Abstract

The angular dependencies of the local field enhancement and the Raman emission enhancement are investigated, numerically and experimentally, for a plasmonic crystal double resonance SERS substrate consisting of a periodic array of gold disks above a gold film. We find that the local field enhancement is very sensitive to the incident angle. The Raman emission enhancement has a strong angular dependence on the detection direction, with the substrate “beaming” the Raman emission so that different Raman lines have different far-field patterns. We demonstrate that a stronger SERS signal results when the plasmonic substrate is illuminated with a collimated, rather than focused, laser beam.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007)
  2. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [CrossRef] [PubMed]
  3. Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
    [CrossRef]
  4. E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423(1-3), 63–67 (2006).
    [CrossRef]
  5. D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
    [CrossRef]
  6. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem.  1(1), 601–626 (2008).
    [CrossRef] [PubMed]
  7. A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
    [CrossRef] [PubMed]
  8. Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
    [CrossRef] [PubMed]
  9. J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82(2), 257–259 (2003).
    [CrossRef]
  10. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
    [CrossRef] [PubMed]
  11. M. G. Banaee and K. B. Crozier, “Gold nanorings as substrates for surface-enhanced Raman scattering,” Opt. Lett. 35(5), 760–762 (2010).
    [CrossRef] [PubMed]
  12. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
    [CrossRef]
  13. M. G. Banaee and K. B. Crozier, “Mixed dimer double-resonance substrates for surface-enhanced Raman spectroscopy,” ACS Nano 5(1), 307–314 (2011).
    [CrossRef] [PubMed]
  14. W. Zhu, M. G. Banaee, D. Wang, Y. Chu, and K. B. Crozier, “Lithographically fabricated optical antennas with gaps well below 10 nm,” Small 7(13), 1761–1766 (2011).
    [CrossRef] [PubMed]
  15. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [CrossRef]
  16. H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
    [CrossRef]
  17. T. H. Reilly, S. Chang, J. D. Corbman, G. C. Schatz, and K. L. Rowlen, “Quantitative Evaluation of Plasmon Enhanced Raman Scattering from Nanoaperture Arrays,” J. Phys. Chem. C 111(4), 1689–1694 (2007).
    [CrossRef]
  18. Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett. 34(3), 244–246 (2009).
    [CrossRef] [PubMed]
  19. Y. Chu, D. Wang, W. Zhu, and K. B. Crozier, “Double resonance surface enhanced Raman scattering substrates: an intuitive coupled oscillator model,” Opt. Express 19(16), 14919–14928 (2011).
    [CrossRef]
  20. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
    [CrossRef]
  21. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16(14), 10858–6 (2008).
    [CrossRef] [PubMed]
  22. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi_Uda antenna,” Nat. Photonics 4(5), 315 (2010).
    [CrossRef]
  23. J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5(11), 2262–2267 (2005).
    [CrossRef] [PubMed]
  24. B. Liu, D. Wang, C. Shi, K. B. Crozier, and T. Yang, “Vertical optical antennas integrated with spiral ring gratings for large local electric field enhancement and directional radiation,” Opt. Express 19(11), 10049–10056 (2011).
    [CrossRef] [PubMed]
  25. A. Ahmed and R. Gordon, “Directivity enhanced Raman spectroscopy using nanoantennas,” Nano Lett. 11(4), 1800–1803 (2011).
    [CrossRef] [PubMed]
  26. D. Wang, T. Yang, and K. B. Crozier, “Optical antennas integrated with concentric ring gratings: electric field enhancement and directional radiation,” Opt. Express 19(3), 2148–2157 (2011).
    [CrossRef] [PubMed]
  27. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  28. “Bloch BCs in broadband sweeps” (Lumerical Solutions, Inc.) http://www.lumerical.com/fdtd_online_help/user_guide_bloch_broadband_sweep.php
  29. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge, 2006)
  30. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
    [CrossRef] [PubMed]
  31. A. Ghoshal, I. Divliansky, and P. G. Kik, “Experimental observation of mode-selective anticrossing in surface-plasmon-coupled metal nanoparticle arrays,” Appl. Phys. Lett. 94(17), 171108 (2009).
    [CrossRef]
  32. J. D. Jackson, Classical electrodynamics (Wiley, 1998).

