Abstract

Simultaneous conversion of the two orthogonal phase components of an optical input to different output frequencies has been demonstrated by simulation and experiment. A single stage of four-wave mixing between the input signal and four pumps derived from a frequency comb was employed. The nonlinear device was a semiconductor optical amplifier, which provided overall signal gain and sufficient contrast for phase sensitive signal processing. The decomposition of a quadrature phase-shift keyed signal into a pair of binary phase-shift keyed outputs at different frequencies was also demonstrated by simulation.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. N. Nguyen, T. Kise, J. M. Garcia, H. Poulsen, and D. J. Blumenthal, “All-optical 2R regeneration of BPSK and QPSK data using a 90° optical hybrid and integrated SOA-MZI wavelength converter pairs,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMT3.
  2. Z. Zheng, L. An, Z. Li, X. Zhao, J. Yan, and X. Liu, “All-optical regeneration of DQPSK/QPSK signals based on phase-sensitive amplification,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWA71.
  3. J. Kakande, A. Bogris, R. Slavik, F. Parmigiani, D. Syvridis, P. Petropoulos, and D. J. Richardson, “First demonstration of all-optical QPSK signal regeneration in a novel multi-format phase sensitive amplifier,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), postdeadline paper 3.3, pp. 1-3.
  4. J. Kakande, A. Bogris, R. Slavik, F. Parmigiani, D. Syvridis, P. Petropoulos, D. Richardson, M. Westlund, and M. Sköld, “QPSK phase and amplitude regeneration at 56 Gbaud in a novel idler-free non-degenerate phase sensitive amplifier,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMT4.
  5. R. Tang, J. Lasri, P. S. Devgan, V. Grigoryan, P. Kumar, and M. Vasilyev, “Gain characteristics of a frequency nondegenerate phase-sensitive fiber-optic parametric amplifier with phase self-stabilized input,” Opt. Express 13(26), 10483–10493 (2005).
    [CrossRef] [PubMed]
  6. R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
    [CrossRef]
  7. W. Imajuku, A. Takada, and Y. Yamabayashi, “Low-noise amplification under the 3 dB noise figure in high-gain phase-sensitive fibre amplifier,” Electron. Lett. 35(22), 1954–1955 (1999).
    [CrossRef]
  8. Y. Leng, C. J. Richardson, and J. Goldhar, “Phase-sensitive amplification using gain saturation in a nonlinear Sagnac interferometer,” Opt. Express 16(26), 21446–21455 (2008).
    [CrossRef] [PubMed]
  9. K. A. Croussore and G. Li, “Phase-regenerative wavelength conversion for BPSK and DPSK signals,” IEEE Photon. Technol. Lett. 21(2), 70–72 (2009).
    [CrossRef]
  10. S. Haykin and M. Moher, Analog & Digital Communications, 2nd ed. (Wiley, 2007).
  11. G. Talli and M. Adams, “Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,” IEEE J. Quantum Electron. 39(10), 1305–1313 (2003).
    [CrossRef]
  12. G. Talli and M. Adams, “Amplified spontaneous emission in semiconductor optical amplifiers: modelling and experiments,” Opt. Commun. 218(1–3), 161–166 (2003).
    [CrossRef]
  13. J. Leuthold, M. Mayer, J. Eckner, G. Guekos, H. Melchior, and C. Zellweger, “Material gain of bulk 1.55 μm InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model,” J. Appl. Phys. 87(1), 618–620 (2000).
    [CrossRef]
  14. J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
  15. C. F. C. Silva, A. J. Seeds, and P. J. Williams, “Terahertz span >60-channel exact frequency dense WDM source using comb generation and SG-DBR injection-locked laser filtering,” IEEE Photonics Technol. Lett. IEEE 13(4), 370–372 (2001).
    [CrossRef]
  16. W. Mao, P. A. Andrekson, and J. Toulouse, “Investigation of a spectrally flat multi-wavelength DWDM source based on optical phase- and intensity-modulation,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper MF78.
  17. G. Maxwell, A. Poustie; C. Ford, M. Harlow, P. Townley, M. Nield, T. Lealman, S. Oliver, L. Rivers, and R. Waller, “Hybrid integration of monolithic semiconductor optical amplifier arrays using passive assembly,” in 55th Electronic Components and Technology Conference, 2005. Proceedings (2005), Vol. 2, pp. 1349–1352.

