Abstract

We demonstrate a high-accuracy heterodyne measurement system for characterizing the magnitude of the frequency response of high-speed 1.55 µm photoreceivers from 2 MHz to greater than 50 GHz. At measurement frequencies below 2 GHz, we employ a phase-locked loop with a double-heterodyne detection scheme, which enables precise tuning of the heterodyne beat frequency with an RF synthesizer. At frequencies above 2 GHz the system is operated in free-run mode with thermal tuning of the laser beat frequency. We estimate the measurement uncertainties for the low frequency range and compare the measured high-frequency response of a photoreceiver to a measurement using electro-optic sampling.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. S. Clement, P. D. Hale, D. F. Williams, J. C. M. Wang, A. Dienstfrey, and D. A. Keenan, “Calibration of sampling oscilloscopes with high-speed photodiodes,” IEEE Trans. Microw. Theory Tech. 54(8), 3173–3181 (2006).
    [CrossRef]
  2. A. Dienstfrey, P. D. Hale, D. A. Keenan, T. S. Clement, and D. F. Williams, “Minimum-phase calibration of sampling-oscilloscopes,” IEEE Trans. Microw. Theory Tech. 54(8), 3197–3208 (2006).
    [CrossRef]
  3. P. D. Hale, A. Dienstfrey, J. C. M. Wang, D. F. Williams, A. Lewandowski, D. A. Keenan, and T. S. Clement, “Traceable waveform calibration with a covariance-based uncertainty analysis,” IEEE Trans. Instrum. Meas. 58(10), 3554–3568 (2009).
    [CrossRef]
  4. P. D. Hale, C. M. Wang, R. Park, and W. Y. Lau, “A transfer standard for measuring photoreceiver frequency response,” J. Lightwave Technol. 14(11), 2457–2466 (1996).
    [CrossRef]
  5. P. D. Hale and C. M. Wang, “Calibration service of optoelectronic frequency response at 1319 nm for combined photodiode/RF power sensor transfer standards,” NIST Special Publication 250–51 (1999).
  6. J. E. Bowers and C. A. Burrus, “Ultrawide-band long-wavelength p-i-n photodetectors,” J. Lightwave Technol. 5(10), 1339–1350 (1987).
    [CrossRef]
  7. R. T. Hawkins, M. D. Jones, S. H. Pepper, J. H. Goll, and M. K. Ravel, “Vector characterization of photodetectors, photoreceivers, and optical pulse sources by time-domain pulse response measurements,” IEEE Trans. Instrum. Meas. 41(4), 467–475 (1992).
    [CrossRef]
  8. D. F. Williams, P. D. Hale, T. S. Clement, and J. M. Morgan, “Calibrating electro-optic sampling systems,” in IEEE MTT-S Int. Microw. Symp. Dig., vol. 3 (2001), pp. 1527–1530.
  9. D. F. Williams, A. Lewandowski, T. S. Clement, J. C. M. Wang, P. D. Hale, J. M. Morgan, D. A. Keenan, and A. Dienstfrey, “Covariance-based uncertainty analysis of the NIST electrooptic sampling system,” IEEE Trans. Microw. Theory Tech. 54(1), 481–491 (2006).
    [CrossRef]
  10. F. Z. Xie, D. Kuhl, E. H. Böttcher, S. Y. Ren, and D. Bimberg, “Wide-band frequency response measurements of photodetectors using low-level photocurrent noise detection,” J. Appl. Phys. 73(12), 8641–8646 (1993).
    [CrossRef]
  11. D. M. Baney, W. V. Sorin, and S. A. Newton, “High-frequency photodiode characterization using a filtered intensity noise technique,” IEEE Photon. Technol. Lett. 6(10), 1258–1260 (1994).
    [CrossRef]
  12. S. Uehara, “Calibration of optical modulator frequency response with application to signal level control,” Appl. Opt. 17(1), 68–71 (1978).
    [CrossRef] [PubMed]
  13. D. A. Humphreys, M. R. Harper, A. J. A. Smith, and I. M. Smith, “Vector calibration of optical reference receivers using a frequency-domain method,” IEEE Trans. Instrum. Meas. 54(2), 894–897 (2005).
    [CrossRef]
  14. B. H. Zhang, N. H. Zhu, W. Han, J. H. Ke, H. G. Zhang, M. Ren, W. Li, and L. Xie, “Development of swept frequency method for measuring frequency response of photodetectors based on harmonic analysis,” IEEE Photon. Technol. Lett. 21(7), 459–461 (2009).
    [CrossRef]
  15. J. Wang, U. Krüger, B. Schwarz, and K. Petermann, “Measurement of frequency response of photoreceivers using self-homodyne method,” Electron. Lett. 25(11), 722–723 (1989).
    [CrossRef]
  16. N. H. Zhu, J. M. Wen, H. S. San, H. P. Huang, L. J. Zhao, and W. Wang, “Improved optical heterodyne methods for measuring frequency response of photodetectors,” IEEE J. Quantum Electron. 42(3), 241–248 (2006).
    [CrossRef]
  17. L. Piccari and P. Spano, “New method for measuring ultrawide frequency response of optical detectors,” Electron. Lett. 18(3), 116–118 (1982).
    [CrossRef]
  18. S. Kawanishi and M. Saruwatari, “A very wide-band frequency response measurement system using optical heterodyne detection,” IEEE Trans. Instrum. Meas. 38(2), 569–573 (1989).
    [CrossRef]
  19. O. Ishida, H. Toba, and F. Kano, “Optical sweeper with double-heterodyne frequency-locked loop,” Electron. Lett. 25(22), 1495–1496 (1989).
    [CrossRef]
  20. A. Beling, H.-G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “High-speed miniaturized photodiode and parallel-fed traveling-wave photodetectors based on InP,” IEEE J. Sel. Top. Quantum Electron. 13(1), 15–21 (2007).
    [CrossRef]
  21. T. S. Tan, R. L. Jungerman, and S. S. Elliott, “Optical receiver and modulator frequency response measurement with a Nd:YAG ring laser heterodyne technique,” IEEE Trans. Microw. Theory Tech. 37(8), 1217–1222 (1989).
    [CrossRef]
  22. D. A. Humphreys, “Measurement of high-speed photodiodes using DFB heterodyne system with microwave reflectometer,” in High-Speed Electronics and Optoelectronics, Proc. SPIE 1680–15, 138—152 (1992).
  23. K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, “6-34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers,” Electron. Lett. 25(18), 1242–1243 (1989).
    [CrossRef]
  24. M. Weidman, “Direct comparison transfer of microwave power sensor calibration,” NIST Technical Note 1379 (1996).
  25. L. D’Evelyn, L. Hollberg, and Z. B. Popovic, “A CPW phase-locked loop for diode-laser stabilization,” in Microwave Symposium Digest 1994, IEEE MTT-S International (1994), pp. 65–68.
  26. B. W. Silverman, Density estimation for statistics and data analysis (Chapman and Hill, London, England, 1986).
  27. B. N. Taylor and C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” NIST Technical Note 1297 (1994).
  28. P. D. Hale, T. S. Clement, and D. F. Williams, “Frequency response metrology for high-speed optical receivers, in Optical Fiber Communication Conference and Exhibit, OFC Technical Digest Series (Optical Society of America, 2001), paper WQ1.

