Abstract

We present results for an heterodyne optical phase-lock loop (OPLL), monolithically integrated on InP with external phase detector and loop filter, which phase locks the integrated laser to an external source, for offset frequencies tuneable between 0.6 GHz and 6.1 GHz. The integrated semiconductor laser emits at 1553 nm with 1.1 MHz linewidth, while the external laser has a linewidth less than 150 kHz. To achieve high quality phase locking with lasers of these linewidths, the loop delay has been made less than 1.8 ns. Monolithic integration reduces the optical path delay between the laser and photodiode to less than 20 ps. The electronic part of the OPLL was implemented using a custom-designed feedback circuit with a propagation delay of ~1 ns and an open-loop bandwidth greater than 1 GHz. The heterodyne signal between the locked slave laser and master laser has phase noise below −90 dBc/Hz for frequency offsets greater than 20 kHz and a phase error variance in 10 GHz bandwidth of 0.04 rad2.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. H. Enloe and J. L. Rodda, “Laser phase-locked loop,” Proc. IEEE 53(2), 165–166 (1965).
    [CrossRef]
  2. R. C. Steele, “Optical phase-locked loop using semiconductor laser diodes,” Electron. Lett. 19(2), 69–71 (1983).
    [CrossRef]
  3. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).
    [CrossRef]
  4. P. G. Goetz, H. Eisele, K. C. Syao, and P. Bhattacharya, “1.55μm optical phase-locked loop with integrated p-i-n/HBT photoreceiver in a flexible development platform,” Microw. Opt. Technol. Lett. 15(1), 4–7 (1997).
    [CrossRef]
  5. J. M. Kahn, “1 Gbit/s PSK homodyne transmission system using phase-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 1(10), 340–342 (1989).
    [CrossRef]
  6. L. N. Langley, M.D. Elkin, C. Edge, M. J. Wale, U. Gilese, X. Huang, and A. J. Seeds, “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microw. Theory Tech. 47(7), 1257–1264 (1999).
  7. R. J. Steed, L. Ponnampalam, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
    [CrossRef]
  8. F. M. Gardner, Phaselock Techniques (Wiley-Blackwell, 2005).
  9. S. Ristic, A. Bhardwaj, M. J. Rodwell, L. A. Coldren, and L. A. Johansson, “An optical phase-locked loop photonic integrated circuit,” J. Lightwave Technol. 28(4), 526–538 (2010).
    [CrossRef]
  10. R. T. Ramos and A. J. Seeds, “Delay, linewidth and bandwidth limitations in optical phase-locked loop design,” Electron. Lett. 26(6), 389 (1990).
    [CrossRef]
  11. L. A. Johansson and A. J. Seeds, “Millimeter-wave modulated optical signal generation with high spectral purity and wide locking bandwidth using a fiber-integrated optical phase-lock loop,” IEEE Photon. Technol. Lett. 12(6), 690–692 (2000).
    [CrossRef]
  12. C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. J. Seeds, “Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop (OIPLL),” IEEE Photon. Technol. Lett. 16(3), 903–905 (2004).
    [CrossRef]
  13. R. T. Ramos and A. J. Seeds, “Fast heterodyne optical phase-lock loop using double quantum well laser diodes,” Electron. Lett. 28(1), 82–83 (1992).
    [CrossRef]
  14. L. Ponnampalam, M. J. Fice, F. Pozzi, C. C. Renaud, D. C. Rogers, I. F. Lealman, D. G. Moodie, P. J. Cannard, C. Lynch, L. Johnston, M. J. Robertson, R. Cronin, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Monolithically integrated photonic heterodyne system,” J. Lightwave Technol. 29(15), 2229–2234 (2011).
    [CrossRef]
  15. L. Naglič, L. Pavlovič, B. Bategelj, and M. Vidmar, “Improved phase detector for electro-optical phase-locked loops,” Electron. Lett. 44(12), 758 (2008).
    [CrossRef]