2010 (1)

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

2009 (1)

K. A. Croussore and G. Li, “Phase-regenerative wavelength conversion for BPSK and DPSK signals,” IEEE Photon. Technol. Lett. 21(2), 70–72 (2009).
[CrossRef]

2008 (1)

Y. Leng, C. J. Richardson, and J. Goldhar, “Phase-sensitive amplification using gain saturation in a nonlinear Sagnac interferometer,” Opt. Express 16(26), 21446–21455 (2008).
[CrossRef] [PubMed]

2005 (1)

2003 (2)

G. Talli and M. Adams, “Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,” IEEE J. Quantum Electron. 39(10), 1305–1313 (2003).
[CrossRef]

G. Talli and M. Adams, “Amplified spontaneous emission in semiconductor optical amplifiers: modelling and experiments,” Opt. Commun. 218(1–3), 161–166 (2003).
[CrossRef]

2001 (1)

C. F. C. Silva, A. J. Seeds, and P. J. Williams, “Terahertz span >60-channel exact frequency dense WDM source using comb generation and SG-DBR injection-locked laser filtering,” IEEE Photonics Technol. Lett. IEEE 13(4), 370–372 (2001).
[CrossRef]

2000 (1)

J. Leuthold, M. Mayer, J. Eckner, G. Guekos, H. Melchior, and C. Zellweger, “Material gain of bulk 1.55 μm InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model,” J. Appl. Phys. 87(1), 618–620 (2000).
[CrossRef]

1999 (1)

W. Imajuku, A. Takada, and Y. Yamabayashi, “Low-noise amplification under the 3 dB noise figure in high-gain phase-sensitive fibre amplifier,” Electron. Lett. 35(22), 1954–1955 (1999).
[CrossRef]

1965 (1)

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

Adams, M.

G. Talli and M. Adams, “Amplified spontaneous emission in semiconductor optical amplifiers: modelling and experiments,” Opt. Commun. 218(1–3), 161–166 (2003).
[CrossRef]

G. Talli and M. Adams, “Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,” IEEE J. Quantum Electron. 39(10), 1305–1313 (2003).
[CrossRef]

Andrekson, P. A.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Bogris, A.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Croussore, K. A.

K. A. Croussore and G. Li, “Phase-regenerative wavelength conversion for BPSK and DPSK signals,” IEEE Photon. Technol. Lett. 21(2), 70–72 (2009).
[CrossRef]

Dasgupta, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Devgan, P. S.

Eckner, J.

J. Leuthold, M. Mayer, J. Eckner, G. Guekos, H. Melchior, and C. Zellweger, “Material gain of bulk 1.55 μm InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model,” J. Appl. Phys. 87(1), 618–620 (2000).
[CrossRef]

Ellis, A. D.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Goldhar, J.

Y. Leng, C. J. Richardson, and J. Goldhar, “Phase-sensitive amplification using gain saturation in a nonlinear Sagnac interferometer,” Opt. Express 16(26), 21446–21455 (2008).
[CrossRef] [PubMed]

Grigoryan, V.

Grüner-Nielsen, L.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Guekos, G.

J. Leuthold, M. Mayer, J. Eckner, G. Guekos, H. Melchior, and C. Zellweger, “Material gain of bulk 1.55 μm InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model,” J. Appl. Phys. 87(1), 618–620 (2000).
[CrossRef]

Herstrøm, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Imajuku, W.

W. Imajuku, A. Takada, and Y. Yamabayashi, “Low-noise amplification under the 3 dB noise figure in high-gain phase-sensitive fibre amplifier,” Electron. Lett. 35(22), 1954–1955 (1999).
[CrossRef]

Jakobsen, D.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Kakande, J.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Kumar, P.

Lasri, J.

Leng, Y.

Y. Leng, C. J. Richardson, and J. Goldhar, “Phase-sensitive amplification using gain saturation in a nonlinear Sagnac interferometer,” Opt. Express 16(26), 21446–21455 (2008).
[CrossRef] [PubMed]

Leuthold, J.

J. Leuthold, M. Mayer, J. Eckner, G. Guekos, H. Melchior, and C. Zellweger, “Material gain of bulk 1.55 μm InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model,” J. Appl. Phys. 87(1), 618–620 (2000).
[CrossRef]

Li, G.

K. A. Croussore and G. Li, “Phase-regenerative wavelength conversion for BPSK and DPSK signals,” IEEE Photon. Technol. Lett. 21(2), 70–72 (2009).
[CrossRef]

Lundström, C.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Mayer, M.