2009 (2)

P. D. Hale, A. Dienstfrey, J. C. M. Wang, D. F. Williams, A. Lewandowski, D. A. Keenan, and T. S. Clement, “Traceable waveform calibration with a covariance-based uncertainty analysis,” IEEE Trans. Instrum. Meas. 58(10), 3554–3568 (2009).
[CrossRef]

B. H. Zhang, N. H. Zhu, W. Han, J. H. Ke, H. G. Zhang, M. Ren, W. Li, and L. Xie, “Development of swept frequency method for measuring frequency response of photodetectors based on harmonic analysis,” IEEE Photon. Technol. Lett. 21(7), 459–461 (2009).
[CrossRef]

2007 (1)

A. Beling, H.-G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “High-speed miniaturized photodiode and parallel-fed traveling-wave photodetectors based on InP,” IEEE J. Sel. Top. Quantum Electron. 13(1), 15–21 (2007).
[CrossRef]

2006 (4)

N. H. Zhu, J. M. Wen, H. S. San, H. P. Huang, L. J. Zhao, and W. Wang, “Improved optical heterodyne methods for measuring frequency response of photodetectors,” IEEE J. Quantum Electron. 42(3), 241–248 (2006).
[CrossRef]

T. S. Clement, P. D. Hale, D. F. Williams, J. C. M. Wang, A. Dienstfrey, and D. A. Keenan, “Calibration of sampling oscilloscopes with high-speed photodiodes,” IEEE Trans. Microw. Theory Tech. 54(8), 3173–3181 (2006).
[CrossRef]

A. Dienstfrey, P. D. Hale, D. A. Keenan, T. S. Clement, and D. F. Williams, “Minimum-phase calibration of sampling-oscilloscopes,” IEEE Trans. Microw. Theory Tech. 54(8), 3197–3208 (2006).
[CrossRef]

D. F. Williams, A. Lewandowski, T. S. Clement, J. C. M. Wang, P. D. Hale, J. M. Morgan, D. A. Keenan, and A. Dienstfrey, “Covariance-based uncertainty analysis of the NIST electrooptic sampling system,” IEEE Trans. Microw. Theory Tech. 54(1), 481–491 (2006).
[CrossRef]

2005 (1)

D. A. Humphreys, M. R. Harper, A. J. A. Smith, and I. M. Smith, “Vector calibration of optical reference receivers using a frequency-domain method,” IEEE Trans. Instrum. Meas. 54(2), 894–897 (2005).
[CrossRef]

1996 (1)

P. D. Hale, C. M. Wang, R. Park, and W. Y. Lau, “A transfer standard for measuring photoreceiver frequency response,” J. Lightwave Technol. 14(11), 2457–2466 (1996).
[CrossRef]

1994 (1)

D. M. Baney, W. V. Sorin, and S. A. Newton, “High-frequency photodiode characterization using a filtered intensity noise technique,” IEEE Photon. Technol. Lett. 6(10), 1258–1260 (1994).
[CrossRef]

1993 (1)

F. Z. Xie, D. Kuhl, E. H. Böttcher, S. Y. Ren, and D. Bimberg, “Wide-band frequency response measurements of photodetectors using low-level photocurrent noise detection,” J. Appl. Phys. 73(12), 8641–8646 (1993).
[CrossRef]

1992 (1)

R. T. Hawkins, M. D. Jones, S. H. Pepper, J. H. Goll, and M. K. Ravel, “Vector characterization of photodetectors, photoreceivers, and optical pulse sources by time-domain pulse response measurements,” IEEE Trans. Instrum. Meas. 41(4), 467–475 (1992).
[CrossRef]

1989 (5)

J. Wang, U. Krüger, B. Schwarz, and K. Petermann, “Measurement of frequency response of photoreceivers using self-homodyne method,” Electron. Lett. 25(11), 722–723 (1989).
[CrossRef]

S. Kawanishi and M. Saruwatari, “A very wide-band frequency response measurement system using optical heterodyne detection,” IEEE Trans. Instrum. Meas. 38(2), 569–573 (1989).
[CrossRef]

O. Ishida, H. Toba, and F. Kano, “Optical sweeper with double-heterodyne frequency-locked loop,” Electron. Lett. 25(22), 1495–1496 (1989).
[CrossRef]

T. S. Tan, R. L. Jungerman, and S. S. Elliott, “Optical receiver and modulator frequency response measurement with a Nd:YAG ring laser heterodyne technique,” IEEE Trans. Microw. Theory Tech. 37(8), 1217–1222 (1989).
[CrossRef]

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, “6-34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers,” Electron. Lett. 25(18), 1242–1243 (1989).
[CrossRef]

1987 (1)

J. E. Bowers and C. A. Burrus, “Ultrawide-band long-wavelength p-i-n photodetectors,” J. Lightwave Technol. 5(10), 1339–1350 (1987).
[CrossRef]

1982 (1)

L. Piccari and P. Spano, “New method for measuring ultrawide frequency response of optical detectors,” Electron. Lett. 18(3), 116–118 (1982).
[CrossRef]

1978 (1)

Bach, H.-G.

