Abstract

We design, fabricate and characterize a CMOS-compatible, Mach-Zehnder-coupled, second-order-microring-resonator filter with large Free Spectral Range and demonstrate non-blocking thermo-optical filter reconfiguration. The device consists of 10-μm radius silicon microring resonators, with an FSR equivalent to that of a structure consisting of 5-μm radii microrings. The structure is reconfigurable over an 8.5 nm range without blocking other channels in the network.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Palais, Fiber Optic Communications (Prentice Hall, 1988).
  2. D. A. B. Miller and H. M. Ozaktas, “Limit to the bit-rate capacity of electrical interconnects from the aspect ratio of the system architecture,” J. Parallel Distrib. Comput. 41, 42–52 (1997).
    [CrossRef]
  3. N. Magen, A. Kolodny, U. Weiser, and N. Shamir, “Interconnect-power dissipation in a microprocessor,” in Proceedings of the 2004 International Workshop on System Level Interconnect Prediction (ACM, 2004), pp. 7–13.
    [CrossRef]
  4. A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57, 1246–1260 (2008).
    [CrossRef]
  5. C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Q. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building Many-Core Processor-to-DRAM Networks with Monolithic CMOS Silicon Photonics,” IEEE Micro 29, 8–21 (2009).
    [CrossRef]
  6. Y. Goebuchi, T. Kato, and Y. Kokubun, “Fast and stable wavelength-selective switch using double-series coupled dielectric microring resonator,” IEEE Photonics Technol. Lett. 18, 538–540 (2006).
    [CrossRef]
  7. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-um radius,” Opt. Express 16, 4309–4315 (2008).
    [CrossRef] [PubMed]
  8. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express 15, 14765–14771 (2007).
    [CrossRef] [PubMed]
  9. M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110–071113 (2006).
    [CrossRef]
  10. K. Oda, N. Takato, and H. Toba, “A wide-FSR wave-guide double-ring resonator for optical FDM transmission-systems,” J. Lightwave Technol. 9, 728–736 (1991).
    [CrossRef]
  11. G. Barbarossa and A. Matteo, “Novel double-ring optical-guided-wave Vernier resonator,” IEE Proc.-Optoelectron. 144, 203–208 (1997).
    [CrossRef]
  12. M. R. Watts, T. Barwicz, M. A. Popovic, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, and F. Kaertner, “Microring-Resonator Filter with Doubled Free-Spectral-Range by Two-Point Coupling,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CMP3.
    [PubMed]
  13. W. Green, R. Lee, G. DeRose, A. Scherer, and A. Yariv, “Hybrid InGaAsP-InP Mach-Zehnder racetrack resonator for thermooptic switching and coupling control,” Opt. Express 13, 1651–1659 (2005).
    [CrossRef] [PubMed]
  14. L. Zhou and A. W. Poon, “Electrically reconfigurable silicon microring resonator-based filter with waveguide coupled feedback,” Opt. Express 15, 9194–9204 (2007).
    [CrossRef] [PubMed]
  15. L. Chen, N. Sherwood-Droz, and M. Lipson, “Compact bandwidth-tunable microring resonators,” Opt. Lett. 32, 3361–3363 (2007).
    [CrossRef] [PubMed]
  16. H. L. Lira, M. Lipson, and C. B. Poitras, “Non-Blocking Operation of a Tunable Compact Optical Filter with Large FSR,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CTuN3.
  17. B. Little, S. Chu, H. Haus, J. Foresi, and J. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
    [CrossRef]
  18. A. Melloni and M. Martinelli, “Synthesis of direct-coupled-resonators bandpass filters for WDM systems,” J. Lightwave Technol. 20, 296–303 (2002).
    [CrossRef]
  19. R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photonics Technol. Lett. 7, 1447–1449 (1995).
    [CrossRef]
  20. H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17, 22271–22280 (2009).
    [CrossRef]
  21. G. Cocorullo and I. Rendina, “Themo-optical modulation at 1.5 um in silicon etalon,” Electron. Lett. 28, 83–85 (1992).
    [CrossRef]

