9739–9745 (2008).
[CrossRef] [PubMed]

Helwarth, R.W.

R.W. Helwarth, A. Owyoung, and N. George, “Origin of the nonlinear refractive index of liquid CCl4,” Phys. Rev. A4, 2342–2347 (1971).
[CrossRef]

R.W. Helwarth, J. Cherlow, and T.T. Yang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B11, 964–967 (1975).
[CrossRef]

Herrmann, J.

A.V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett.87, 203901–203904 (2001).
[CrossRef] [PubMed]

Hori, T.

Huber, R.

G. Krauss1, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photon. 4, 33–36 (2010).
[CrossRef]

A. Sell, G. Krauss, R. Scheu, R. Huber, and A. Leitenstorfer, “8-fs pulses from a compact Er:fiber system: quantitative modeling and experimental implementation,” Opt. Express17, 1070–1077 (2009).
[CrossRef] [PubMed]

Husakou, A.V.

A.V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett.87, 203901–203904 (2001).
[CrossRef] [PubMed]

Jason Jones, R.

K. Kieu, R. Jason Jones, and N. Peyghambarian, “Generation of few-cycle pulses from an amplified carbon nanotube mode-locked fiber laser system,” IEEE Photon. Technol. Lett.22, 1521–1523 (2010).
[CrossRef]

Jones, R.J.

K. Kieu, R.J. Jones, and N. Peyghambarian, “High power femtosecond source near 1 micron based on an all-fiber Er-doped mode-locked laser,” Opt. Express18, 21350–21355 (2010).
[CrossRef] [PubMed]

Kapteyn, H.C.

G. Taft, A. Rundquist, M.M. Murnane, I.P. Christov, H.C. Kapteyn, K.W. DeLong, D.N. Fittinghoff, M.A. Krumbügel, J.N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron.2, 575–585 (1996).
[CrossRef]

Kartashov, D.V.

S.A. Skobelev, D.V. Kartashov, and A.V. Kim, “Few-optical-cycle solitons and pulse self-compression in a Kerr medium,” Phys. Rev. Lett.99, 203902–203905 (2007).
[CrossRef]

Kartner, F.X.

S. Rausch, T. Binhammer, A. Harth, J. Kim, R. Ell, F.X. Kartner, and U. Morgner, “Controlled waveforms on the single-cycle scale from a femtosecond oscillator,” Opt. Express16, 9739–9745 (2008).
[CrossRef] [PubMed]

Kärtner, F.X.

F.X. Kärtner, Few-Cycle Laser Pulse Generation and Its Applications (New York: Springer, 2004).

A.A. Amorim, M.V. Tognetti, P. Oliveira, J.L. Silva, L.M. Bernardo, F.X. Kärtner, and H.M. Crespo, “Sub-two-cycle pulses by soliton selfcompression in highly nonlinear photonic crystal fibers,” Opt. Lett.34, 3851–3853 (2009).
[CrossRef] [PubMed]

Kieu, K.

K. Kieu, R.J. Jones, and N. Peyghambarian, “High power femtosecond source near 1 micron based on an all-fiber Er-doped mode-locked laser,” Opt. Express18, 21350–21355 (2010).
[CrossRef] [PubMed]

K. Kieu, R. Jason Jones, and N. Peyghambarian, “Generation of few-cycle pulses from an amplified carbon nanotube mode-locked fiber laser system,” IEEE Photon. Technol. Lett.22, 1521–1523 (2010).
[CrossRef]

Kim, A.

A. Andrianov, A. Kim, S. Muraviov, and A. Sysoliatin, “Wavelength-tunable few-cycle optical pulses directly from an all-fiber Er-doped laser setup,” Opt. Lett.15, 3193–3195 (2009).
[CrossRef]

Kim, A.V.

A.V. Andrianov, E.A. Anashkina, S.V. Muraviov, and A.V. Kim, “All-fiber design of hybrid Er-doped laser/Yb-doped amplifier system for high power ultrashort pulse generation,” Opt. Lett.35, 3805–3807 (2010).
[CrossRef] [PubMed]

S.A. Skobelev, D.V. Kartashov, and A.V. Kim, “Few-optical-cycle solitons and pulse self-compression in a Kerr medium,” Phys. Rev. Lett.99, 203902–203905 (2007).
[CrossRef]

A.V. Kim, S.A. Skobelev, D. Anderson, T. Hansson, and M. Lisak, “Extreme nonlinear optics in a Kerr medium: Exact soliton solutions for a few cycles,” Phys. Rev. A77, 043823 (2008).
[CrossRef]

Kim, J.