A. Beling, H.-G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “High-speed miniaturized photodiode and parallel-fed traveling-wave photodetectors based on InP,” IEEE J. Sel. Top. Quantum Electron. 13(1), 15–21 (2007).
[CrossRef]

Baney, D. M.

D. M. Baney, W. V. Sorin, and S. A. Newton, “High-frequency photodiode characterization using a filtered intensity noise technique,” IEEE Photon. Technol. Lett. 6(10), 1258–1260 (1994).
[CrossRef]

Beling, A.

A. Beling, H.-G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “High-speed miniaturized photodiode and parallel-fed traveling-wave photodetectors based on InP,” IEEE J. Sel. Top. Quantum Electron. 13(1), 15–21 (2007).
[CrossRef]

Bimberg, D.

F. Z. Xie, D. Kuhl, E. H. Böttcher, S. Y. Ren, and D. Bimberg, “Wide-band frequency response measurements of photodetectors using low-level photocurrent noise detection,” J. Appl. Phys. 73(12), 8641–8646 (1993).
[CrossRef]

Böttcher, E. H.

F. Z. Xie, D. Kuhl, E. H. Böttcher, S. Y. Ren, and D. Bimberg, “Wide-band frequency response measurements of photodetectors using low-level photocurrent noise detection,” J. Appl. Phys. 73(12), 8641–8646 (1993).
[CrossRef]

Bowers, J. E.

J. E. Bowers and C. A. Burrus, “Ultrawide-band long-wavelength p-i-n photodetectors,” J. Lightwave Technol. 5(10), 1339–1350 (1987).
[CrossRef]

Burrus, C. A.

J. E. Bowers and C. A. Burrus, “Ultrawide-band long-wavelength p-i-n photodetectors,” J. Lightwave Technol. 5(10), 1339–1350 (1987).
[CrossRef]

Clement, T. S.

P. D. Hale, A. Dienstfrey, J. C. M. Wang, D. F. Williams, A. Lewandowski, D. A. Keenan, and T. S. Clement, “Traceable waveform calibration with a covariance-based uncertainty analysis,” IEEE Trans. Instrum. Meas. 58(10), 3554–3568 (2009).
[CrossRef]

T. S. Clement, P. D. Hale, D. F. Williams, J. C. M. Wang, A. Dienstfrey, and D. A. Keenan, “Calibration of sampling oscilloscopes with high-speed photodiodes,” IEEE Trans. Microw. Theory Tech. 54(8), 3173–3181 (2006).
[CrossRef]

A. Dienstfrey, P. D. Hale, D. A. Keenan, T. S. Clement, and D. F. Williams, “Minimum-phase calibration of sampling-oscilloscopes,” IEEE Trans. Microw. Theory Tech. 54(8), 3197–3208 (2006).
[CrossRef]

D. F. Williams, A. Lewandowski, T. S. Clement, J. C. M. Wang, P. D. Hale, J. M. Morgan, D. A. Keenan, and A. Dienstfrey, “Covariance-based uncertainty analysis of the NIST electrooptic sampling system,” IEEE Trans. Microw. Theory Tech. 54(1), 481–491 (2006).
[CrossRef]

Dagenais, M.

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, “6-34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers,” Electron. Lett. 25(18), 1242–1243 (1989).
[CrossRef]

Dienstfrey, A.

P. D. Hale, A. Dienstfrey, J. C. M. Wang, D. F. Williams, A. Lewandowski, D. A. Keenan, and T. S. Clement, “Traceable waveform calibration with a covariance-based uncertainty analysis,” IEEE Trans. Instrum. Meas. 58(10), 3554–3568 (2009).
[CrossRef]

A. Dienstfrey, P. D. Hale, D. A. Keenan, T. S. Clement, and D. F. Williams, “Minimum-phase calibration of sampling-oscilloscopes,” IEEE Trans. Microw. Theory Tech. 54(8), 3197–3208 (2006).
[CrossRef]

T. S. Clement, P. D. Hale, D. F. Williams, J. C. M. Wang, A. Dienstfrey, and D. A. Keenan, “Calibration of sampling oscilloscopes with high-speed photodiodes,” IEEE Trans. Microw. Theory Tech. 54(8), 3173–3181 (2006).
[CrossRef]

D. F. Williams, A. Lewandowski, T. S. Clement, J. C. M. Wang, P. D. Hale, J. M. Morgan, D. A. Keenan, and A. Dienstfrey, “Covariance-based uncertainty analysis of the NIST electrooptic sampling system,” IEEE Trans. Microw. Theory Tech. 54(1), 481–491 (2006).
[CrossRef]

Elliott, S. S.

T. S. Tan, R. L. Jungerman, and S. S. Elliott, “Optical receiver and modulator frequency response measurement with a Nd:YAG ring laser heterodyne technique,” IEEE Trans. Microw. Theory Tech. 37(8), 1217–1222 (1989).
[CrossRef]

Esman, R. D.

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, “6-34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers,” Electron. Lett. 25(18), 1242–1243 (1989).
[CrossRef]

Goldberg, L.