2009

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Q. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building Many-Core Processor-to-DRAM Networks with Monolithic CMOS Silicon Photonics,” IEEE Micro 29, 8–21 (2009).
[CrossRef]

H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17, 22271–22280 (2009).
[CrossRef]

2008

Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-um radius,” Opt. Express 16, 4309–4315 (2008).
[CrossRef] [PubMed]

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57, 1246–1260 (2008).
[CrossRef]

2007

2006

Y. Goebuchi, T. Kato, and Y. Kokubun, “Fast and stable wavelength-selective switch using double-series coupled dielectric microring resonator,” IEEE Photonics Technol. Lett. 18, 538–540 (2006).
[CrossRef]

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110–071113 (2006).
[CrossRef]

2005

2002

1997

D. A. B. Miller and H. M. Ozaktas, “Limit to the bit-rate capacity of electrical interconnects from the aspect ratio of the system architecture,” J. Parallel Distrib. Comput. 41, 42–52 (1997).
[CrossRef]

G. Barbarossa and A. Matteo, “Novel double-ring optical-guided-wave Vernier resonator,” IEE Proc.-Optoelectron. 144, 203–208 (1997).
[CrossRef]

B. Little, S. Chu, H. Haus, J. Foresi, and J. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

1995

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photonics Technol. Lett. 7, 1447–1449 (1995).
[CrossRef]

1992

G. Cocorullo and I. Rendina, “Themo-optical modulation at 1.5 um in silicon etalon,” Electron. Lett. 28, 83–85 (1992).
[CrossRef]

1991

K. Oda, N. Takato, and H. Toba, “A wide-FSR wave-guide double-ring resonator for optical FDM transmission-systems,” J. Lightwave Technol. 9, 728–736 (1991).
[CrossRef]

Asanovic, K.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Q. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building Many-Core Processor-to-DRAM Networks with Monolithic CMOS Silicon Photonics,” IEEE Micro 29, 8–21 (2009).
[CrossRef]

Barbarossa, G.

G. Barbarossa and A. Matteo, “Novel double-ring optical-guided-wave Vernier resonator,” IEE Proc.-Optoelectron. 144, 203–208 (1997).
[CrossRef]

Barwicz, T.

M. R. Watts, T. Barwicz, M. A. Popovic, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, and F. Kaertner, “Microring-Resonator Filter with Doubled Free-Spectral-Range by Two-Point Coupling,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CMP3.
[PubMed]

Batten, C.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Q. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building Many-Core Processor-to-DRAM Networks with Monolithic CMOS Silicon Photonics,” IEEE Micro 29, 8–21 (2009).
[CrossRef]

Beausoleil, R. G.

Bergman, K.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57, 1246–1260 (2008).
[CrossRef]

Carloni, L. P.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57, 1246–1260 (2008).
[CrossRef]

Chen, L.

Chu, S.

B. Little, S. Chu, H. Haus, J. Foresi, and J. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Cocorullo, G.

G. Cocorullo and I. Rendina, “Themo-optical modulation at 1.5 um in silicon etalon,” Electron. Lett. 28, 83–85 (1992).
[CrossRef]

DeRose, G.

Fattal, D.

Foresi, J.

B. Little, S. Chu, H. Haus, J. Foresi, and J. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Goebuchi, Y.

Y. Goebuchi, T. Kato, and Y. Kokubun, “Fast and stable wavelength-selective switch using double-series coupled dielectric microring resonator,” IEEE Photonics Technol. Lett. 18, 538–540 (2006).
[CrossRef]

Green, W.

Haus, H.

B. Little, S. Chu, H. Haus, J. Foresi, and J. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Holzwarth, C. W.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Q. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building Many-Core Processor-to-DRAM Networks with Monolithic CMOS Silicon Photonics,” IEEE Micro 29, 8–21 (2009).
[CrossRef]

Hoyt, J. L.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Q. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building Many-Core Processor-to-DRAM Networks with Monolithic CMOS Silicon Photonics,” IEEE Micro 29, 8–21 (2009).
[CrossRef]

Ippen, E. P.