2011 (6)

2010 (3)

M. G. Banaee and K. B. Crozier, “Gold nanorings as substrates for surface-enhanced Raman scattering,” Opt. Lett. 35(5), 760–762 (2010).
[CrossRef] [PubMed]

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi_Uda antenna,” Nat. Photonics 4(5), 315 (2010).
[CrossRef]

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
[CrossRef] [PubMed]

2009 (3)

Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett. 34(3), 244–246 (2009).
[CrossRef] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

A. Ghoshal, I. Divliansky, and P. G. Kik, “Experimental observation of mode-selective anticrossing in surface-plasmon-coupled metal nanoparticle arrays,” Appl. Phys. Lett. 94(17), 171108 (2009).
[CrossRef]

2008 (4)

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16(14), 10858–6 (2008).
[CrossRef] [PubMed]

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[CrossRef]

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem.  1(1), 601–626 (2008).
[CrossRef] [PubMed]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[CrossRef]

2007 (2)

T. H. Reilly, S. Chang, J. D. Corbman, G. C. Schatz, and K. L. Rowlen, “Quantitative Evaluation of Plasmon Enhanced Raman Scattering from Nanoaperture Arrays,” J. Phys. Chem. C 111(4), 1689–1694 (2007).
[CrossRef]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

2006 (1)

E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423(1-3), 63–67 (2006).
[CrossRef]

2005 (3)

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
[CrossRef] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

2003 (1)

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82(2), 257–259 (2003).
[CrossRef]

2002 (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
[CrossRef]

1999 (1)

H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

1997 (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

1977 (1)

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Abdelsalam, M. E.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

Ahmed, A.

A. Ahmed and R. Gordon, “Directivity enhanced Raman spectroscopy using nanoantennas,” Nano Lett. 11(4), 1800–1803 (2011).
[CrossRef] [PubMed]

Banaee, M. G.

W. Zhu, M. G. Banaee, D. Wang, Y. Chu, and K. B. Crozier, “Lithographically fabricated optical antennas with gaps well below 10 nm,” Small 7(13), 1761–1766 (2011).
[CrossRef] [PubMed]

M. G. Banaee and K. B. Crozier, “Mixed dimer double-resonance substrates for surface-enhanced Raman spectroscopy,” ACS Nano 5(1), 307–314 (2011).
[CrossRef] [PubMed]

M. G. Banaee and K. B. Crozier, “Gold nanorings as substrates for surface-enhanced Raman scattering,” Opt. Lett. 35(5), 760–762 (2010).
[CrossRef] [PubMed]

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
[CrossRef] [PubMed]

Bartlett, P. N.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

Baumberg, J. J.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

Bjerneld, E. J.

H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

Borjesson, L.

H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

Chang, S.

T. H. Reilly, S. Chang, J. D. Corbman, G. C. Schatz, and K. L. Rowlen, “Quantitative Evaluation of Plasmon Enhanced Raman Scattering from Nanoaperture Arrays,” J. Phys. Chem. C 111(4), 1689–1694 (2007).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Chu, Y.

Y. Chu, D. Wang, W. Zhu, and K. B. Crozier, “Double resonance surface enhanced Raman scattering substrates: an intuitive coupled oscillator model,” Opt. Express 19(16), 14919–14928 (2011).
[CrossRef]

W. Zhu, M. G. Banaee, D. Wang, Y. Chu, and K. B. Crozier, “Lithographically fabricated optical antennas with gaps well below 10 nm,” Small 7(13), 1761–1766 (2011).
[CrossRef] [PubMed]

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
[CrossRef] [PubMed]

Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett. 34(3), 244–246 (2009).
[CrossRef] [PubMed]

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[CrossRef]

Cintra, S.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

Corbman, J. D.

T. H. Reilly, S. Chang, J. D. Corbman, G. C. Schatz, and K. L. Rowlen, “Quantitative Evaluation of Plasmon Enhanced Raman Scattering from Nanoaperture Arrays,” J. Phys. Chem. C 111(4), 1689–1694 (2007).
[CrossRef]

Crozier, K. B.