2011 (2)

R. J. Steed, L. Ponnampalam, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[CrossRef]

L. Ponnampalam, M. J. Fice, F. Pozzi, C. C. Renaud, D. C. Rogers, I. F. Lealman, D. G. Moodie, P. J. Cannard, C. Lynch, L. Johnston, M. J. Robertson, R. Cronin, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Monolithically integrated photonic heterodyne system,” J. Lightwave Technol. 29(15), 2229–2234 (2011).
[CrossRef]

2010 (1)

2008 (1)

L. Naglič, L. Pavlovič, B. Bategelj, and M. Vidmar, “Improved phase detector for electro-optical phase-locked loops,” Electron. Lett. 44(12), 758 (2008).
[CrossRef]

2006 (1)

2004 (1)

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. J. Seeds, “Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop (OIPLL),” IEEE Photon. Technol. Lett. 16(3), 903–905 (2004).
[CrossRef]

2000 (1)

L. A. Johansson and A. J. Seeds, “Millimeter-wave modulated optical signal generation with high spectral purity and wide locking bandwidth using a fiber-integrated optical phase-lock loop,” IEEE Photon. Technol. Lett. 12(6), 690–692 (2000).
[CrossRef]

1999 (1)

L. N. Langley, M.D. Elkin, C. Edge, M. J. Wale, U. Gilese, X. Huang, and A. J. Seeds, “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microw. Theory Tech. 47(7), 1257–1264 (1999).

1997 (1)

P. G. Goetz, H. Eisele, K. C. Syao, and P. Bhattacharya, “1.55μm optical phase-locked loop with integrated p-i-n/HBT photoreceiver in a flexible development platform,” Microw. Opt. Technol. Lett. 15(1), 4–7 (1997).
[CrossRef]

1992 (1)

R. T. Ramos and A. J. Seeds, “Fast heterodyne optical phase-lock loop using double quantum well laser diodes,” Electron. Lett. 28(1), 82–83 (1992).
[CrossRef]

1990 (1)

R. T. Ramos and A. J. Seeds, “Delay, linewidth and bandwidth limitations in optical phase-locked loop design,” Electron. Lett. 26(6), 389 (1990).
[CrossRef]

1989 (1)

J. M. Kahn, “1 Gbit/s PSK homodyne transmission system using phase-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 1(10), 340–342 (1989).
[CrossRef]

1983 (1)

R. C. Steele, “Optical phase-locked loop using semiconductor laser diodes,” Electron. Lett. 19(2), 69–71 (1983).
[CrossRef]

1965 (1)

L. H. Enloe and J. L. Rodda, “Laser phase-locked loop,” Proc. IEEE 53(2), 165–166 (1965).
[CrossRef]

Bategelj, B.

L. Naglič, L. Pavlovič, B. Bategelj, and M. Vidmar, “Improved phase detector for electro-optical phase-locked loops,” Electron. Lett. 44(12), 758 (2008).
[CrossRef]

Bhardwaj, A.

Bhattacharya, P.

P. G. Goetz, H. Eisele, K. C. Syao, and P. Bhattacharya, “1.55μm optical phase-locked loop with integrated p-i-n/HBT photoreceiver in a flexible development platform,” Microw. Opt. Technol. Lett. 15(1), 4–7 (1997).
[CrossRef]

Cannard, P.

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. J. Seeds, “Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop (OIPLL),” IEEE Photon. Technol. Lett. 16(3), 903–905 (2004).
[CrossRef]

Cannard, P. J.

Coldren, L. A.

Cronin, R.

Edge, C.

L. N. Langley, M.D. Elkin, C. Edge, M. J. Wale, U. Gilese, X. Huang, and A. J. Seeds, “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microw. Theory Tech. 47(7), 1257–1264 (1999).

Eisele, H.