M. R. Watts, T. Barwicz, M. A. Popovic, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, and F. Kaertner, “Microring-Resonator Filter with Doubled Free-Spectral-Range by Two-Point Coupling,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CMP3.
[PubMed]

Joshi, A.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Q. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building Many-Core Processor-to-DRAM Networks with Monolithic CMOS Silicon Photonics,” IEEE Micro 29, 8–21 (2009).
[CrossRef]

Kaertner, F.

M. R. Watts, T. Barwicz, M. A. Popovic, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, and F. Kaertner, “Microring-Resonator Filter with Doubled Free-Spectral-Range by Two-Point Coupling,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CMP3.
[PubMed]

Kartner, F. X.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Q. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building Many-Core Processor-to-DRAM Networks with Monolithic CMOS Silicon Photonics,” IEEE Micro 29, 8–21 (2009).
[CrossRef]

Kato, T.

Y. Goebuchi, T. Kato, and Y. Kokubun, “Fast and stable wavelength-selective switch using double-series coupled dielectric microring resonator,” IEEE Photonics Technol. Lett. 18, 538–540 (2006).
[CrossRef]

Khan, M. H.

Khilo, A.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Q. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building Many-Core Processor-to-DRAM Networks with Monolithic CMOS Silicon Photonics,” IEEE Micro 29, 8–21 (2009).
[CrossRef]

Kokubun, Y.

Y. Goebuchi, T. Kato, and Y. Kokubun, “Fast and stable wavelength-selective switch using double-series coupled dielectric microring resonator,” IEEE Photonics Technol. Lett. 18, 538–540 (2006).
[CrossRef]

Kolodny, A.

N. Magen, A. Kolodny, U. Weiser, and N. Shamir, “Interconnect-power dissipation in a microprocessor,” in Proceedings of the 2004 International Workshop on System Level Interconnect Prediction (ACM, 2004), pp. 7–13.
[CrossRef]

Laine, J.

B. Little, S. Chu, H. Haus, J. Foresi, and J. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Lee, R.

Li, H. Q.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Q. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building Many-Core Processor-to-DRAM Networks with Monolithic CMOS Silicon Photonics,” IEEE Micro 29, 8–21 (2009).
[CrossRef]

Lipson, M.

H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17, 22271–22280 (2009).
[CrossRef]

L. Chen, N. Sherwood-Droz, and M. Lipson, “Compact bandwidth-tunable microring resonators,” Opt. Lett. 32, 3361–3363 (2007).
[CrossRef] [PubMed]

H. L. Lira, M. Lipson, and C. B. Poitras, “Non-Blocking Operation of a Tunable Compact Optical Filter with Large FSR,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CTuN3.

Lira, H. L.

H. L. Lira, M. Lipson, and C. B. Poitras, “Non-Blocking Operation of a Tunable Compact Optical Filter with Large FSR,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CTuN3.

Lira, H. L. R.

Little, B.

B. Little, S. Chu, H. Haus, J. Foresi, and J. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Liu, T.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110–071113 (2006).
[CrossRef]

Magen, N.

N. Magen, A. Kolodny, U. Weiser, and N. Shamir, “Interconnect-power dissipation in a microprocessor,” in Proceedings of the 2004 International Workshop on System Level Interconnect Prediction (ACM, 2004), pp. 7–13.
[CrossRef]

Manipatruni, S.

Martinelli, M.

Matteo, A.

G. Barbarossa and A. Matteo, “Novel double-ring optical-guided-wave Vernier resonator,” IEE Proc.-Optoelectron. 144, 203–208 (1997).
[CrossRef]

Melloni, A.

Miller, D. A. B.