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, “6-34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers,” Electron. Lett. 25(18), 1242–1243 (1989).
[CrossRef]

Goll, J. H.

R. T. Hawkins, M. D. Jones, S. H. Pepper, J. H. Goll, and M. K. Ravel, “Vector characterization of photodetectors, photoreceivers, and optical pulse sources by time-domain pulse response measurements,” IEEE Trans. Instrum. Meas. 41(4), 467–475 (1992).
[CrossRef]

Hale, P. D.

P. D. Hale, A. Dienstfrey, J. C. M. Wang, D. F. Williams, A. Lewandowski, D. A. Keenan, and T. S. Clement, “Traceable waveform calibration with a covariance-based uncertainty analysis,” IEEE Trans. Instrum. Meas. 58(10), 3554–3568 (2009).
[CrossRef]

T. S. Clement, P. D. Hale, D. F. Williams, J. C. M. Wang, A. Dienstfrey, and D. A. Keenan, “Calibration of sampling oscilloscopes with high-speed photodiodes,” IEEE Trans. Microw. Theory Tech. 54(8), 3173–3181 (2006).
[CrossRef]

A. Dienstfrey, P. D. Hale, D. A. Keenan, T. S. Clement, and D. F. Williams, “Minimum-phase calibration of sampling-oscilloscopes,” IEEE Trans. Microw. Theory Tech. 54(8), 3197–3208 (2006).
[CrossRef]

D. F. Williams, A. Lewandowski, T. S. Clement, J. C. M. Wang, P. D. Hale, J. M. Morgan, D. A. Keenan, and A. Dienstfrey, “Covariance-based uncertainty analysis of the NIST electrooptic sampling system,” IEEE Trans. Microw. Theory Tech. 54(1), 481–491 (2006).
[CrossRef]

P. D. Hale, C. M. Wang, R. Park, and W. Y. Lau, “A transfer standard for measuring photoreceiver frequency response,” J. Lightwave Technol. 14(11), 2457–2466 (1996).
[CrossRef]

Han, W.

B. H. Zhang, N. H. Zhu, W. Han, J. H. Ke, H. G. Zhang, M. Ren, W. Li, and L. Xie, “Development of swept frequency method for measuring frequency response of photodetectors based on harmonic analysis,” IEEE Photon. Technol. Lett. 21(7), 459–461 (2009).
[CrossRef]

Harper, M. R.

D. A. Humphreys, M. R. Harper, A. J. A. Smith, and I. M. Smith, “Vector calibration of optical reference receivers using a frequency-domain method,” IEEE Trans. Instrum. Meas. 54(2), 894–897 (2005).
[CrossRef]

Hawkins, R. T.

R. T. Hawkins, M. D. Jones, S. H. Pepper, J. H. Goll, and M. K. Ravel, “Vector characterization of photodetectors, photoreceivers, and optical pulse sources by time-domain pulse response measurements,” IEEE Trans. Instrum. Meas. 41(4), 467–475 (1992).
[CrossRef]

Huang, H. P.

N. H. Zhu, J. M. Wen, H. S. San, H. P. Huang, L. J. Zhao, and W. Wang, “Improved optical heterodyne methods for measuring frequency response of photodetectors,” IEEE J. Quantum Electron. 42(3), 241–248 (2006).
[CrossRef]

Humphreys, D. A.

D. A. Humphreys, M. R. Harper, A. J. A. Smith, and I. M. Smith, “Vector calibration of optical reference receivers using a frequency-domain method,” IEEE Trans. Instrum. Meas. 54(2), 894–897 (2005).
[CrossRef]

Ishida, O.

O. Ishida, H. Toba, and F. Kano, “Optical sweeper with double-heterodyne frequency-locked loop,” Electron. Lett. 25(22), 1495–1496 (1989).
[CrossRef]

Jones, M. D.

R. T. Hawkins, M. D. Jones, S. H. Pepper, J. H. Goll, and M. K. Ravel, “Vector characterization of photodetectors, photoreceivers, and optical pulse sources by time-domain pulse response measurements,” IEEE Trans. Instrum. Meas. 41(4), 467–475 (1992).
[CrossRef]

Jungerman, R. L.

T. S. Tan, R. L. Jungerman, and S. S. Elliott, “Optical receiver and modulator frequency response measurement with a Nd:YAG ring laser heterodyne technique,” IEEE Trans. Microw. Theory Tech. 37(8), 1217–1222 (1989).
[CrossRef]

Kano, F.

O. Ishida, H. Toba, and F. Kano, “Optical sweeper with double-heterodyne frequency-locked loop,” Electron. Lett. 25(22), 1495–1496 (1989).
[CrossRef]

Kawanishi, S.

S. Kawanishi and M. Saruwatari, “A very wide-band frequency response measurement system using optical heterodyne detection,” IEEE Trans. Instrum. Meas. 38(2), 569–573 (1989).
[CrossRef]

Ke, J. H.

B. H. Zhang, N. H. Zhu, W. Han, J. H. Ke, H. G. Zhang, M. Ren, W. Li, and L. Xie, “Development of swept frequency method for measuring frequency response of photodetectors based on harmonic analysis,” IEEE Photon. Technol. Lett. 21(7), 459–461 (2009).
[CrossRef]

Keenan, D. A.