W. Zhu, M. G. Banaee, D. Wang, Y. Chu, and K. B. Crozier, “Lithographically fabricated optical antennas with gaps well below 10 nm,” Small 7(13), 1761–1766 (2011).
[CrossRef] [PubMed]

M. G. Banaee and K. B. Crozier, “Mixed dimer double-resonance substrates for surface-enhanced Raman spectroscopy,” ACS Nano 5(1), 307–314 (2011).
[CrossRef] [PubMed]

B. Liu, D. Wang, C. Shi, K. B. Crozier, and T. Yang, “Vertical optical antennas integrated with spiral ring gratings for large local electric field enhancement and directional radiation,” Opt. Express 19(11), 10049–10056 (2011).
[CrossRef] [PubMed]

D. Wang, T. Yang, and K. B. Crozier, “Optical antennas integrated with concentric ring gratings: electric field enhancement and directional radiation,” Opt. Express 19(3), 2148–2157 (2011).
[CrossRef] [PubMed]

Y. Chu, D. Wang, W. Zhu, and K. B. Crozier, “Double resonance surface enhanced Raman scattering substrates: an intuitive coupled oscillator model,” Opt. Express 19(16), 14919–14928 (2011).
[CrossRef]

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
[CrossRef] [PubMed]

M. G. Banaee and K. B. Crozier, “Gold nanorings as substrates for surface-enhanced Raman scattering,” Opt. Lett. 35(5), 760–762 (2010).
[CrossRef] [PubMed]

Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett. 34(3), 244–246 (2009).
[CrossRef] [PubMed]

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[CrossRef]

Dasari, R. R.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Dieringer, J. A.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem.  1(1), 601–626 (2008).
[CrossRef] [PubMed]

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
[CrossRef] [PubMed]

Divliansky, I.

A. Ghoshal, I. Divliansky, and P. G. Kik, “Experimental observation of mode-selective anticrossing in surface-plasmon-coupled metal nanoparticle arrays,” Appl. Phys. Lett. 94(17), 171108 (2009).
[CrossRef]

Etchegoin, P. G.

E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423(1-3), 63–67 (2006).
[CrossRef]

Feld, M. S.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

Ghoshal, A.

A. Ghoshal, I. Divliansky, and P. G. Kik, “Experimental observation of mode-selective anticrossing in surface-plasmon-coupled metal nanoparticle arrays,” Appl. Phys. Lett. 94(17), 171108 (2009).
[CrossRef]

Giessen, H.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

Gordon, R.

A. Ahmed and R. Gordon, “Directivity enhanced Raman spectroscopy using nanoantennas,” Nano Lett. 11(4), 1800–1803 (2011).
[CrossRef] [PubMed]

Grady, N. K.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Halas, N. J.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82(2), 257–259 (2003).
[CrossRef]

Hirsch, L. R.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82(2), 257–259 (2003).
[CrossRef]

Hofmann, H. F.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi_Uda antenna,” Nat. Photonics 4(5), 315 (2010).
[CrossRef]

Hollars, C. W.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Huser, T. R.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Itzkan, I.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Jackson, J. B.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82(2), 257–259 (2003).
[CrossRef]

Jeanmaire, D. L.

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Kadoya, Y.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi_Uda antenna,” Nat. Photonics 4(5), 315 (2010).
[CrossRef]

Kall, M.

H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

Kelf, T. A.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

Kik, P. G.

A. Ghoshal, I. Divliansky, and P. G. Kik, “Experimental observation of mode-selective anticrossing in surface-plasmon-coupled metal nanoparticle arrays,” Appl. Phys. Lett. 94(17), 171108 (2009).
[CrossRef]

Kneipp, H.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Kosako, T.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi_Uda antenna,” Nat. Photonics 4(5), 315 (2010).
[CrossRef]

Lane, S. M.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

Le Ru, E. C.

E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423(1-3), 63–67 (2006).
[CrossRef]

Liu, B.

Liu, N.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

McFarland, A. D.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
[CrossRef] [PubMed]

Nordlander, P.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Oubre, C.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

Reilly, T. H.

T. H. Reilly, S. Chang, J. D. Corbman, G. C. Schatz, and K. L. Rowlen, “Quantitative Evaluation of Plasmon Enhanced Raman Scattering from Nanoaperture Arrays,” J. Phys. Chem. C 111(4), 1689–1694 (2007).
[CrossRef]

Rowlen, K. L.

T. H. Reilly, S. Chang, J. D. Corbman, G. C. Schatz, and K. L. Rowlen, “Quantitative Evaluation of Plasmon Enhanced Raman Scattering from Nanoaperture Arrays,” J. Phys. Chem. C 111(4), 1689–1694 (2007).
[CrossRef]

Russell, A. E.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

Schatz, G. C.

T. H. Reilly, S. Chang, J. D. Corbman, G. C. Schatz, and K. L. Rowlen, “Quantitative Evaluation of Plasmon Enhanced Raman Scattering from Nanoaperture Arrays,” J. Phys. Chem. C 111(4), 1689–1694 (2007).
[CrossRef]

Schonbrun, E.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[CrossRef]

Segerink, F. B.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[CrossRef]

Shah, N. C.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem.  1(1), 601–626 (2008).
[CrossRef] [PubMed]

Shi, C.