D. A. B. Miller and H. M. Ozaktas, “Limit to the bit-rate capacity of electrical interconnects from the aspect ratio of the system architecture,” J. Parallel Distrib. Comput. 41, 42–52 (1997).
[CrossRef]

Moss, B.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Q. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building Many-Core Processor-to-DRAM Networks with Monolithic CMOS Silicon Photonics,” IEEE Micro 29, 8–21 (2009).
[CrossRef]

Nawrocka, M. S.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110–071113 (2006).
[CrossRef]

Oda, K.

K. Oda, N. Takato, and H. Toba, “A wide-FSR wave-guide double-ring resonator for optical FDM transmission-systems,” J. Lightwave Technol. 9, 728–736 (1991).
[CrossRef]

Orcutt, J.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Q. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building Many-Core Processor-to-DRAM Networks with Monolithic CMOS Silicon Photonics,” IEEE Micro 29, 8–21 (2009).
[CrossRef]

Orta, R.

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photonics Technol. Lett. 7, 1447–1449 (1995).
[CrossRef]

Ozaktas, H. M.

D. A. B. Miller and H. M. Ozaktas, “Limit to the bit-rate capacity of electrical interconnects from the aspect ratio of the system architecture,” J. Parallel Distrib. Comput. 41, 42–52 (1997).
[CrossRef]

Palais, J.

J. Palais, Fiber Optic Communications (Prentice Hall, 1988).

Panepucci, R. R.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110–071113 (2006).
[CrossRef]

Poitras, C. B.

H. L. Lira, M. Lipson, and C. B. Poitras, “Non-Blocking Operation of a Tunable Compact Optical Filter with Large FSR,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CTuN3.

Poon, A. W.

Popovic, M. A.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Q. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building Many-Core Processor-to-DRAM Networks with Monolithic CMOS Silicon Photonics,” IEEE Micro 29, 8–21 (2009).
[CrossRef]

M. R. Watts, T. Barwicz, M. A. Popovic, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, and F. Kaertner, “Microring-Resonator Filter with Doubled Free-Spectral-Range by Two-Point Coupling,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CMP3.
[PubMed]

Qi, M.

Rakich, P. T.

M. R. Watts, T. Barwicz, M. A. Popovic, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, and F. Kaertner, “Microring-Resonator Filter with Doubled Free-Spectral-Range by Two-Point Coupling,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CMP3.
[PubMed]

Ram, R. J.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Q. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building Many-Core Processor-to-DRAM Networks with Monolithic CMOS Silicon Photonics,” IEEE Micro 29, 8–21 (2009).
[CrossRef]

Rendina, I.

G. Cocorullo and I. Rendina, “Themo-optical modulation at 1.5 um in silicon etalon,” Electron. Lett. 28, 83–85 (1992).
[CrossRef]

Savi, P.

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photonics Technol. Lett. 7, 1447–1449 (1995).
[CrossRef]

Scherer, A.

Shacham, A.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57, 1246–1260 (2008).
[CrossRef]

Shamir, N.

N. Magen, A. Kolodny, U. Weiser, and N. Shamir, “Interconnect-power dissipation in a microprocessor,” in Proceedings of the 2004 International Workshop on System Level Interconnect Prediction (ACM, 2004), pp. 7–13.
[CrossRef]

Shen, H.

Sherwood-Droz, N.

Smith, H. I.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Q. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building Many-Core Processor-to-DRAM Networks with Monolithic CMOS Silicon Photonics,” IEEE Micro 29, 8–21 (2009).
[CrossRef]

M. R. Watts, T. Barwicz, M. A. Popovic, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, and F. Kaertner, “Microring-Resonator Filter with Doubled Free-Spectral-Range by Two-Point Coupling,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CMP3.
[PubMed]

Socci, L.

M. R. Watts, T. Barwicz, M. A. Popovic, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, and F. Kaertner, “Microring-Resonator Filter with Doubled Free-Spectral-Range by Two-Point Coupling,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CMP3.
[PubMed]

Stojanovic, V.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Q. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building Many-Core Processor-to-DRAM Networks with Monolithic CMOS Silicon Photonics,” IEEE Micro 29, 8–21 (2009).
[CrossRef]

Takato, N.

