Abstract

We propose a novel embedded-core hollow optical fiber composed of a central air hole, a semi-elliptical core, and an annular cladding. The fiber characteristics are investigated based on the finite element method (FEM), including mode properties, birefringence, confinement loss, evanescent field and bending loss. The results reveal that the embedded-core hollow optical fiber has a non-zero cut-off frequency for the fundamental mode. The birefringence of the hollow optical fiber is insensitive to the size of the central air hole and ultra-sensitive to the thickness of the cladding between the core and the air hole. Both thin cladding between the core and the air hole and small core ellipticity lead to high birefringence. An ultra-low birefringence fiber can be achieved by selecting a proper ellipticity of the core. The embedded-core hollow optical fiber holds a strong evanescent field due to special structure of thin cladding and therefore it is of importance for potential applications such as gas and biochemical sensors. The bending losses are measured experimentally. The bending loss strongly depends on bending orientations of the fiber. The proposed fiber can be used as polarization interference devices if the orientation angle of the fiber core is neither 0° nor 90°.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Su, T. H. Lee, and S. R. Elliott, “Evanescent-wave excitation of surface-enhanced Raman scattering substrates by an optical-fiber taper,” Opt. Lett. 34(17), 2685–2687 (2009).
    [CrossRef] [PubMed]
  2. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30(11), 1273–1275 (2005).
    [CrossRef] [PubMed]
  3. S. T. Huntington, K. A. Nugent, A. Roberts, P. Mulvaney, and K. M. Lo, “Field characterization of a D-shaped optical fiber using scanning near-field optical microscopy,” J. Appl. Phys. 82(2), 510 (1997).
    [CrossRef]
  4. P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  5. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
    [CrossRef] [PubMed]
  6. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25(18), 1325–1327 (2000).
    [CrossRef] [PubMed]
  7. K. Hansen, “Dispersion flattened hybrid-core nonlinear photonic crystal fiber,” Opt. Express 11(13), 1503–1509 (2003).
    [CrossRef] [PubMed]
  8. T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
    [CrossRef]
  9. L. Fu, B. K. Thomas, and L. Dong, “Efficient supercontinuum generations in silica suspended core fibers,” Opt. Express 16(24), 19629–19642 (2008).
    [CrossRef] [PubMed]
  10. C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011).
    [CrossRef] [PubMed]
  11. A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
    [CrossRef]
  12. M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express 16(12), 8427–8432 (2008).
    [CrossRef] [PubMed]
  13. X. Zhang, R. Wang, F. M. Cox, B. T. Kuhlmey, and M. C. J. Large, “Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers,” Opt. Express 15(24), 16270–16278 (2007).
    [CrossRef] [PubMed]
  14. S. Sudo, I. Yokohama, H. Yasaka, Y. Sakai, and T. Ikegami, “Optical fiber with sharp optical absorptions by vibrational-rotational absorption of C2H2 molecules,” IEEE Photon. Technol. Lett. 2(2), 128–131 (1990).
    [CrossRef]
  15. S. H. Lee, B. H. Kim, and W. T. Han, “Effect of filler metals on the temperature sensitivity of side-hole fiber,” Opt. Express 17(12), 9712–9717 (2009).
    [CrossRef] [PubMed]
  16. D. S. Moon, B. H. Kim, A. Lin, G. Sun, Y. G. Han, W. T. Han, and Y. Chung, “The temperature sensitivity of Sagnac loop interferometer based on polarization maintaining side-hole fiber,” Opt. Express 15(13), 7962–7967 (2007).
    [CrossRef] [PubMed]
  17. A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey fiber analysis through the finite-element method,” IEEE Photon. Technol. Lett. 14(11), 1530–1532 (2002).
    [CrossRef]
  18. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984).
    [CrossRef] [PubMed]
  19. I. K. Hwang, Y. H. Lee, K. Oh, and D. Payne, “High birefringence in elliptical hollow optical fiber,” Opt. Express 12(9), 1916–1923 (2004).
    [CrossRef] [PubMed]
  20. P. L. Teixeira and W. C. Chew, “Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates,” IEEE Microw. Guid. Wave Lett. 7(11), 371–373 (1997).
    [CrossRef]
  21. M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. QE-11(2), 75–83 (1975).
    [CrossRef]

2011 (1)

2009 (2)

2008 (3)

2007 (3)

2005 (1)

2004 (1)

2003 (2)

2002 (1)

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey fiber analysis through the finite-element method,” IEEE Photon. Technol. Lett. 14(11), 1530–1532 (2002).
[CrossRef]

2000 (1)

1997 (3)

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
[CrossRef] [PubMed]

S. T. Huntington, K. A. Nugent, A. Roberts, P. Mulvaney, and K. M. Lo, “Field characterization of a D-shaped optical fiber using scanning near-field optical microscopy,” J. Appl. Phys. 82(2), 510 (1997).
[CrossRef]

P. L. Teixeira and W. C. Chew, “Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates,” IEEE Microw. Guid. Wave Lett. 7(11), 371–373 (1997).
[CrossRef]

1990 (1)

S. Sudo, I. Yokohama, H. Yasaka, Y. Sakai, and T. Ikegami, “Optical fiber with sharp optical absorptions by vibrational-rotational absorption of C2H2 molecules,” IEEE Photon. Technol. Lett. 2(2), 128–131 (1990).
[CrossRef]

1984 (1)

1975 (1)

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. QE-11(2), 75–83 (1975).
[CrossRef]

Arriaga, J.