Stefani, F. D.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[CrossRef]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16(14), 10858–6 (2008).
[CrossRef] [PubMed]

Stiles, P. L.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem.  1(1), 601–626 (2008).
[CrossRef] [PubMed]

Sugawara, Y.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

Talley, C. E.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Taminiau, T. H.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16(14), 10858–6 (2008).
[CrossRef] [PubMed]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[CrossRef]

Van Duyne, R. P.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem.  1(1), 601–626 (2008).
[CrossRef] [PubMed]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
[CrossRef] [PubMed]

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[CrossRef]

van Hulst, N. F.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[CrossRef]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16(14), 10858–6 (2008).
[CrossRef] [PubMed]

Wang, D.

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Weiss, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

West, J. L.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82(2), 257–259 (2003).
[CrossRef]

Westcott, S. L.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82(2), 257–259 (2003).
[CrossRef]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

Xu, H. X.

H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

Yang, T.

Young, M. A.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
[CrossRef] [PubMed]

Zhu, W.

W. Zhu, M. G. Banaee, D. Wang, Y. Chu, and K. B. Crozier, “Lithographically fabricated optical antennas with gaps well below 10 nm,” Small 7(13), 1761–1766 (2011).
[CrossRef] [PubMed]

Y. Chu, D. Wang, W. Zhu, and K. B. Crozier, “Double resonance surface enhanced Raman scattering substrates: an intuitive coupled oscillator model,” Opt. Express 19(16), 14919–14928 (2011).
[CrossRef]

ACS Nano (2)

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
[CrossRef] [PubMed]

M. G. Banaee and K. B. Crozier, “Mixed dimer double-resonance substrates for surface-enhanced Raman spectroscopy,” ACS Nano 5(1), 307–314 (2011).
[CrossRef] [PubMed]

Annu. Rev. Anal. Chem. (1)

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem.  1(1), 601–626 (2008).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[CrossRef]

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82(2), 257–259 (2003).
[CrossRef]

A. Ghoshal, I. Divliansky, and P. G. Kik, “Experimental observation of mode-selective anticrossing in surface-plasmon-coupled metal nanoparticle arrays,” Appl. Phys. Lett. 94(17), 171108 (2009).
[CrossRef]

Chem. Phys. Lett. (1)

E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423(1-3), 63–67 (2006).
[CrossRef]

J. Electroanal. Chem. (1)

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[CrossRef]

J. Phys. Chem. B (1)

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

T. H. Reilly, S. Chang, J. D. Corbman, G. C. Schatz, and K. L. Rowlen, “Quantitative Evaluation of Plasmon Enhanced Raman Scattering from Nanoaperture Arrays,” J. Phys. Chem. C 111(4), 1689–1694 (2007).
[CrossRef]

J. Phys. Condens. Matter (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
[CrossRef]

Nano Lett. (3)

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[CrossRef] [PubMed]

A. Ahmed and R. Gordon, “Directivity enhanced Raman spectroscopy using nanoantennas,” Nano Lett. 11(4), 1800–1803 (2011).
[CrossRef] [PubMed]

Nat. Mater. (1)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

Nat. Photonics (2)

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[CrossRef]

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi_Uda antenna,” Nat. Photonics 4(5), 315 (2010).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (2)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

Small (1)

W. Zhu, M. G. Banaee, D. Wang, Y. Chu, and K. B. Crozier, “Lithographically fabricated optical antennas with gaps well below 10 nm,” Small 7(13), 1761–1766 (2011).
[CrossRef] [PubMed]

Other (4)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007)

“Bloch BCs in broadband sweeps” (Lumerical Solutions, Inc.) http://www.lumerical.com/fdtd_online_help/user_guide_bloch_broadband_sweep.php

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge, 2006)

J. D. Jackson, Classical electrodynamics (Wiley, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic diagram of the double resonance SERS substrate. Actual device has hundreds of periods along x and y axes; only a small portion of it depicted here. (b) Scanning electron micrograph (SEM) of a fabricated device. (c) Side view of the double resonance structure in the FDTD simulations. (d) Optical setup for extinction measurements. Solid orange solid lines show optical path when sample is not tilted, i.e. it is oriented along x axis and illumination is at normal incidence. Dotted orange lines show reflected optical path when sample is tilted and illumination is no longer at normal incidence.