P. G. Goetz, H. Eisele, K. C. Syao, and P. Bhattacharya, “1.55μm optical phase-locked loop with integrated p-i-n/HBT photoreceiver in a flexible development platform,” Microw. Opt. Technol. Lett. 15(1), 4–7 (1997).
[CrossRef]

Elkin, M.D.

L. N. Langley, M.D. Elkin, C. Edge, M. J. Wale, U. Gilese, X. Huang, and A. J. Seeds, “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microw. Theory Tech. 47(7), 1257–1264 (1999).

Enloe, L. H.

L. H. Enloe and J. L. Rodda, “Laser phase-locked loop,” Proc. IEEE 53(2), 165–166 (1965).
[CrossRef]

Fice, M. J.

R. J. Steed, L. Ponnampalam, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[CrossRef]

L. Ponnampalam, M. J. Fice, F. Pozzi, C. C. Renaud, D. C. Rogers, I. F. Lealman, D. G. Moodie, P. J. Cannard, C. Lynch, L. Johnston, M. J. Robertson, R. Cronin, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Monolithically integrated photonic heterodyne system,” J. Lightwave Technol. 29(15), 2229–2234 (2011).
[CrossRef]

Firth, R.

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. J. Seeds, “Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop (OIPLL),” IEEE Photon. Technol. Lett. 16(3), 903–905 (2004).
[CrossRef]

Gilese, U.

L. N. Langley, M.D. Elkin, C. Edge, M. J. Wale, U. Gilese, X. Huang, and A. J. Seeds, “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microw. Theory Tech. 47(7), 1257–1264 (1999).

Goetz, P. G.

P. G. Goetz, H. Eisele, K. C. Syao, and P. Bhattacharya, “1.55μm optical phase-locked loop with integrated p-i-n/HBT photoreceiver in a flexible development platform,” Microw. Opt. Technol. Lett. 15(1), 4–7 (1997).
[CrossRef]

Huang, X.

L. N. Langley, M.D. Elkin, C. Edge, M. J. Wale, U. Gilese, X. Huang, and A. J. Seeds, “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microw. Theory Tech. 47(7), 1257–1264 (1999).

Johansson, L. A.

S. Ristic, A. Bhardwaj, M. J. Rodwell, L. A. Coldren, and L. A. Johansson, “An optical phase-locked loop photonic integrated circuit,” J. Lightwave Technol. 28(4), 526–538 (2010).
[CrossRef]

L. A. Johansson and A. J. Seeds, “Millimeter-wave modulated optical signal generation with high spectral purity and wide locking bandwidth using a fiber-integrated optical phase-lock loop,” IEEE Photon. Technol. Lett. 12(6), 690–692 (2000).
[CrossRef]

Johnston, L.

Kahn, J. M.

J. M. Kahn, “1 Gbit/s PSK homodyne transmission system using phase-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 1(10), 340–342 (1989).
[CrossRef]

Langley, L. N.

L. N. Langley, M.D. Elkin, C. Edge, M. J. Wale, U. Gilese, X. Huang, and A. J. Seeds, “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microw. Theory Tech. 47(7), 1257–1264 (1999).

Lealman, I. F.

R. J. Steed, L. Ponnampalam, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[CrossRef]

L. Ponnampalam, M. J. Fice, F. Pozzi, C. C. Renaud, D. C. Rogers, I. F. Lealman, D. G. Moodie, P. J. Cannard, C. Lynch, L. Johnston, M. J. Robertson, R. Cronin, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Monolithically integrated photonic heterodyne system,” J. Lightwave Technol. 29(15), 2229–2234 (2011).
[CrossRef]

Lynch, C.

Maxwell, G. D.

R. J. Steed, L. Ponnampalam, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[CrossRef]

Moodie, D. G.