S. Rausch, T. Binhammer, A. Harth, J. Kim, R. Ell, F.X. Kartner, and U. Morgner, “Controlled waveforms on the single-cycle scale from a femtosecond oscillator,” Opt. Express16, 9739–9745 (2008).
[CrossRef] [PubMed]

Krauss, G.

A. Sell, G. Krauss, R. Scheu, R. Huber, and A. Leitenstorfer, “8-fs pulses from a compact Er:fiber system: quantitative modeling and experimental implementation,” Opt. Express17, 1070–1077 (2009).
[CrossRef] [PubMed]

Krauss1, G.

G. Krauss1, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photon. 4, 33–36 (2010).
[CrossRef]

Krausz, F.

T. Brabec and F. Krausz, “Nonlinear Optical Pulse Propagation in the Single-Cycle Regime,” Phys. Rev. Lett. 78, 3282–3285 (1997).
[CrossRef]

Krtner, Franz X.

Krumbügel, M.A.

G. Taft, A. Rundquist, M.M. Murnane, I.P. Christov, H.C. Kapteyn, K.W. DeLong, D.N. Fittinghoff, M.A. Krumbügel, J.N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron.2, 575–585 (1996).
[CrossRef]

Leitenstorfer, A.

G. Krauss1, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photon. 4, 33–36 (2010).
[CrossRef]

F. Tauser, F. Adler, and A. Leitenstorfer, “Widely tunable sub-30-fs pulses from a compact erbium-doped fiber source,” Opt. Lett. 29, 516–518 (2004).
[CrossRef] [PubMed]

A. Sell, G. Krauss, R. Scheu, R. Huber, and A. Leitenstorfer, “8-fs pulses from a compact Er:fiber system: quantitative modeling and experimental implementation,” Opt. Express17, 1070–1077 (2009).
[CrossRef] [PubMed]

Lisak, M.

A.V. Kim, S.A. Skobelev, D. Anderson, T. Hansson, and M. Lisak, “Extreme nonlinear optics in a Kerr medium: Exact soliton solutions for a few cycles,” Phys. Rev. A77, 043823 (2008).
[CrossRef]

Lohss, S.

G. Krauss1, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photon. 4, 33–36 (2010).
[CrossRef]

Morgner, U.

S. Rausch, T. Binhammer, A. Harth, J. Kim, R. Ell, F.X. Kartner, and U. Morgner, “Controlled waveforms on the single-cycle scale from a femtosecond oscillator,” Opt. Express16, 9739–9745 (2008).
[CrossRef] [PubMed]

Morita, R.

M. Yamashita, K. Yamane, and R. Morita, “Quasi-Automatic Phase-Control Technique for Chirp Compensation of Pulses With Over-One-Octave BandwidthGeneration of Few- to Mono-Cycle Optical Pulses,” IEEE J. Selec. Top. Quantum. Electron. 12213–222 (2006).
[CrossRef]

Muraviov, S.

A. Andrianov, A. Kim, S. Muraviov, and A. Sysoliatin, “Wavelength-tunable few-cycle optical pulses directly from an all-fiber Er-doped laser setup,” Opt. Lett.15, 3193–3195 (2009).
[CrossRef]

Muraviov, S.V.

A.V. Andrianov, E.A. Anashkina, S.V. Muraviov, and A.V. Kim, “All-fiber design of hybrid Er-doped laser/Yb-doped amplifier system for high power ultrashort pulse generation,” Opt. Lett.35, 3805–3807 (2010).
[CrossRef] [PubMed]

Murnane, M.M.

G. Taft, A. Rundquist, M.M. Murnane, I.P. Christov, H.C. Kapteyn, K.W. DeLong, D.N. Fittinghoff, M.A. Krumbügel, J.N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron.2, 575–585 (1996).
[CrossRef]

Nishizawa, N.

Oliveira, P.

A.A. Amorim, M.V. Tognetti, P. Oliveira, J.L. Silva, L.M. Bernardo, F.X. Kärtner, and H.M. Crespo, “Sub-two-cycle pulses by soliton selfcompression in highly nonlinear photonic crystal fibers,” Opt. Lett.34, 3851–3853 (2009).
[CrossRef] [PubMed]

Owyoung, A.

R.W. Helwarth, A. Owyoung, and N. George, “Origin of the nonlinear refractive index of liquid CCl4,” Phys. Rev. A4, 2342–2347 (1971).
[CrossRef]

Peyghambarian, N.