J. Leuthold, M. Mayer, J. Eckner, G. Guekos, H. Melchior, and C. Zellweger, “Material gain of bulk 1.55 μm InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model,” J. Appl. Phys. 87(1), 618–620 (2000).
[CrossRef]

Mead, R.

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

Melchior, H.

J. Leuthold, M. Mayer, J. Eckner, G. Guekos, H. Melchior, and C. Zellweger, “Material gain of bulk 1.55 μm InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model,” J. Appl. Phys. 87(1), 618–620 (2000).
[CrossRef]

Nelder, J. A.

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

O’Gorman, J.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Parmigiani, F.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Petropoulos, P.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Phelan, R.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Richardson, C. J.

Y. Leng, C. J. Richardson, and J. Goldhar, “Phase-sensitive amplification using gain saturation in a nonlinear Sagnac interferometer,” Opt. Express 16(26), 21446–21455 (2008).
[CrossRef] [PubMed]

Richardson, D. J.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Seeds, A. J.

C. F. C. Silva, A. J. Seeds, and P. J. Williams, “Terahertz span >60-channel exact frequency dense WDM source using comb generation and SG-DBR injection-locked laser filtering,” IEEE Photonics Technol. Lett. IEEE 13(4), 370–372 (2001).
[CrossRef]

Silva, C. F. C.

C. F. C. Silva, A. J. Seeds, and P. J. Williams, “Terahertz span >60-channel exact frequency dense WDM source using comb generation and SG-DBR injection-locked laser filtering,” IEEE Photonics Technol. Lett. IEEE 13(4), 370–372 (2001).
[CrossRef]

Sjödin, M.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Slavík, R.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Sygletos, S.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Syvridis, D.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Takada, A.

W. Imajuku, A. Takada, and Y. Yamabayashi, “Low-noise amplification under the 3 dB noise figure in high-gain phase-sensitive fibre amplifier,” Electron. Lett. 35(22), 1954–1955 (1999).
[CrossRef]

Talli, G.

G. Talli and M. Adams, “Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,” IEEE J. Quantum Electron. 39(10), 1305–1313 (2003).
[CrossRef]

G. Talli and M. Adams, “Amplified spontaneous emission in semiconductor optical amplifiers: modelling and experiments,” Opt. Commun. 218(1–3), 161–166 (2003).
[CrossRef]

Tang, R.

Vasilyev, M.

Weerasuriya, R.

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Williams, P. J.

C. F. C. Silva, A. J. Seeds, and P. J. Williams, “Terahertz span >60-channel exact frequency dense WDM source using comb generation and SG-DBR injection-locked laser filtering,” IEEE Photonics Technol. Lett. IEEE 13(4), 370–372 (2001).
[CrossRef]

Yamabayashi, Y.

W. Imajuku, A. Takada, and Y. Yamabayashi, “Low-noise amplification under the 3 dB noise figure in high-gain phase-sensitive fibre amplifier,” Electron. Lett. 35(22), 1954–1955 (1999).
[CrossRef]

Zellweger, C.

J. Leuthold, M. Mayer, J. Eckner, G. Guekos, H. Melchior, and C. Zellweger, “Material gain of bulk 1.55 μm InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model,” J. Appl. Phys. 87(1), 618–620 (2000).
[CrossRef]

Comput. J. (1)

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

Electron. Lett. (1)

W. Imajuku, A. Takada, and Y. Yamabayashi, “Low-noise amplification under the 3 dB noise figure in high-gain phase-sensitive fibre amplifier,” Electron. Lett. 35(22), 1954–1955 (1999).
[CrossRef]

IEEE Photonics Technol. Lett. IEEE (1)

C. F. C. Silva, A. J. Seeds, and P. J. Williams, “Terahertz span >60-channel exact frequency dense WDM source using comb generation and SG-DBR injection-locked laser filtering,” IEEE Photonics Technol. Lett. IEEE 13(4), 370–372 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. Talli and M. Adams, “Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,” IEEE J. Quantum Electron. 39(10), 1305–1313 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. A. Croussore and G. Li, “Phase-regenerative wavelength conversion for BPSK and DPSK signals,” IEEE Photon. Technol. Lett. 21(2), 70–72 (2009).
[CrossRef]

J. Appl. Phys. (1)

J. Leuthold, M. Mayer, J. Eckner, G. Guekos, H. Melchior, and C. Zellweger, “Material gain of bulk 1.55 μm InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model,” J. Appl. Phys. 87(1), 618–620 (2000).
[CrossRef]

Nat. Photonics (1)