Bang, O.

Birks, T. A.

Chen, J. S. Y.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[CrossRef]

Chew, W. C.

P. L. Teixeira and W. C. Chew, “Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates,” IEEE Microw. Guid. Wave Lett. 7(11), 371–373 (1997).
[CrossRef]

Chung, Y.

Cox, F. M.

Cucinotta, A.

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey fiber analysis through the finite-element method,” IEEE Photon. Technol. Lett. 14(11), 1530–1532 (2002).
[CrossRef]

Dong, L.

Elliott, S. R.

Euser, T. G.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[CrossRef]

Farrer, N. J.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[CrossRef]

Fleming, J. W.

Fu, L.

Han, W. T.

Han, Y. G.

Hansen, K.

Harris, J. H.

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. QE-11(2), 75–83 (1975).
[CrossRef]

Hautakorpi, M.

Heiblum, M.

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. QE-11(2), 75–83 (1975).
[CrossRef]

Huntington, S. T.

S. T. Huntington, K. A. Nugent, A. Roberts, P. Mulvaney, and K. M. Lo, “Field characterization of a D-shaped optical fiber using scanning near-field optical microscopy,” J. Appl. Phys. 82(2), 510 (1997).
[CrossRef]

Hwang, I. K.

Ikegami, T.

S. Sudo, I. Yokohama, H. Yasaka, Y. Sakai, and T. Ikegami, “Optical fiber with sharp optical absorptions by vibrational-rotational absorption of C2H2 molecules,” IEEE Photon. Technol. Lett. 2(2), 128–131 (1990).
[CrossRef]

Kim, B. H.

Knight, J. C.

Kuhlmey, B. T.

Large, M. C. J.

Lee, S. H.

Lee, T. H.

Lee, Y. H.

Lin, A.

Lo, K. M.

S. T. Huntington, K. A. Nugent, A. Roberts, P. Mulvaney, and K. M. Lo, “Field characterization of a D-shaped optical fiber using scanning near-field optical microscopy,” J. Appl. Phys. 82(2), 510 (1997).
[CrossRef]

Ludvigsen, H.

Mangan, B. J.

Mansuripur, M.

Markos, C.

Mattinen, M.

Moon, D. S.

Mulvaney, P.

S. T. Huntington, K. A. Nugent, A. Roberts, P. Mulvaney, and K. M. Lo, “Field characterization of a D-shaped optical fiber using scanning near-field optical microscopy,” J. Appl. Phys. 82(2), 510 (1997).
[CrossRef]

Nugent, K. A.

S. T. Huntington, K. A. Nugent, A. Roberts, P. Mulvaney, and K. M. Lo, “Field characterization of a D-shaped optical fiber using scanning near-field optical microscopy,” J. Appl. Phys. 82(2), 510 (1997).
[CrossRef]

Oh, K.

Ortigosa-Blanch, A.

Payne, D.

Peyghambarian, N.

Poletti, F.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
[CrossRef]

Polynkin, A.

Polynkin, P.

Richardson, D. J.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
[CrossRef]

Roberts, A.

S. T. Huntington, K. A. Nugent, A. Roberts, P. Mulvaney, and K. M. Lo, “Field characterization of a D-shaped optical fiber using scanning near-field optical microscopy,” J. Appl. Phys. 82(2), 510 (1997).
[CrossRef]

Russell, P. St. J.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[CrossRef]

P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25(18), 1325–1327 (2000).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
[CrossRef] [PubMed]

Sadler, P. J.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[CrossRef]

Sahu, J. K.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
[CrossRef]

Sakai, Y.

S. Sudo, I. Yokohama, H. Yasaka, Y. Sakai, and T. Ikegami, “Optical fiber with sharp optical absorptions by vibrational-rotational absorption of C2H2 molecules,” IEEE Photon. Technol. Lett. 2(2), 128–131 (1990).
[CrossRef]

Scharrer, M.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[CrossRef]

Selleri, S.

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey fiber analysis through the finite-element method,” IEEE Photon. Technol. Lett. 14(11), 1530–1532 (2002).
[CrossRef]

Su, L.

Sudo, S.

S. Sudo, I. Yokohama, H. Yasaka, Y. Sakai, and T. Ikegami, “Optical fiber with sharp optical absorptions by vibrational-rotational absorption of C2H2 molecules,” IEEE Photon. Technol. Lett. 2(2), 128–131 (1990).
[CrossRef]

Sun, G.

Teixeira, P. L.

P. L. Teixeira and W. C. Chew, “Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates,” IEEE Microw. Guid. Wave Lett. 7(11), 371–373 (1997).
[CrossRef]

Thomas, B. K.

Town, G. E.

Vincetti, L.