K. Kieu, R. Jason Jones, and N. Peyghambarian, “Generation of few-cycle pulses from an amplified carbon nanotube mode-locked fiber laser system,” IEEE Photon. Technol. Lett.22, 1521–1523 (2010).
[CrossRef]

K. Kieu, R.J. Jones, and N. Peyghambarian, “High power femtosecond source near 1 micron based on an all-fiber Er-doped mode-locked laser,” Opt. Express18, 21350–21355 (2010).
[CrossRef] [PubMed]

Pshenichnikov, M.S.

A. Baltuška, M.S. Pshenichnikov, and D.A. Wiersma, “Amplitude and phase characterization of 4.5-fs pulses by frequency-resolved optical gating,” Opt. Lett.23, 1474–1476 (1998).
[CrossRef]

Rausch, S.

S. Rausch, T. Binhammer, A. Harth, J. Kim, R. Ell, F.X. Kartner, and U. Morgner, “Controlled waveforms on the single-cycle scale from a femtosecond oscillator,” Opt. Express16, 9739–9745 (2008).
[CrossRef] [PubMed]

Rundquist, A.

G. Taft, A. Rundquist, M.M. Murnane, I.P. Christov, H.C. Kapteyn, K.W. DeLong, D.N. Fittinghoff, M.A. Krumbügel, J.N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron.2, 575–585 (1996).
[CrossRef]

Scheu, R.

A. Sell, G. Krauss, R. Scheu, R. Huber, and A. Leitenstorfer, “8-fs pulses from a compact Er:fiber system: quantitative modeling and experimental implementation,” Opt. Express17, 1070–1077 (2009).
[CrossRef] [PubMed]

Sell, A.

G. Krauss1, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photon. 4, 33–36 (2010).
[CrossRef]

A. Sell, G. Krauss, R. Scheu, R. Huber, and A. Leitenstorfer, “8-fs pulses from a compact Er:fiber system: quantitative modeling and experimental implementation,” Opt. Express17, 1070–1077 (2009).
[CrossRef] [PubMed]

Silva, J.L.

A.A. Amorim, M.V. Tognetti, P. Oliveira, J.L. Silva, L.M. Bernardo, F.X. Kärtner, and H.M. Crespo, “Sub-two-cycle pulses by soliton selfcompression in highly nonlinear photonic crystal fibers,” Opt. Lett.34, 3851–3853 (2009).
[CrossRef] [PubMed]

Skobelev, S.A.

S.A. Skobelev, D.V. Kartashov, and A.V. Kim, “Few-optical-cycle solitons and pulse self-compression in a Kerr medium,” Phys. Rev. Lett.99, 203902–203905 (2007).
[CrossRef]

A.V. Kim, S.A. Skobelev, D. Anderson, T. Hansson, and M. Lisak, “Extreme nonlinear optics in a Kerr medium: Exact soliton solutions for a few cycles,” Phys. Rev. A77, 043823 (2008).
[CrossRef]

Sweetser, J.N.

G. Taft, A. Rundquist, M.M. Murnane, I.P. Christov, H.C. Kapteyn, K.W. DeLong, D.N. Fittinghoff, M.A. Krumbügel, J.N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron.2, 575–585 (1996).
[CrossRef]

Sysoliatin, A.

A. Andrianov, A. Kim, S. Muraviov, and A. Sysoliatin, “Wavelength-tunable few-cycle optical pulses directly from an all-fiber Er-doped laser setup,” Opt. Lett.15, 3193–3195 (2009).
[CrossRef]

Taft, G.

G. Taft, A. Rundquist, M.M. Murnane, I.P. Christov, H.C. Kapteyn, K.W. DeLong, D.N. Fittinghoff, M.A. Krumbügel, J.N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron.2, 575–585 (1996).
[CrossRef]

Tauser, F.

Tognetti, M.V.

A.A. Amorim, M.V. Tognetti, P. Oliveira, J.L. Silva, L.M. Bernardo, F.X. Kärtner, and H.M. Crespo, “Sub-two-cycle pulses by soliton selfcompression in highly nonlinear photonic crystal fibers,” Opt. Lett.34, 3851–3853 (2009).
[CrossRef] [PubMed]

Trebino, R.