R. J. Steed, L. Ponnampalam, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[CrossRef]

L. Ponnampalam, M. J. Fice, F. Pozzi, C. C. Renaud, D. C. Rogers, I. F. Lealman, D. G. Moodie, P. J. Cannard, C. Lynch, L. Johnston, M. J. Robertson, R. Cronin, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Monolithically integrated photonic heterodyne system,” J. Lightwave Technol. 29(15), 2229–2234 (2011).
[CrossRef]

Moore, R.

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. J. Seeds, “Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop (OIPLL),” IEEE Photon. Technol. Lett. 16(3), 903–905 (2004).
[CrossRef]

Naglic, L.

L. Ponnampalam, M. J. Fice, F. Pozzi, C. C. Renaud, D. C. Rogers, I. F. Lealman, D. G. Moodie, P. J. Cannard, C. Lynch, L. Johnston, M. J. Robertson, R. Cronin, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Monolithically integrated photonic heterodyne system,” J. Lightwave Technol. 29(15), 2229–2234 (2011).
[CrossRef]

R. J. Steed, L. Ponnampalam, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[CrossRef]

L. Naglič, L. Pavlovič, B. Bategelj, and M. Vidmar, “Improved phase detector for electro-optical phase-locked loops,” Electron. Lett. 44(12), 758 (2008).
[CrossRef]

Pavlovic, L.

L. Ponnampalam, M. J. Fice, F. Pozzi, C. C. Renaud, D. C. Rogers, I. F. Lealman, D. G. Moodie, P. J. Cannard, C. Lynch, L. Johnston, M. J. Robertson, R. Cronin, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Monolithically integrated photonic heterodyne system,” J. Lightwave Technol. 29(15), 2229–2234 (2011).
[CrossRef]

R. J. Steed, L. Ponnampalam, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[CrossRef]

L. Naglič, L. Pavlovič, B. Bategelj, and M. Vidmar, “Improved phase detector for electro-optical phase-locked loops,” Electron. Lett. 44(12), 758 (2008).
[CrossRef]

Ponnampalam, L.

L. Ponnampalam, M. J. Fice, F. Pozzi, C. C. Renaud, D. C. Rogers, I. F. Lealman, D. G. Moodie, P. J. Cannard, C. Lynch, L. Johnston, M. J. Robertson, R. Cronin, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Monolithically integrated photonic heterodyne system,” J. Lightwave Technol. 29(15), 2229–2234 (2011).
[CrossRef]

R. J. Steed, L. Ponnampalam, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[CrossRef]

Pozzi, F.

Ramos, R. T.

R. T. Ramos and A. J. Seeds, “Fast heterodyne optical phase-lock loop using double quantum well laser diodes,” Electron. Lett. 28(1), 82–83 (1992).
[CrossRef]

R. T. Ramos and A. J. Seeds, “Delay, linewidth and bandwidth limitations in optical phase-locked loop design,” Electron. Lett. 26(6), 389 (1990).
[CrossRef]

Renaud, C. C.

L. Ponnampalam, M. J. Fice, F. Pozzi, C. C. Renaud, D. C. Rogers, I. F. Lealman, D. G. Moodie, P. J. Cannard, C. Lynch, L. Johnston, M. J. Robertson, R. Cronin, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Monolithically integrated photonic heterodyne system,” J. Lightwave Technol. 29(15), 2229–2234 (2011).
[CrossRef]

R. J. Steed, L. Ponnampalam, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[CrossRef]

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. J. Seeds, “Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop (OIPLL),” IEEE Photon. Technol. Lett. 16(3), 903–905 (2004).
[CrossRef]

Ristic, S.

Robertson, M.

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. J. Seeds, “Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop (OIPLL),” IEEE Photon. Technol. Lett. 16(3), 903–905 (2004).
[CrossRef]

Robertson, M. J.

