Abstract

The Boltzmann constant can be optically determined by measuring the Doppler width of an absorption line of molecules at gas phase. We propose to apply a near infrared cavity ring-down (CRD) spectrometer for this purpose. The superior sensitivity of CRD spectroscopy and the good performance of the near-ir lasers can provide ppm (part-per-million) accuracy which will be competitive to present most accurate result obtained from the speed of sound in argon measurement. The possible influence to the uncertainty of the determined Doppler width from different causes are investigated, which includes the signal-to-noise level, laser frequency stability, detecting nonlinearity, and pressure broadening effect. The analysis shows that the CRD spectroscopy has some remarkable advantages over the direct absorption method proposed before. The design of the experimental setup is presented and the measurement of C2H2 line near 0.8 μm at room temperature has been carried out as a test of the instrument.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. M. Mills, P. J. Mohr, T. J. Quinn, B. N. Taylor, and E. R. Williams, “Redefinition of the kilogram, ampere, kelvin and mole: a proposed approach to implementing cipm recommendation 1 (ci-2005),” Metrologia 43, 227–246 (2006).
    [CrossRef]
  2. C. Daussy, M. Guinet, A. Amy-Klein, K. Djerroud, Y. Hermier, S. Briaudeau, C. J. Bordé, and C. Chardonnet, “Direct determination of the boltzmann constant by an optical method,” Phys. Rev. Lett. 98, 250801 (2007).
    [CrossRef] [PubMed]
  3. T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
    [CrossRef] [PubMed]
  4. P. J. Mohr, B. N. Taylor, and D. B. Neweo, “CODATA recommended values of the fundamental physical constants: 2006,” J. Phys. Chem. Ref. Data 37, 1187–1284 (2008).
    [CrossRef]
  5. G. Casa, A. Castrillo, G. Galzerano, R. Wehr, A. Merlone, D. Di Serafino, P. Laporta, and L. Gianfrani, “Primary gas thermometry by means of laser-absorption spectroscopy: Determination of the boltzmann constant,” Phys. Rev. Lett. 100, 200801 (2008).
    [CrossRef] [PubMed]
  6. K. Djerroud, C. Lemarchand, A. Gauguet, C. Daussy, S. Briaudeau, B. Darquie, O. Lopez, A. Amy-Klein, C. Chardonnet, and C. J. Borde, “Measurement of the Boltzmann constant by the Doppler broadening technique at a 3.8 × 10−5 accuracy level,” C. R. Physique 10, 883–893 (2009).
    [CrossRef]
  7. C. Lemarchand, M. Triki, B. Darquié, Ch. J. Bordé, C. Chardonnet, and C. Daussy, “Progress towards an accurate determination of the Boltzmann constant by Doppler spectroscopy,” New J. Phys.13, 073028 (2011).
    [CrossRef]
  8. A. Castrillo, G. Casa, A. Merlone, G. Galzerano, P. Laporta, and L. Gianfrani, “On the determination of the Boltzmann constant by means of precision molecular spectroscopy in the near-infrared,” C. R. Physique 10, 894–906 (2009).
    [CrossRef]