G. Taft, A. Rundquist, M.M. Murnane, I.P. Christov, H.C. Kapteyn, K.W. DeLong, D.N. Fittinghoff, M.A. Krumbügel, J.N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron.2, 575–585 (1996).
[CrossRef]

M.A. Foster, A.L. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express13, 6848–6855 (2005).
[CrossRef] [PubMed]

Wegener, M.

M. Wegener, Extreme Nonlinear Optics (Springer-Verlag, Berlin, 2005).

Wiersma, D.A.

A. Baltuška, M.S. Pshenichnikov, and D.A. Wiersma, “Amplitude and phase characterization of 4.5-fs pulses by frequency-resolved optical gating,” Opt. Lett.23, 1474–1476 (1998).
[CrossRef]

Wood, D.

K.J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron.25, 2665–2673 (1989).
[CrossRef]

Yamane, K.

M. Yamashita, K. Yamane, and R. Morita, “Quasi-Automatic Phase-Control Technique for Chirp Compensation of Pulses With Over-One-Octave BandwidthGeneration of Few- to Mono-Cycle Optical Pulses,” IEEE J. Selec. Top. Quantum. Electron. 12213–222 (2006).
[CrossRef]

Yamashita, M.

M. Yamashita, K. Yamane, and R. Morita, “Quasi-Automatic Phase-Control Technique for Chirp Compensation of Pulses With Over-One-Octave BandwidthGeneration of Few- to Mono-Cycle Optical Pulses,” IEEE J. Selec. Top. Quantum. Electron. 12213–222 (2006).
[CrossRef]

Yang, T.T.

R.W. Helwarth, J. Cherlow, and T.T. Yang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B11, 964–967 (1975).
[CrossRef]

Yoshida, M.

IEEE J. Selec. Top. Quantum. Electron. (1)

M. Yamashita, K. Yamane, and R. Morita, “Quasi-Automatic Phase-Control Technique for Chirp Compensation of Pulses With Over-One-Octave BandwidthGeneration of Few- to Mono-Cycle Optical Pulses,” IEEE J. Selec. Top. Quantum. Electron. 12213–222 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photon. (1)

G. Krauss1, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photon. 4, 33–36 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

T. Brabec and F. Krausz, “Nonlinear Optical Pulse Propagation in the Single-Cycle Regime,” Phys. Rev. Lett. 78, 3282–3285 (1997).
[CrossRef]

Other (19)

A.V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett.87, 203901–203904 (2001).
[CrossRef] [PubMed]

R.W. Helwarth, A. Owyoung, and N. George, “Origin of the nonlinear refractive index of liquid CCl4,” Phys. Rev. A4, 2342–2347 (1971).
[CrossRef]

R.W. Helwarth, J. Cherlow, and T.T. Yang, “Origin and frequency dependence of nonlinear optical susceptibilities of glasses,” Phys. Rev. B11, 964–967 (1975).
[CrossRef]

K.J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron.25, 2665–2673 (1989).
[CrossRef]

S.A. Skobelev, D.V. Kartashov, and A.V. Kim, “Few-optical-cycle solitons and pulse self-compression in a Kerr medium,” Phys. Rev. Lett.99, 203902–203905 (2007).
[CrossRef]

A.V. Kim, S.A. Skobelev, D. Anderson, T. Hansson, and M. Lisak, “Extreme nonlinear optics in a Kerr medium: Exact soliton solutions for a few cycles,” Phys. Rev. A77, 043823 (2008).
[CrossRef]

K. Kieu, R.J. Jones, and N. Peyghambarian, “High power femtosecond source near 1 micron based on an all-fiber Er-doped mode-locked laser,” Opt. Express18, 21350–21355 (2010).
[CrossRef] [PubMed]

M. Wegener, Extreme Nonlinear Optics (Springer-Verlag, Berlin, 2005).

S. Rausch, T. Binhammer, A. Harth, J. Kim, R. Ell, F.X. Kartner, and U. Morgner, “Controlled waveforms on the single-cycle scale from a femtosecond oscillator,” Opt. Express16, 9739–9745 (2008).
[CrossRef] [PubMed]

A. Sell, G. Krauss, R. Scheu, R. Huber, and A. Leitenstorfer, “8-fs pulses from a compact Er:fiber system: quantitative modeling and experimental implementation,” Opt. Express17, 1070–1077 (2009).
[CrossRef] [PubMed]

A. Andrianov, A. Kim, S. Muraviov, and A. Sysoliatin, “Wavelength-tunable few-cycle optical pulses directly from an all-fiber Er-doped laser setup,” Opt. Lett.15, 3193–3195 (2009).
[CrossRef]

F.X. Kärtner, Few-Cycle Laser Pulse Generation and Its Applications (New York: Springer, 2004).