R. Slavík, F. Parmigiani, J. Kakande, C. Lundström, M. Sjödin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Grüner-Nielsen, D. Jakobsen, S. Herstrøm, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Opt. Commun. (1)

G. Talli and M. Adams, “Amplified spontaneous emission in semiconductor optical amplifiers: modelling and experiments,” Opt. Commun. 218(1–3), 161–166 (2003).
[CrossRef]

Opt. Express (1)

Y. Leng, C. J. Richardson, and J. Goldhar, “Phase-sensitive amplification using gain saturation in a nonlinear Sagnac interferometer,” Opt. Express 16(26), 21446–21455 (2008).
[CrossRef] [PubMed]

Opt. Express (1)

Other (7)

K. N. Nguyen, T. Kise, J. M. Garcia, H. Poulsen, and D. J. Blumenthal, “All-optical 2R regeneration of BPSK and QPSK data using a 90° optical hybrid and integrated SOA-MZI wavelength converter pairs,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMT3.

Z. Zheng, L. An, Z. Li, X. Zhao, J. Yan, and X. Liu, “All-optical regeneration of DQPSK/QPSK signals based on phase-sensitive amplification,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWA71.

J. Kakande, A. Bogris, R. Slavik, F. Parmigiani, D. Syvridis, P. Petropoulos, and D. J. Richardson, “First demonstration of all-optical QPSK signal regeneration in a novel multi-format phase sensitive amplifier,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), postdeadline paper 3.3, pp. 1-3.

J. Kakande, A. Bogris, R. Slavik, F. Parmigiani, D. Syvridis, P. Petropoulos, D. Richardson, M. Westlund, and M. Sköld, “QPSK phase and amplitude regeneration at 56 Gbaud in a novel idler-free non-degenerate phase sensitive amplifier,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMT4.

S. Haykin and M. Moher, Analog & Digital Communications, 2nd ed. (Wiley, 2007).

W. Mao, P. A. Andrekson, and J. Toulouse, “Investigation of a spectrally flat multi-wavelength DWDM source based on optical phase- and intensity-modulation,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper MF78.

G. Maxwell, A. Poustie; C. Ford, M. Harlow, P. Townley, M. Nield, T. Lealman, S. Oliver, L. Rivers, and R. Waller, “Hybrid integration of monolithic semiconductor optical amplifier arrays using passive assembly,” in 55th Electronic Components and Technology Conference, 2005. Proceedings (2005), Vol. 2, pp. 1349–1352.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig.
                        1
Fig. 1

Proposed scheme showing input and output spectra. a) With a single nonlinear device. Signal and pumps have been combined in a preceding coupler. b) With a pair of nonlinear devices in an MZI showing separation of the output signals from the amplified pumps. Nonlinear fiber could equivalently be incorporated in a Sagnac interferometer.

Fig. 2
Fig. 2

Simulation results with CW input signal. a) Input spectrum showing signal and pumps with optimized powers and phases. b) Output spectrum for in-phase signal (ɸ = 0). c) Output spectrum for quadrature signal (ɸ = π/2). d) The output powers at 0 and −80GHz (symbols) varied with signal phase in proportion to sin2ɸ and cos2ɸ respectively (dotted lines). e) The output phases at 0 and −80GHz showed step responses to signal phase.

Fig. 3
Fig. 3

Experimental results with CW input signal. a) Input spectrum showing signal and pumps with optimized powers. The phases shown are the programmable filter settings. b) Output spectrum for in-phase signal (ɸ = 0). c) Output spectrum for quadrature signal (ɸ = π/2). d) The output powers at 0 and −85.2GHz (symbols) varied approximately in proportion to cos2ɸ and sin2ɸ respectively (dotted lines).

Fig. 4
Fig. 4

QPSK simulation system. The frequencies shown are relative to the pump comb center frequency, 192THz (1560nm). AMZI = asymmetric Mach-Zehnder interferometer.

Fig. 5
Fig. 5

Simulation results with QPSK input signal. a) Composite input spectrum showing pumps with optimized powers and phases applied to port 1 and the 20GBd QPSK signal applied to port 2. b) Output spectrum at port 3. c) Eye diagram of demodulated in-phase signal. d) Eye diagram of demodulated quadrature signal.

Fig. 6
Fig. 6

Demodulated waveforms: a) In-phase output at −80GHz, b) Quadrature output at 0GHz. The binary streams show the two 128-bit input data sequences after differential decoding.

Tables (2)

Tables Icon

Table 1 SOA parameters used for simulation

Tables Icon

Table 2 Properties of experimental SOA

Metrics