P. D. Hale, A. Dienstfrey, J. C. M. Wang, D. F. Williams, A. Lewandowski, D. A. Keenan, and T. S. Clement, “Traceable waveform calibration with a covariance-based uncertainty analysis,” IEEE Trans. Instrum. Meas. 58(10), 3554–3568 (2009).
[CrossRef]

A. Dienstfrey, P. D. Hale, D. A. Keenan, T. S. Clement, and D. F. Williams, “Minimum-phase calibration of sampling-oscilloscopes,” IEEE Trans. Microw. Theory Tech. 54(8), 3197–3208 (2006).
[CrossRef]

T. S. Clement, P. D. Hale, D. F. Williams, J. C. M. Wang, A. Dienstfrey, and D. A. Keenan, “Calibration of sampling oscilloscopes with high-speed photodiodes,” IEEE Trans. Microw. Theory Tech. 54(8), 3173–3181 (2006).
[CrossRef]

D. F. Williams, A. Lewandowski, T. S. Clement, J. C. M. Wang, P. D. Hale, J. M. Morgan, D. A. Keenan, and A. Dienstfrey, “Covariance-based uncertainty analysis of the NIST electrooptic sampling system,” IEEE Trans. Microw. Theory Tech. 54(1), 481–491 (2006).
[CrossRef]

Krüger, U.

J. Wang, U. Krüger, B. Schwarz, and K. Petermann, “Measurement of frequency response of photoreceivers using self-homodyne method,” Electron. Lett. 25(11), 722–723 (1989).
[CrossRef]

Kuhl, D.

F. Z. Xie, D. Kuhl, E. H. Böttcher, S. Y. Ren, and D. Bimberg, “Wide-band frequency response measurements of photodetectors using low-level photocurrent noise detection,” J. Appl. Phys. 73(12), 8641–8646 (1993).
[CrossRef]

Kunkel, R.

A. Beling, H.-G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “High-speed miniaturized photodiode and parallel-fed traveling-wave photodetectors based on InP,” IEEE J. Sel. Top. Quantum Electron. 13(1), 15–21 (2007).
[CrossRef]

Lau, W. Y.

P. D. Hale, C. M. Wang, R. Park, and W. Y. Lau, “A transfer standard for measuring photoreceiver frequency response,” J. Lightwave Technol. 14(11), 2457–2466 (1996).
[CrossRef]

Lewandowski, A.

P. D. Hale, A. Dienstfrey, J. C. M. Wang, D. F. Williams, A. Lewandowski, D. A. Keenan, and T. S. Clement, “Traceable waveform calibration with a covariance-based uncertainty analysis,” IEEE Trans. Instrum. Meas. 58(10), 3554–3568 (2009).
[CrossRef]

D. F. Williams, A. Lewandowski, T. S. Clement, J. C. M. Wang, P. D. Hale, J. M. Morgan, D. A. Keenan, and A. Dienstfrey, “Covariance-based uncertainty analysis of the NIST electrooptic sampling system,” IEEE Trans. Microw. Theory Tech. 54(1), 481–491 (2006).
[CrossRef]

Li, W.

B. H. Zhang, N. H. Zhu, W. Han, J. H. Ke, H. G. Zhang, M. Ren, W. Li, and L. Xie, “Development of swept frequency method for measuring frequency response of photodetectors based on harmonic analysis,” IEEE Photon. Technol. Lett. 21(7), 459–461 (2009).
[CrossRef]

Mekonnen, G. G.

A. Beling, H.-G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “High-speed miniaturized photodiode and parallel-fed traveling-wave photodetectors based on InP,” IEEE J. Sel. Top. Quantum Electron. 13(1), 15–21 (2007).
[CrossRef]

Morgan, J. M.

D. F. Williams, A. Lewandowski, T. S. Clement, J. C. M. Wang, P. D. Hale, J. M. Morgan, D. A. Keenan, and A. Dienstfrey, “Covariance-based uncertainty analysis of the NIST electrooptic sampling system,” IEEE Trans. Microw. Theory Tech. 54(1), 481–491 (2006).
[CrossRef]

Newton, S. A.

D. M. Baney, W. V. Sorin, and S. A. Newton, “High-frequency photodiode characterization using a filtered intensity noise technique,” IEEE Photon. Technol. Lett. 6(10), 1258–1260 (1994).
[CrossRef]

Park, R.

P. D. Hale, C. M. Wang, R. Park, and W. Y. Lau, “A transfer standard for measuring photoreceiver frequency response,” J. Lightwave Technol. 14(11), 2457–2466 (1996).
[CrossRef]

Pepper, S. H.

R. T. Hawkins, M. D. Jones, S. H. Pepper, J. H. Goll, and M. K. Ravel, “Vector characterization of photodetectors, photoreceivers, and optical pulse sources by time-domain pulse response measurements,” IEEE Trans. Instrum. Meas. 41(4), 467–475 (1992).
[CrossRef]

Petermann, K.

J. Wang, U. Krüger, B. Schwarz, and K. Petermann, “Measurement of frequency response of photoreceivers using self-homodyne method,” Electron. Lett. 25(11), 722–723 (1989).
[CrossRef]

Piccari, L.

L. Piccari and P. Spano, “New method for measuring ultrawide frequency response of optical detectors,” Electron. Lett. 18(3), 116–118 (1982).
[CrossRef]

Ravel, M. K.

R. T. Hawkins, M. D. Jones, S. H. Pepper, J. H. Goll, and M. K. Ravel, “Vector characterization of photodetectors, photoreceivers, and optical pulse sources by time-domain pulse response measurements,” IEEE Trans. Instrum. Meas. 41(4), 467–475 (1992).
[CrossRef]

Ren, M.

B. H. Zhang, N. H. Zhu, W. Han, J. H. Ke, H. G. Zhang, M. Ren, W. Li, and L. Xie, “Development of swept frequency method for measuring frequency response of photodetectors based on harmonic analysis,” IEEE Photon. Technol. Lett. 21(7), 459–461 (2009).
[CrossRef]

Ren, S. Y.

F. Z. Xie, D. Kuhl, E. H. Böttcher, S. Y. Ren, and D. Bimberg, “Wide-band frequency response measurements of photodetectors using low-level photocurrent noise detection,” J. Appl. Phys. 73(12), 8641–8646 (1993).
[CrossRef]

San, H. S.