  9. K. M. T. Yamada, A. Onae, F. L. Hong, H. Inaba, H. Matsumoto, Y. Nakajima, F. Ito, and T. Shimizu, “High precision line profile measurements on C-13 acetylene using a near infrared frequency comb spectrometer,” J. Mol. Spectorsc. 249, 95–99 (2008).
    [CrossRef]
  10. K. M. T. Yamada, A. Onae, F.-L. Hong, H. Inaba, and T. Shimizu, “Precise determination of the Doppler width of a rovibrational absorption line using a comb-locked diode laser,” C. R. Physique 10, 907–915 (2009).
    [CrossRef]
  11. A. Cygan, D. Lisak, R. S. Trawiński, and R. Ciuryło, “Influence of the line-shape model on the spectroscopic determination of the boltzmann constant,” Phys. Rev. A 82, 032515 (2010).
    [CrossRef]
  12. B. Gao, W. Jiang, A.-W. Liu, Y. Lu, C.-F. Cheng, G.-S. Cheng, and S.-M. Hu, “Ultra sensitive near-infrared cavity ring down spectrometer for precise line profile measurement,” Rev. Sci. Instrum. 81, 043105 (2010).
    [CrossRef] [PubMed]
  13. A. O’Keefe and D. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–51 (1988).
    [CrossRef]
  14. B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975–999 (2005).
    [CrossRef]
  15. J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum. 75, 849–863 (2004).
    [CrossRef]
  16. J. T. Hodges and R. Ciurylo, “Automated high-resolution frequency-stabilized cavity ring-down absorption spectrometer,” Rev. Sci. Instrum. 76, 023112 (2005).
    [CrossRef]
  17. D. A. Long, D. K. Havey, M. Okumura, C. E. Miller, and J. T. Hodges, “Cavity ring-down spectroscopy measurements of sub-doppler hyperfine structure,” Phys. Rev. A 81, 064502 (2010).
    [CrossRef]
  18. A. Cygan, D. Lisak, P. Maslowski, K. Bielska, S. Wojtewicz, J. Domyslawska, R. S. Trawinski, R. Ciurylo, H. Abe, and J. T. Hodges, “Pound-drever-hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
    [CrossRef] [PubMed]
  19. P. Zalicki and R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
    [CrossRef]
  20. M. D. De Vizia, F. Rohart, ccedil ois, A. Castrillo, E. Fasci, L. Moretti, and L. Gianfrani, “Speed-dependent effects in the near-infrared spectrum of self-colliding h2o18 molecules,” Phys. Rev. A 83, 052506 (2011).
    [CrossRef]
  21. R. Wehr, J. R. Drummond, and A. D. May, “Design of a difference-frequency infrared laser spectrometer for absorption line-shape studies,” Applied Optics 46, 978–985 (2007).
    [CrossRef] [PubMed]
  22. C. J. Borde, “On the theory of linear absorption line shapes in gases,” C. R. Physique 10, 866–882 (2009).
    [CrossRef]
  23. J. T. Zhang, H. Lin, J. P. Sun, X. J. Feng, K. A. Gillis, and M. R. Moldover, “Cylindrical acoustic resonator for the re-determination of the boltzmann constant,” Int. J. Thermophys. 31, 1273–1293 (2010).
    [CrossRef]
  24. X. Zhan and L. Halonen, “High-resolution photoacoustic study of the ν1 + 3ν3 band system of acetylene with a titanium:sapphire ring laser,” J. Mol. Spectorsc. 160, 464 (1993).
    [CrossRef]