A. Baltuška, M.S. Pshenichnikov, and D.A. Wiersma, “Amplitude and phase characterization of 4.5-fs pulses by frequency-resolved optical gating,” Opt. Lett.23, 1474–1476 (1998).
[CrossRef]

K. Kieu, R. Jason Jones, and N. Peyghambarian, “Generation of few-cycle pulses from an amplified carbon nanotube mode-locked fiber laser system,” IEEE Photon. Technol. Lett.22, 1521–1523 (2010).
[CrossRef]

A.A. Amorim, M.V. Tognetti, P. Oliveira, J.L. Silva, L.M. Bernardo, F.X. Kärtner, and H.M. Crespo, “Sub-two-cycle pulses by soliton selfcompression in highly nonlinear photonic crystal fibers,” Opt. Lett.34, 3851–3853 (2009).
[CrossRef] [PubMed]

M.A. Foster, A.L. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express13, 6848–6855 (2005).
[CrossRef] [PubMed]

G.P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

A.V. Andrianov, E.A. Anashkina, S.V. Muraviov, and A.V. Kim, “All-fiber design of hybrid Er-doped laser/Yb-doped amplifier system for high power ultrashort pulse generation,” Opt. Lett.35, 3805–3807 (2010).
[CrossRef] [PubMed]

G. Taft, A. Rundquist, M.M. Murnane, I.P. Christov, H.C. Kapteyn, K.W. DeLong, D.N. Fittinghoff, M.A. Krumbügel, J.N. Sweetser, and R. Trebino, “Measurement of 10-fs laser pulses,” IEEE J. Sel. Top. Quantum Electron.2, 575–585 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup. The inset shows the dispersion profile of HNL-DSF.

Fig. 2
Fig. 2

(a) Temporal profile of the pulses at the amplifier output (before HNL-DSF input) measured with the FROG technique. The inset shows the measured FROG trace. The FROG error is 0.004. (b) Spectrum measured with spectrometer (blue) and calculated from the FROG pulse (red).

Fig. 3
Fig. 3

Output pulse intensity distributions in the time and frequency domains for different zero GVD wavelengths, input pulse energies and DSF lengths.

Fig. 4
Fig. 4

(a) Electric field and (b) spectrum evolution of the 2 nJ sech-shaped pulse during propagation in the HNL-DSF with γ = 4.0 W−1km−1 and corresponding dispersion profile (c).

Fig. 5
Fig. 5

Output pulse intensity distribution in the time domain as a function of input pulse energy for different HNL-DSF lengths.

Fig. 6
Fig. 6

Spectral intensity distribution as a function of input pulse energy for different HNL-DSF lengths.

Fig. 7
Fig. 7

Temporal profile of the pulses measured with the FROG technique (red curves) and simulated (black curves) before the point of optimal compression (a), at the point of optimal compression (b), after this point (c) and the corresponding experimentally measured (green curves) and simulated (black curves) spectra (d)–(f).

Fig. 8
Fig. 8

(a) Measured, retrieved, and simulated FROG traces of the few-cycle 13-fs pulse. The FROG error is 0.01.

Fig. 9
Fig. 9

(a) Temporal profile of the few-cycle pulse at the HNL-DSF output measured with a FROG technique (red) and simulated (black). (b) Optical spectrum measured with spectrometer (green), calculated from the FROG pulse (red), and simulated (black); spectral phase calculated from the FROG pulse (dashed, magenta), and simulated (dashed, blue).

Tables (1)

Tables Icon

Table 1 Pulse durations in fs for different input pulse energies and DSF lengths

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

G ( z , ω ) z i β ( ω ) G ( z , ω ) + 2 π c n 0 F ^ ( P N L ( z , t ) t ) = 0 ,
G ( z , ω ) = E ( z , t ) e i ω t d t = F ^ E ( z , t ) ,
P N L ( z , t ) = E ( z , t ) a ( t ) E 2 ( z , t t ) d t .
h R ( t ) = τ 1 2 + τ 2 2 τ 1 τ 2 2 exp ( t / τ 2 ) sin ( t / τ 1 ) ) .
F ^ { γ ω 0 t E ( z , t ) [ ( 4 / 3 ) ( 1 f R ) δ ( t ) + 2 f R h R ( t ) ] E 2 ( z , t t ) d t } ,

Metrics