N. H. Zhu, J. M. Wen, H. S. San, H. P. Huang, L. J. Zhao, and W. Wang, “Improved optical heterodyne methods for measuring frequency response of photodetectors,” IEEE J. Quantum Electron. 42(3), 241–248 (2006).
[CrossRef]

Saruwatari, M.

S. Kawanishi and M. Saruwatari, “A very wide-band frequency response measurement system using optical heterodyne detection,” IEEE Trans. Instrum. Meas. 38(2), 569–573 (1989).
[CrossRef]

Schmidt, D.

A. Beling, H.-G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “High-speed miniaturized photodiode and parallel-fed traveling-wave photodetectors based on InP,” IEEE J. Sel. Top. Quantum Electron. 13(1), 15–21 (2007).
[CrossRef]

Schwarz, B.

J. Wang, U. Krüger, B. Schwarz, and K. Petermann, “Measurement of frequency response of photoreceivers using self-homodyne method,” Electron. Lett. 25(11), 722–723 (1989).
[CrossRef]

Smith, A. J. A.

D. A. Humphreys, M. R. Harper, A. J. A. Smith, and I. M. Smith, “Vector calibration of optical reference receivers using a frequency-domain method,” IEEE Trans. Instrum. Meas. 54(2), 894–897 (2005).
[CrossRef]

Smith, I. M.

D. A. Humphreys, M. R. Harper, A. J. A. Smith, and I. M. Smith, “Vector calibration of optical reference receivers using a frequency-domain method,” IEEE Trans. Instrum. Meas. 54(2), 894–897 (2005).
[CrossRef]

Sorin, W. V.

D. M. Baney, W. V. Sorin, and S. A. Newton, “High-frequency photodiode characterization using a filtered intensity noise technique,” IEEE Photon. Technol. Lett. 6(10), 1258–1260 (1994).
[CrossRef]

Spano, P.

L. Piccari and P. Spano, “New method for measuring ultrawide frequency response of optical detectors,” Electron. Lett. 18(3), 116–118 (1982).
[CrossRef]

Tan, T. S.

T. S. Tan, R. L. Jungerman, and S. S. Elliott, “Optical receiver and modulator frequency response measurement with a Nd:YAG ring laser heterodyne technique,” IEEE Trans. Microw. Theory Tech. 37(8), 1217–1222 (1989).
[CrossRef]

Toba, H.

O. Ishida, H. Toba, and F. Kano, “Optical sweeper with double-heterodyne frequency-locked loop,” Electron. Lett. 25(22), 1495–1496 (1989).
[CrossRef]

Uehara, S.

Wang, C. M.

P. D. Hale, C. M. Wang, R. Park, and W. Y. Lau, “A transfer standard for measuring photoreceiver frequency response,” J. Lightwave Technol. 14(11), 2457–2466 (1996).
[CrossRef]

Wang, J.

J. Wang, U. Krüger, B. Schwarz, and K. Petermann, “Measurement of frequency response of photoreceivers using self-homodyne method,” Electron. Lett. 25(11), 722–723 (1989).
[CrossRef]

Wang, J. C. M.

P. D. Hale, A. Dienstfrey, J. C. M. Wang, D. F. Williams, A. Lewandowski, D. A. Keenan, and T. S. Clement, “Traceable waveform calibration with a covariance-based uncertainty analysis,” IEEE Trans. Instrum. Meas. 58(10), 3554–3568 (2009).
[CrossRef]

T. S. Clement, P. D. Hale, D. F. Williams, J. C. M. Wang, A. Dienstfrey, and D. A. Keenan, “Calibration of sampling oscilloscopes with high-speed photodiodes,” IEEE Trans. Microw. Theory Tech. 54(8), 3173–3181 (2006).
[CrossRef]

D. F. Williams, A. Lewandowski, T. S. Clement, J. C. M. Wang, P. D. Hale, J. M. Morgan, D. A. Keenan, and A. Dienstfrey, “Covariance-based uncertainty analysis of the NIST electrooptic sampling system,” IEEE Trans. Microw. Theory Tech. 54(1), 481–491 (2006).
[CrossRef]

Wang, W.

N. H. Zhu, J. M. Wen, H. S. San, H. P. Huang, L. J. Zhao, and W. Wang, “Improved optical heterodyne methods for measuring frequency response of photodetectors,” IEEE J. Quantum Electron. 42(3), 241–248 (2006).
[CrossRef]

Weller, J. F.

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, “6-34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers,” Electron. Lett. 25(18), 1242–1243 (1989).
[CrossRef]

Wen, J. M.

N. H. Zhu, J. M. Wen, H. S. San, H. P. Huang, L. J. Zhao, and W. Wang, “Improved optical heterodyne methods for measuring frequency response of photodetectors,” IEEE J. Quantum Electron. 42(3), 241–248 (2006).
[CrossRef]

Williams, D. F.

P. D. Hale, A. Dienstfrey, J. C. M. Wang, D. F. Williams, A. Lewandowski, D. A. Keenan, and T. S. Clement, “Traceable waveform calibration with a covariance-based uncertainty analysis,” IEEE Trans. Instrum. Meas. 58(10), 3554–3568 (2009).
[CrossRef]

T. S. Clement, P. D. Hale, D. F. Williams, J. C. M. Wang, A. Dienstfrey, and D. A. Keenan, “Calibration of sampling oscilloscopes with high-speed photodiodes,” IEEE Trans. Microw. Theory Tech. 54(8), 3173–3181 (2006).
[CrossRef]

A. Dienstfrey, P. D. Hale, D. A. Keenan, T. S. Clement, and D. F. Williams, “Minimum-phase calibration of sampling-oscilloscopes,” IEEE Trans. Microw. Theory Tech. 54(8), 3197–3208 (2006).
[CrossRef]

D. F. Williams, A. Lewandowski, T. S. Clement, J. C. M. Wang, P. D. Hale, J. M. Morgan, D. A. Keenan, and A. Dienstfrey, “Covariance-based uncertainty analysis of the NIST electrooptic sampling system,” IEEE Trans. Microw. Theory Tech. 54(1), 481–491 (2006).
[CrossRef]

Williams, K. J.