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey fiber analysis through the finite-element method,” IEEE Photon. Technol. Lett. 14(11), 1530–1532 (2002).
[CrossRef]

Vlachos, K.

Wadsworth, W. J.

Wang, R.

Webb, A. S.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
[CrossRef]

Yasaka, H.

S. Sudo, I. Yokohama, H. Yasaka, Y. Sakai, and T. Ikegami, “Optical fiber with sharp optical absorptions by vibrational-rotational absorption of C2H2 molecules,” IEEE Photon. Technol. Lett. 2(2), 128–131 (1990).
[CrossRef]

Yokohama, I.

S. Sudo, I. Yokohama, H. Yasaka, Y. Sakai, and T. Ikegami, “Optical fiber with sharp optical absorptions by vibrational-rotational absorption of C2H2 molecules,” IEEE Photon. Technol. Lett. 2(2), 128–131 (1990).
[CrossRef]

Yuan, W.

Zhang, X.

Zoboli, M.

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey fiber analysis through the finite-element method,” IEEE Photon. Technol. Lett. 14(11), 1530–1532 (2002).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. QE-11(2), 75–83 (1975).
[CrossRef]

IEEE Microw. Guid. Wave Lett. (1)

P. L. Teixeira and W. C. Chew, “Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates,” IEEE Microw. Guid. Wave Lett. 7(11), 371–373 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey fiber analysis through the finite-element method,” IEEE Photon. Technol. Lett. 14(11), 1530–1532 (2002).
[CrossRef]

S. Sudo, I. Yokohama, H. Yasaka, Y. Sakai, and T. Ikegami, “Optical fiber with sharp optical absorptions by vibrational-rotational absorption of C2H2 molecules,” IEEE Photon. Technol. Lett. 2(2), 128–131 (1990).
[CrossRef]

J. Appl. Phys. (2)

S. T. Huntington, K. A. Nugent, A. Roberts, P. Mulvaney, and K. M. Lo, “Field characterization of a D-shaped optical fiber using scanning near-field optical microscopy,” J. Appl. Phys. 82(2), 510 (1997).
[CrossRef]

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[CrossRef]

Opt. Eng. (1)

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
[CrossRef]

Opt. Express (8)

M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express 16(12), 8427–8432 (2008).
[CrossRef] [PubMed]

X. Zhang, R. Wang, F. M. Cox, B. T. Kuhlmey, and M. C. J. Large, “Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers,” Opt. Express 15(24), 16270–16278 (2007).
[CrossRef] [PubMed]

S. H. Lee, B. H. Kim, and W. T. Han, “Effect of filler metals on the temperature sensitivity of side-hole fiber,” Opt. Express 17(12), 9712–9717 (2009).
[CrossRef] [PubMed]

D. S. Moon, B. H. Kim, A. Lin, G. Sun, Y. G. Han, W. T. Han, and Y. Chung, “The temperature sensitivity of Sagnac loop interferometer based on polarization maintaining side-hole fiber,” Opt. Express 15(13), 7962–7967 (2007).
[CrossRef] [PubMed]

K. Hansen, “Dispersion flattened hybrid-core nonlinear photonic crystal fiber,” Opt. Express 11(13), 1503–1509 (2003).
[CrossRef] [PubMed]

I. K. Hwang, Y. H. Lee, K. Oh, and D. Payne, “High birefringence in elliptical hollow optical fiber,” Opt. Express 12(9), 1916–1923 (2004).
[CrossRef] [PubMed]

L. Fu, B. K. Thomas, and L. Dong, “Efficient supercontinuum generations in silica suspended core fibers,” Opt. Express 16(24), 19629–19642 (2008).
[CrossRef] [PubMed]

C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011).
[CrossRef] [PubMed]

Opt. Lett. (4)

Science (1)

P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Photograph of an embedded-core hollow optical fiber sample (a) and zoom-in view of the core (b), and the cross section of equivalent fiber (c).

Fig. 2
Fig. 2

Mode characteristics of embedded-core hollow optical fibers with a circular core (a) and an elliptical core at d=2μm (b).

Fig. 3
Fig. 3

Birefringence of embedded-core hollow optical fibers with a circular core (a) and with an elliptical core for d=2μm (b).

Fig. 4
Fig. 4

Effects of the core ellipticity on the birefringence ( V=2 ).

Fig. 5
Fig. 5

Effects of the wavelength on the birefringence( d=2μm and V=2 ).

Fig. 6
Fig. 6

Effects of the liquid index on the birefringence ( e=0.5 , V=2 ).

Fig. 7
Fig. 7

Confinement loss (a) and fractional power of the evanescent wave (b) ( n 3 =1 ).

Fig. 8
Fig. 8

Confinement loss (a) and fractional power of the evanescent wave in the hole (b) with the filled liquid's refractive index ( λ=1.3μm ).

Fig. 9
Fig. 9

Bending losses for +x (a) and +y (b) bending directions for different bending radii.

Fig. 10
Fig. 10

Measured loss spectra of two opposite directions for different bending radii.

Fig. 11
Fig. 11

Change of the slow axis direction.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α dB =8.686 k 0 Im( n eff )
n eq (x,y)=n(x,y)exp(x/R)

Metrics