K. Oda, N. Takato, and H. Toba, “A wide-FSR wave-guide double-ring resonator for optical FDM transmission-systems,” J. Lightwave Technol. 9, 728–736 (1991).
[CrossRef]

Tascone, R.

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photonics Technol. Lett. 7, 1447–1449 (1995).
[CrossRef]

Toba, H.

K. Oda, N. Takato, and H. Toba, “A wide-FSR wave-guide double-ring resonator for optical FDM transmission-systems,” J. Lightwave Technol. 9, 728–736 (1991).
[CrossRef]

Trinchero, D.

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photonics Technol. Lett. 7, 1447–1449 (1995).
[CrossRef]

Wang, X.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110–071113 (2006).
[CrossRef]

Watts, M. R.

M. R. Watts, T. Barwicz, M. A. Popovic, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, and F. Kaertner, “Microring-Resonator Filter with Doubled Free-Spectral-Range by Two-Point Coupling,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CMP3.
[PubMed]

Weiser, U.

N. Magen, A. Kolodny, U. Weiser, and N. Shamir, “Interconnect-power dissipation in a microprocessor,” in Proceedings of the 2004 International Workshop on System Level Interconnect Prediction (ACM, 2004), pp. 7–13.
[CrossRef]

Xiao, S.

Xu, Q.

Yariv, A.

Zhou, L.

Appl. Phys. Lett.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110–071113 (2006).
[CrossRef]

Electron. Lett.

G. Cocorullo and I. Rendina, “Themo-optical modulation at 1.5 um in silicon etalon,” Electron. Lett. 28, 83–85 (1992).
[CrossRef]

IEE Proc.-Optoelectron.

G. Barbarossa and A. Matteo, “Novel double-ring optical-guided-wave Vernier resonator,” IEE Proc.-Optoelectron. 144, 203–208 (1997).
[CrossRef]

IEEE Micro

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. W. Holzwarth, M. A. Popovic, H. Q. Li, H. I. Smith, J. L. Hoyt, F. X. Kartner, R. J. Ram, V. Stojanovic, and K. Asanovic, “Building Many-Core Processor-to-DRAM Networks with Monolithic CMOS Silicon Photonics,” IEEE Micro 29, 8–21 (2009).
[CrossRef]

IEEE Photonics Technol. Lett.

Y. Goebuchi, T. Kato, and Y. Kokubun, “Fast and stable wavelength-selective switch using double-series coupled dielectric microring resonator,” IEEE Photonics Technol. Lett. 18, 538–540 (2006).
[CrossRef]

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photonics Technol. Lett. 7, 1447–1449 (1995).
[CrossRef]

IEEE Trans. Comput.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57, 1246–1260 (2008).
[CrossRef]

J. Lightwave Technol.

K. Oda, N. Takato, and H. Toba, “A wide-FSR wave-guide double-ring resonator for optical FDM transmission-systems,” J. Lightwave Technol. 9, 728–736 (1991).
[CrossRef]

B. Little, S. Chu, H. Haus, J. Foresi, and J. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

A. Melloni and M. Martinelli, “Synthesis of direct-coupled-resonators bandpass filters for WDM systems,” J. Lightwave Technol. 20, 296–303 (2002).
[CrossRef]

J. Parallel Distrib. Comput.

D. A. B. Miller and H. M. Ozaktas, “Limit to the bit-rate capacity of electrical interconnects from the aspect ratio of the system architecture,” J. Parallel Distrib. Comput. 41, 42–52 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Other

M. R. Watts, T. Barwicz, M. A. Popovic, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, and F. Kaertner, “Microring-Resonator Filter with Doubled Free-Spectral-Range by Two-Point Coupling,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CMP3.
[PubMed]

H. L. Lira, M. Lipson, and C. B. Poitras, “Non-Blocking Operation of a Tunable Compact Optical Filter with Large FSR,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CTuN3.