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, “6-34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers,” Electron. Lett. 25(18), 1242–1243 (1989).
[CrossRef]

Xie, F. Z.

F. Z. Xie, D. Kuhl, E. H. Böttcher, S. Y. Ren, and D. Bimberg, “Wide-band frequency response measurements of photodetectors using low-level photocurrent noise detection,” J. Appl. Phys. 73(12), 8641–8646 (1993).
[CrossRef]

Xie, L.

B. H. Zhang, N. H. Zhu, W. Han, J. H. Ke, H. G. Zhang, M. Ren, W. Li, and L. Xie, “Development of swept frequency method for measuring frequency response of photodetectors based on harmonic analysis,” IEEE Photon. Technol. Lett. 21(7), 459–461 (2009).
[CrossRef]

Zhang, B. H.

B. H. Zhang, N. H. Zhu, W. Han, J. H. Ke, H. G. Zhang, M. Ren, W. Li, and L. Xie, “Development of swept frequency method for measuring frequency response of photodetectors based on harmonic analysis,” IEEE Photon. Technol. Lett. 21(7), 459–461 (2009).
[CrossRef]

Zhang, H. G.

B. H. Zhang, N. H. Zhu, W. Han, J. H. Ke, H. G. Zhang, M. Ren, W. Li, and L. Xie, “Development of swept frequency method for measuring frequency response of photodetectors based on harmonic analysis,” IEEE Photon. Technol. Lett. 21(7), 459–461 (2009).
[CrossRef]

Zhao, L. J.

N. H. Zhu, J. M. Wen, H. S. San, H. P. Huang, L. J. Zhao, and W. Wang, “Improved optical heterodyne methods for measuring frequency response of photodetectors,” IEEE J. Quantum Electron. 42(3), 241–248 (2006).
[CrossRef]

Zhu, N. H.

B. H. Zhang, N. H. Zhu, W. Han, J. H. Ke, H. G. Zhang, M. Ren, W. Li, and L. Xie, “Development of swept frequency method for measuring frequency response of photodetectors based on harmonic analysis,” IEEE Photon. Technol. Lett. 21(7), 459–461 (2009).
[CrossRef]

N. H. Zhu, J. M. Wen, H. S. San, H. P. Huang, L. J. Zhao, and W. Wang, “Improved optical heterodyne methods for measuring frequency response of photodetectors,” IEEE J. Quantum Electron. 42(3), 241–248 (2006).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (4)

J. Wang, U. Krüger, B. Schwarz, and K. Petermann, “Measurement of frequency response of photoreceivers using self-homodyne method,” Electron. Lett. 25(11), 722–723 (1989).
[CrossRef]

L. Piccari and P. Spano, “New method for measuring ultrawide frequency response of optical detectors,” Electron. Lett. 18(3), 116–118 (1982).
[CrossRef]

O. Ishida, H. Toba, and F. Kano, “Optical sweeper with double-heterodyne frequency-locked loop,” Electron. Lett. 25(22), 1495–1496 (1989).
[CrossRef]

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, “6-34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers,” Electron. Lett. 25(18), 1242–1243 (1989).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. H. Zhu, J. M. Wen, H. S. San, H. P. Huang, L. J. Zhao, and W. Wang, “Improved optical heterodyne methods for measuring frequency response of photodetectors,” IEEE J. Quantum Electron. 42(3), 241–248 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Beling, H.-G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “High-speed miniaturized photodiode and parallel-fed traveling-wave photodetectors based on InP,” IEEE J. Sel. Top. Quantum Electron. 13(1), 15–21 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

B. H. Zhang, N. H. Zhu, W. Han, J. H. Ke, H. G. Zhang, M. Ren, W. Li, and L. Xie, “Development of swept frequency method for measuring frequency response of photodetectors based on harmonic analysis,” IEEE Photon. Technol. Lett. 21(7), 459–461 (2009).
[CrossRef]

D. M. Baney, W. V. Sorin, and S. A. Newton, “High-frequency photodiode characterization using a filtered intensity noise technique,” IEEE Photon. Technol. Lett. 6(10), 1258–1260 (1994).
[CrossRef]

IEEE Trans. Instrum. Meas. (4)

D. A. Humphreys, M. R. Harper, A. J. A. Smith, and I. M. Smith, “Vector calibration of optical reference receivers using a frequency-domain method,” IEEE Trans. Instrum. Meas. 54(2), 894–897 (2005).
[CrossRef]

S. Kawanishi and M. Saruwatari, “A very wide-band frequency response measurement system using optical heterodyne detection,” IEEE Trans. Instrum. Meas. 38(2), 569–573 (1989).
[CrossRef]

P. D. Hale, A. Dienstfrey, J. C. M. Wang, D. F. Williams, A. Lewandowski, D. A. Keenan, and T. S. Clement, “Traceable waveform calibration with a covariance-based uncertainty analysis,” IEEE Trans. Instrum. Meas. 58(10), 3554–3568 (2009).
[CrossRef]

R. T. Hawkins, M. D. Jones, S. H. Pepper, J. H. Goll, and M. K. Ravel, “Vector characterization of photodetectors, photoreceivers, and optical pulse sources by time-domain pulse response measurements,” IEEE Trans. Instrum. Meas. 41(4), 467–475 (1992).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (4)