2011

A. Cygan, D. Lisak, P. Maslowski, K. Bielska, S. Wojtewicz, J. Domyslawska, R. S. Trawinski, R. Ciurylo, H. Abe, and J. T. Hodges, “Pound-drever-hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[CrossRef] [PubMed]

M. D. De Vizia, F. Rohart, ccedil ois, A. Castrillo, E. Fasci, L. Moretti, and L. Gianfrani, “Speed-dependent effects in the near-infrared spectrum of self-colliding h2o18 molecules,” Phys. Rev. A 83, 052506 (2011).
[CrossRef]

2010

J. T. Zhang, H. Lin, J. P. Sun, X. J. Feng, K. A. Gillis, and M. R. Moldover, “Cylindrical acoustic resonator for the re-determination of the boltzmann constant,” Int. J. Thermophys. 31, 1273–1293 (2010).
[CrossRef]

D. A. Long, D. K. Havey, M. Okumura, C. E. Miller, and J. T. Hodges, “Cavity ring-down spectroscopy measurements of sub-doppler hyperfine structure,” Phys. Rev. A 81, 064502 (2010).
[CrossRef]

A. Cygan, D. Lisak, R. S. Trawiński, and R. Ciuryło, “Influence of the line-shape model on the spectroscopic determination of the boltzmann constant,” Phys. Rev. A 82, 032515 (2010).
[CrossRef]

B. Gao, W. Jiang, A.-W. Liu, Y. Lu, C.-F. Cheng, G.-S. Cheng, and S.-M. Hu, “Ultra sensitive near-infrared cavity ring down spectrometer for precise line profile measurement,” Rev. Sci. Instrum. 81, 043105 (2010).
[CrossRef] [PubMed]

2009

K. Djerroud, C. Lemarchand, A. Gauguet, C. Daussy, S. Briaudeau, B. Darquie, O. Lopez, A. Amy-Klein, C. Chardonnet, and C. J. Borde, “Measurement of the Boltzmann constant by the Doppler broadening technique at a 3.8 × 10−5 accuracy level,” C. R. Physique 10, 883–893 (2009).
[CrossRef]

A. Castrillo, G. Casa, A. Merlone, G. Galzerano, P. Laporta, and L. Gianfrani, “On the determination of the Boltzmann constant by means of precision molecular spectroscopy in the near-infrared,” C. R. Physique 10, 894–906 (2009).
[CrossRef]

K. M. T. Yamada, A. Onae, F.-L. Hong, H. Inaba, and T. Shimizu, “Precise determination of the Doppler width of a rovibrational absorption line using a comb-locked diode laser,” C. R. Physique 10, 907–915 (2009).
[CrossRef]

C. J. Borde, “On the theory of linear absorption line shapes in gases,” C. R. Physique 10, 866–882 (2009).
[CrossRef]

2008

K. M. T. Yamada, A. Onae, F. L. Hong, H. Inaba, H. Matsumoto, Y. Nakajima, F. Ito, and T. Shimizu, “High precision line profile measurements on C-13 acetylene using a near infrared frequency comb spectrometer,” J. Mol. Spectorsc. 249, 95–99 (2008).
[CrossRef]

P. J. Mohr, B. N. Taylor, and D. B. Neweo, “CODATA recommended values of the fundamental physical constants: 2006,” J. Phys. Chem. Ref. Data 37, 1187–1284 (2008).
[CrossRef]

G. Casa, A. Castrillo, G. Galzerano, R. Wehr, A. Merlone, D. Di Serafino, P. Laporta, and L. Gianfrani, “Primary gas thermometry by means of laser-absorption spectroscopy: Determination of the boltzmann constant,” Phys. Rev. Lett. 100, 200801 (2008).
[CrossRef] [PubMed]

2007

C. Daussy, M. Guinet, A. Amy-Klein, K. Djerroud, Y. Hermier, S. Briaudeau, C. J. Bordé, and C. Chardonnet, “Direct determination of the boltzmann constant by an optical method,” Phys. Rev. Lett. 98, 250801 (2007).
[CrossRef] [PubMed]

R. Wehr, J. R. Drummond, and A. D. May, “Design of a difference-frequency infrared laser spectrometer for absorption line-shape studies,” Applied Optics 46, 978–985 (2007).
[CrossRef] [PubMed]

2006

I. M. Mills, P. J. Mohr, T. J. Quinn, B. N. Taylor, and E. R. Williams, “Redefinition of the kilogram, ampere, kelvin and mole: a proposed approach to implementing cipm recommendation 1 (ci-2005),” Metrologia 43, 227–246 (2006).
[CrossRef]

2005

B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975–999 (2005).
[CrossRef]

J. T. Hodges and R. Ciurylo, “Automated high-resolution frequency-stabilized cavity ring-down absorption spectrometer,” Rev. Sci. Instrum. 76, 023112 (2005).
[CrossRef]

2004

J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum. 75, 849–863 (2004).
[CrossRef]

2002

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef] [PubMed]

1995

P. Zalicki and R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

1993

X. Zhan and L. Halonen, “High-resolution photoacoustic study of the ν1 + 3ν3 band system of acetylene with a titanium:sapphire ring laser,” J. Mol. Spectorsc. 160, 464 (1993).
[CrossRef]

1988

A. O’Keefe and D. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–51 (1988).
[CrossRef]

Abe, H.