N. Magen, A. Kolodny, U. Weiser, and N. Shamir, “Interconnect-power dissipation in a microprocessor,” in Proceedings of the 2004 International Workshop on System Level Interconnect Prediction (ACM, 2004), pp. 7–13.
[CrossRef]

J. Palais, Fiber Optic Communications (Prentice Hall, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematics of a second-order filter with MZ arms. (b) Transfer function of a microring resonator (red) and effective coupling κeff of a MZI (green). (c) Transfer function of through (red) and drop (blue) ports of the filter.

Fig. 2
Fig. 2

Examples of possible transfer function. In red we have the through port, the drop port is in blue, and, in green, we have the wavelength dependency of the effective coupling κeff for (a) m2 = (m1 − 1)/2, (b) m2 = (m1 − 1)/3, and (c) m2 = (m1 − 1)/5. All simulations considered 10 μm radius silicon microrings, surrounded by SiO2, with 6 dB/cm propagation losses.

Fig. 3
Fig. 3

Non-blocking tuning. (i) Initial transfer function of the filter, with the whole structure at the same temperature T0. (ii) All-pass transfer function after the right side of the filter is at temperature T1. (iii) The all-pass transfer function is shifted completely by increasing the temperature of the whole structure by TF. (iv) Final transfer fuction, obtained by reducing the temperature of the right side down to TF.

Fig. 4
Fig. 4

(a) False-color Scanning Electron Microscope picture of the device. The waveguides are shown in blue, heaters in brown and a thin silicon slab underneath the structure is shown in green (no metal contacts shown). (b) Optical microscope picture of the final structure, with copper wiring connected through round vias to the heaters.

Fig. 5
Fig. 5

(a) Original spectrum of the device, with through (red) and drop (blue) ports presenting the doubled FSR. (b) Spectrum after changing the effective index of the cavity coupled to the drop port. No resonances are observed. (c) New resonance of the filter after non-blocking tuning.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

( E out 1 E out 2 ) = exp ( i 2 π λ n eff ( λ , T ) L mz + L mzr 2 ) ( t eff i κ eff i κ eff t eff ¯ ) ( E in 1 E in 2 )
κ eff ( λ , T ) = 2 κ t cos ( 2 π λ n eff ( λ , T ) Δ L 2 )
t eff ( λ , T ) = 2 t 2 cos ( 2 π λ n eff ( λ , T ) Δ L 2 ) exp ( i 2 π λ n eff ( λ , T ) Δ L 2 )
Δ L ( m 2 ) = λ m 1 n eff ( λ m 1 ) ( m 2 1 2 ) , m 2 *
2 π R n eff ( λ m 1 ) = m 1 λ m 1 , m 1 *
κ eff ( λ m 1 1 ) = 2 κ t cos [ m 1 1 2 m 1 ( 1 + 2 m 2 ) π ]
κ ( m 2 ) = 1 2 1 2 1 κ eff 2 ( λ m 1 1 ) [ sin ( 1 + 2 m 2 2 m 1 π ) ] 2
m 1 π a sin [ k eff ( λ m 1 1 ) ] 1 2 m 2 m 1 π { π asin [ k eff ( λ m 1 1 ) ] } 1 2
E t = t Left a t Left t rr t Right ¯ ϕ Right a t rr ϕ Left + a 2 t Right ¯ ϕ Right ϕ Left 1 a ( ϕ Left t Left ¯ + ϕ Right t Right ¯ ) t rr + a 2 ϕ Left t Left ¯ ϕ Right t Right ¯ ϕ 1 E i
E d = ia κ Left κ rr κ Right ϕ Left ϕ Right 1 a ( t Left ¯ ϕ Left + t Right ¯ ϕ Right ) t rr + a 2 t Left ¯ ϕ Left t Right ¯ ϕ Right ϕ 1 ϕ 2 E i
ϕ Left / Right = exp [ i 2 π λ n eff ( T Left / Right ) ( 2 π R + Δ L 2 ) ]
ϕ 1 / 2 = exp ( i 2 π λ n eff ( T Left / Right ) L mz + L mzr 2 )
a = exp [ α ( π R + Δ L ) ]

Metrics