R. J. Steed, L. Ponnampalam, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[CrossRef]

L. Ponnampalam, M. J. Fice, F. Pozzi, C. C. Renaud, D. C. Rogers, I. F. Lealman, D. G. Moodie, P. J. Cannard, C. Lynch, L. Johnston, M. J. Robertson, R. Cronin, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Monolithically integrated photonic heterodyne system,” J. Lightwave Technol. 29(15), 2229–2234 (2011).
[CrossRef]

Rodda, J. L.

L. H. Enloe and J. L. Rodda, “Laser phase-locked loop,” Proc. IEEE 53(2), 165–166 (1965).
[CrossRef]

Rodwell, M. J.

Rogers, D.

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. J. Seeds, “Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop (OIPLL),” IEEE Photon. Technol. Lett. 16(3), 903–905 (2004).
[CrossRef]

Rogers, D. C.

R. J. Steed, L. Ponnampalam, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[CrossRef]

L. Ponnampalam, M. J. Fice, F. Pozzi, C. C. Renaud, D. C. Rogers, I. F. Lealman, D. G. Moodie, P. J. Cannard, C. Lynch, L. Johnston, M. J. Robertson, R. Cronin, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Monolithically integrated photonic heterodyne system,” J. Lightwave Technol. 29(15), 2229–2234 (2011).
[CrossRef]

Seeds, A. J.

L. Ponnampalam, M. J. Fice, F. Pozzi, C. C. Renaud, D. C. Rogers, I. F. Lealman, D. G. Moodie, P. J. Cannard, C. Lynch, L. Johnston, M. J. Robertson, R. Cronin, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Monolithically integrated photonic heterodyne system,” J. Lightwave Technol. 29(15), 2229–2234 (2011).
[CrossRef]

R. J. Steed, L. Ponnampalam, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[CrossRef]

A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).
[CrossRef]

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. J. Seeds, “Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop (OIPLL),” IEEE Photon. Technol. Lett. 16(3), 903–905 (2004).
[CrossRef]

L. A. Johansson and A. J. Seeds, “Millimeter-wave modulated optical signal generation with high spectral purity and wide locking bandwidth using a fiber-integrated optical phase-lock loop,” IEEE Photon. Technol. Lett. 12(6), 690–692 (2000).
[CrossRef]

L. N. Langley, M.D. Elkin, C. Edge, M. J. Wale, U. Gilese, X. Huang, and A. J. Seeds, “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microw. Theory Tech. 47(7), 1257–1264 (1999).

R. T. Ramos and A. J. Seeds, “Fast heterodyne optical phase-lock loop using double quantum well laser diodes,” Electron. Lett. 28(1), 82–83 (1992).
[CrossRef]

R. T. Ramos and A. J. Seeds, “Delay, linewidth and bandwidth limitations in optical phase-locked loop design,” Electron. Lett. 26(6), 389 (1990).
[CrossRef]

Steed, R. J.

R. J. Steed, L. Ponnampalam, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[CrossRef]

Steele, R. C.

R. C. Steele, “Optical phase-locked loop using semiconductor laser diodes,” Electron. Lett. 19(2), 69–71 (1983).
[CrossRef]

Syao, K. C.

P. G. Goetz, H. Eisele, K. C. Syao, and P. Bhattacharya, “1.55μm optical phase-locked loop with integrated p-i-n/HBT photoreceiver in a flexible development platform,” Microw. Opt. Technol. Lett. 15(1), 4–7 (1997).
[CrossRef]

Vidmar, M.

R. J. Steed, L. Ponnampalam, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[CrossRef]

L. Ponnampalam, M. J. Fice, F. Pozzi, C. C. Renaud, D. C. Rogers, I. F. Lealman, D. G. Moodie, P. J. Cannard, C. Lynch, L. Johnston, M. J. Robertson, R. Cronin, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Monolithically integrated photonic heterodyne system,” J. Lightwave Technol. 29(15), 2229–2234 (2011).
[CrossRef]

L. Naglič, L. Pavlovič, B. Bategelj, and M. Vidmar, “Improved phase detector for electro-optical phase-locked loops,” Electron. Lett. 44(12), 758 (2008).
[CrossRef]

Wale, M. J.