Fig. 2
Fig. 2

(a) Schematic diagram of focused illumination. (b) Definition of the incident angle.

Fig. 3
Fig. 3

(a) Simulated structure, consisting of an SiO2 nanoparticle array, an SiO2 spacer and gold film. The thickness of the SiO2 spacer is 25 nm. The SiO2 nanoparticles are 100 nm thick and 290 nm in diameter. The period of the square array is 780 nm. (b) Simulated intensity of Ez, at position 1, plotted as a function of θ and illumination wavelength, when ϕ =0° and 0°≤θ ≤10°. (c) Simulated intensity of Ez, at position 1, plotted as a function of θ and illumination wavelength, when ϕ=90° and 0°≤θ≤10°. (d) Simulated intensity of Ez, at position 1, plotted as a function of ϕ and illumination wavelength, when 0°≤ϕ ≤90° and θ=4°.

Fig. 4
Fig. 4

Left column: simulated local field enhancement spectra for incident angles with ϕ=0°, θ=0°,1°,2°,4°,8° and ϕ=90°, θ=8°. Black curves: spectra of gold nanoparticle array. Red curves: spectra of single nanoparticle cases. Blue dashed line: wavelength of the excitation laser, λ=783nm. Right column: extinction spectra for incident angles with ϕ=0°, θ=0°,1°,2°,4°,8° and ϕ=90°, θ=8°.

Fig. 5
Fig. 5

(a) Local field enhancement spectra for incident angles with ϕ=10°, 40°, 80°, θ=4°. Black curves: spectra of gold nanoparticle array. Red curves: spectra of single nanoparticle cases. Blue dashed line: wavelength of the excitation laser, λ=783nm. (b) Extinction spectra for focused incidence using three objectives. Black: 5x magnification, with NA=0.15. Red: 10x with NA=0.25. Green: 20x with NA=0.5.

Fig. 6
Fig. 6

(a) Schematic diagram of unit cell of simulation. Plane waves 1 and 2 propagate along the same direction (k0), but have orthogonal electric fields (EPW1 and EPW2). (b) Angular distribution of Raman emission enhancement factor for Raman line 421 cm−1, in the presence of the plasmonic crystal SERS substrate. (c) Angular distribution of Raman emission enhancement factor for Raman line 1074cm−1, in the presence of the SERS substrate.

Fig. 7
Fig. 7

(a) Experimental setups for SERS measurements with focused and collimated illumination. Inset: shape of the mask which is placed at the back focal plane of the objective when SERS measurements with varied collection angles are made. (b) SERS spectra of benzenethiol on a plasmonic crystal double resonance SERS substrate measured with NA=0.15 objective (5× magnification). Black: focused illumination. Red: collimated illumination. The spectra are normalized by the power at the sample. (c) SERS spectra of benzenethiol on a plasmonic crystal double resonance SERS substrate measured with NA=0.5 objective (20× magnification). Black: focused illumination. Red: collimated illumination. The spectra are normalized by the power at the sample. (d) SERS spectra of benzenethiol on a plasmonic crystal double resonance SERS substrate measured with different diameters of the open window of the mask.

Fig. 8
Fig. 8

Comparison between the experimental and simulation results for (a) Raman line 421cm−1 and (b) Raman line 1074cm−1. Red: simulations of Raman emission enhancement factor over ranges of angles corresponding to circular masks of different diameters used in the experiments. Black: Raman line intensity in the experimental SERS spectra for different sizes of the open window of the mask.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E(θ,ϕ)= E inc (θ,ϕ) 1 2 [ (1+cosθ)(1cosθ)cos2ϕ (1cosθ)sin2ϕ 2cosϕsinθ ] (cosθ) 1/2
(1+cosθ)(1cosθ)cos2ϕ=2[cosθ+ sin 2 ϕ(1cosθ)]2cosθ
(1cosθ)sin2ϕ0
E(θ,ϕ)= E inc (θ,ϕ) 1 2 [ 2cosθ 0 2cosϕsinθ ] (cosθ) 1/2
k spp = ( k x ±p×2π/Λ) 2 + ( k y ±q×2π/Λ) 2
M Raman (θ,ϕ)= | e d E 1 | 2 | E 0 | 2 + | e d E 2 | 2 | E 0 | 2
dP dΩ = | d 2 d/d t 2 | 2 32 π 2 ε 0 c 3

Metrics