D. F. Williams, A. Lewandowski, T. S. Clement, J. C. M. Wang, P. D. Hale, J. M. Morgan, D. A. Keenan, and A. Dienstfrey, “Covariance-based uncertainty analysis of the NIST electrooptic sampling system,” IEEE Trans. Microw. Theory Tech. 54(1), 481–491 (2006).
[CrossRef]

T. S. Clement, P. D. Hale, D. F. Williams, J. C. M. Wang, A. Dienstfrey, and D. A. Keenan, “Calibration of sampling oscilloscopes with high-speed photodiodes,” IEEE Trans. Microw. Theory Tech. 54(8), 3173–3181 (2006).
[CrossRef]

A. Dienstfrey, P. D. Hale, D. A. Keenan, T. S. Clement, and D. F. Williams, “Minimum-phase calibration of sampling-oscilloscopes,” IEEE Trans. Microw. Theory Tech. 54(8), 3197–3208 (2006).
[CrossRef]

T. S. Tan, R. L. Jungerman, and S. S. Elliott, “Optical receiver and modulator frequency response measurement with a Nd:YAG ring laser heterodyne technique,” IEEE Trans. Microw. Theory Tech. 37(8), 1217–1222 (1989).
[CrossRef]

J. Appl. Phys. (1)

F. Z. Xie, D. Kuhl, E. H. Böttcher, S. Y. Ren, and D. Bimberg, “Wide-band frequency response measurements of photodetectors using low-level photocurrent noise detection,” J. Appl. Phys. 73(12), 8641–8646 (1993).
[CrossRef]

J. Lightwave Technol. (2)

P. D. Hale, C. M. Wang, R. Park, and W. Y. Lau, “A transfer standard for measuring photoreceiver frequency response,” J. Lightwave Technol. 14(11), 2457–2466 (1996).
[CrossRef]

J. E. Bowers and C. A. Burrus, “Ultrawide-band long-wavelength p-i-n photodetectors,” J. Lightwave Technol. 5(10), 1339–1350 (1987).
[CrossRef]

Other (8)

P. D. Hale and C. M. Wang, “Calibration service of optoelectronic frequency response at 1319 nm for combined photodiode/RF power sensor transfer standards,” NIST Special Publication 250–51 (1999).

D. F. Williams, P. D. Hale, T. S. Clement, and J. M. Morgan, “Calibrating electro-optic sampling systems,” in IEEE MTT-S Int. Microw. Symp. Dig., vol. 3 (2001), pp. 1527–1530.

D. A. Humphreys, “Measurement of high-speed photodiodes using DFB heterodyne system with microwave reflectometer,” in High-Speed Electronics and Optoelectronics, Proc. SPIE 1680–15, 138—152 (1992).

M. Weidman, “Direct comparison transfer of microwave power sensor calibration,” NIST Technical Note 1379 (1996).

L. D’Evelyn, L. Hollberg, and Z. B. Popovic, “A CPW phase-locked loop for diode-laser stabilization,” in Microwave Symposium Digest 1994, IEEE MTT-S International (1994), pp. 65–68.

B. W. Silverman, Density estimation for statistics and data analysis (Chapman and Hill, London, England, 1986).

B. N. Taylor and C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” NIST Technical Note 1297 (1994).

P. D. Hale, T. S. Clement, and D. F. Williams, “Frequency response metrology for high-speed optical receivers, in Optical Fiber Communication Conference and Exhibit, OFC Technical Digest Series (Optical Society of America, 2001), paper WQ1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The heterodyne measurement system is shown with a representative receiver to be measured. A photodiode-based receiver is illustrated within the dotted circle, and a combined receiver and power sensor is illustrated within the dotted rectangle. PLL: phase-locked loop, DVM: digital voltmeter, Vb: bias voltage, Rb: bias resistor, PD: photodiode, RL: load resistor, M: mismatch correction, Kb: calibration factor.

Fig. 2
Fig. 2

The complete heterodyne phase-locked-loop system is shown, with red dotted lines in the upper portion representing optical paths. The green inset box details the free-space coupling optics. The solid blue lines in the lower portion designate electrical paths. L1 and L2: fiber lasers, PZT: piezo-transducer, AOM: acousto-optic modulator, PC: polarization controller, DUT: device under test, LF PD and HF PD: low- and high-frequency photodiode receivers, ESA: electrical spectrum analyzer, G: gain, BPF: band-pass filter, 1/8: frequency divider, PLL: phase-locked loop circuit, VCO: voltage-controlled oscillator, LPF: low-pass filter, HV: high voltage, C: collimator, M: mirror, A: attenuator, BS: beamsplitter, ISO: optical isolator.

Fig. 3
Fig. 3

Electrical spectra are shown for the phase-locked loop operation of the heterodyne system at a resolution of 10 kHz (a) and 1 Hz (b). In both cases, the normalized frequency of 0 Hz corresponds to a heterodyne frequency of 1 GHz. In (b), the beat signal is about 70 dB above the noise pedestal and has a width equal to or less than the 1 Hz resolution bandwidth.

Fig. 4
Fig. 4

The low-frequency response of a combined photoreceiver and power sensor transfer standard measured with the phase-locked heterodyne system is shown. The measured response curve extends from 2 MHz to 1.9 GHz in 1 MHz increments. Also shown is the expanded uncertainty for the measured response, giving an approximate 95% confidence interval.

Fig. 5
Fig. 5

The normalized frequency response of a 50 GHz photoreceiver module measured using an open-loop heterodyne technique (red) is compared to an electro-optic sampling (EOS) technique (blue). The curves differ by no more than 0.4 dB.

Tables (1)

Tables Icon

Table 1 Phase-Locked Loop Heterodyne Measurement Uncertainties at 1 GHz

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P total (t)=( P 01 + P 02 )+2 P 01 P 02 cos(2πft),
2 (f) R 2 (f) R 2 (0) 2 P RF (f) i dc 2 R L .

Metrics