L. N. Langley, M.D. Elkin, C. Edge, M. J. Wale, U. Gilese, X. Huang, and A. J. Seeds, “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microw. Theory Tech. 47(7), 1257–1264 (1999).

Williams, K. J.

Electron. Lett. (4)

R. C. Steele, “Optical phase-locked loop using semiconductor laser diodes,” Electron. Lett. 19(2), 69–71 (1983).
[CrossRef]

R. T. Ramos and A. J. Seeds, “Delay, linewidth and bandwidth limitations in optical phase-locked loop design,” Electron. Lett. 26(6), 389 (1990).
[CrossRef]

R. T. Ramos and A. J. Seeds, “Fast heterodyne optical phase-lock loop using double quantum well laser diodes,” Electron. Lett. 28(1), 82–83 (1992).
[CrossRef]

L. Naglič, L. Pavlovič, B. Bategelj, and M. Vidmar, “Improved phase detector for electro-optical phase-locked loops,” Electron. Lett. 44(12), 758 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. J. Steed, L. Ponnampalam, M. J. Fice, C. C. Renaud, D. C. Rogers, D. G. Moodie, G. D. Maxwell, I. F. Lealman, M. J. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. J. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

J. M. Kahn, “1 Gbit/s PSK homodyne transmission system using phase-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 1(10), 340–342 (1989).
[CrossRef]

L. A. Johansson and A. J. Seeds, “Millimeter-wave modulated optical signal generation with high spectral purity and wide locking bandwidth using a fiber-integrated optical phase-lock loop,” IEEE Photon. Technol. Lett. 12(6), 690–692 (2000).
[CrossRef]

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. J. Seeds, “Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop (OIPLL),” IEEE Photon. Technol. Lett. 16(3), 903–905 (2004).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

L. N. Langley, M.D. Elkin, C. Edge, M. J. Wale, U. Gilese, X. Huang, and A. J. Seeds, “Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,” IEEE Trans. Microw. Theory Tech. 47(7), 1257–1264 (1999).

J. Lightwave Technol. (3)

Microw. Opt. Technol. Lett. (1)

P. G. Goetz, H. Eisele, K. C. Syao, and P. Bhattacharya, “1.55μm optical phase-locked loop with integrated p-i-n/HBT photoreceiver in a flexible development platform,” Microw. Opt. Technol. Lett. 15(1), 4–7 (1997).
[CrossRef]

Proc. IEEE (1)

L. H. Enloe and J. L. Rodda, “Laser phase-locked loop,” Proc. IEEE 53(2), 165–166 (1965).
[CrossRef]

Other (1)

F. M. Gardner, Phaselock Techniques (Wiley-Blackwell, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

A schematic diagram of OPLL implementation (thick lines represent optical paths and thin lines represent electrical paths).

Fig. 2
Fig. 2

(color online) Micrograph of photonic integrated circuit, consisting of a monolithically integrated laser and photodiode.

Fig. 3
Fig. 3

(color online) The realised OPLL; the complete system occupies 8 cm x 9 cm (not including the lensed fibre positioners, power supplies or RF synthesizer). PIC – photonic integrated circuit.

Fig. 4
Fig. 4

(color online) Experimental arrangement. PD – photodiode; PC – polarisation controller; OSA – optical spectrum analyser. PLM – path length matching. The paths were matched to better than 1 metre.

Fig. 5
Fig. 5

(color online) (a) The heterodyne signal between the master and slave lasers for OPLL operation at 3 GHz, 4 GHz and 5 GHz offset frequencies (resolution bandwidth 1MHz). (b) Phase noise measurements of the heterodyne signal for the OPLL at offsets 3 GHz, 4 GHz and 5 GHz. Also shown are the noise floor of the spectrum analyzer and the phase noise of the offset generator.

Metrics