A. Cygan, D. Lisak, P. Maslowski, K. Bielska, S. Wojtewicz, J. Domyslawska, R. S. Trawinski, R. Ciurylo, H. Abe, and J. T. Hodges, “Pound-drever-hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[CrossRef] [PubMed]

Amy-Klein, A.

K. Djerroud, C. Lemarchand, A. Gauguet, C. Daussy, S. Briaudeau, B. Darquie, O. Lopez, A. Amy-Klein, C. Chardonnet, and C. J. Borde, “Measurement of the Boltzmann constant by the Doppler broadening technique at a 3.8 × 10−5 accuracy level,” C. R. Physique 10, 883–893 (2009).
[CrossRef]

C. Daussy, M. Guinet, A. Amy-Klein, K. Djerroud, Y. Hermier, S. Briaudeau, C. J. Bordé, and C. Chardonnet, “Direct determination of the boltzmann constant by an optical method,” Phys. Rev. Lett. 98, 250801 (2007).
[CrossRef] [PubMed]

Bielska, K.

A. Cygan, D. Lisak, P. Maslowski, K. Bielska, S. Wojtewicz, J. Domyslawska, R. S. Trawinski, R. Ciurylo, H. Abe, and J. T. Hodges, “Pound-drever-hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[CrossRef] [PubMed]

Borde, C. J.

C. J. Borde, “On the theory of linear absorption line shapes in gases,” C. R. Physique 10, 866–882 (2009).
[CrossRef]

K. Djerroud, C. Lemarchand, A. Gauguet, C. Daussy, S. Briaudeau, B. Darquie, O. Lopez, A. Amy-Klein, C. Chardonnet, and C. J. Borde, “Measurement of the Boltzmann constant by the Doppler broadening technique at a 3.8 × 10−5 accuracy level,” C. R. Physique 10, 883–893 (2009).
[CrossRef]

Bordé, C. J.

C. Daussy, M. Guinet, A. Amy-Klein, K. Djerroud, Y. Hermier, S. Briaudeau, C. J. Bordé, and C. Chardonnet, “Direct determination of the boltzmann constant by an optical method,” Phys. Rev. Lett. 98, 250801 (2007).
[CrossRef] [PubMed]

Bordé, Ch. J.

C. Lemarchand, M. Triki, B. Darquié, Ch. J. Bordé, C. Chardonnet, and C. Daussy, “Progress towards an accurate determination of the Boltzmann constant by Doppler spectroscopy,” New J. Phys.13, 073028 (2011).
[CrossRef]

Briaudeau, S.

K. Djerroud, C. Lemarchand, A. Gauguet, C. Daussy, S. Briaudeau, B. Darquie, O. Lopez, A. Amy-Klein, C. Chardonnet, and C. J. Borde, “Measurement of the Boltzmann constant by the Doppler broadening technique at a 3.8 × 10−5 accuracy level,” C. R. Physique 10, 883–893 (2009).
[CrossRef]

C. Daussy, M. Guinet, A. Amy-Klein, K. Djerroud, Y. Hermier, S. Briaudeau, C. J. Bordé, and C. Chardonnet, “Direct determination of the boltzmann constant by an optical method,” Phys. Rev. Lett. 98, 250801 (2007).
[CrossRef] [PubMed]

Casa, G.

A. Castrillo, G. Casa, A. Merlone, G. Galzerano, P. Laporta, and L. Gianfrani, “On the determination of the Boltzmann constant by means of precision molecular spectroscopy in the near-infrared,” C. R. Physique 10, 894–906 (2009).
[CrossRef]

G. Casa, A. Castrillo, G. Galzerano, R. Wehr, A. Merlone, D. Di Serafino, P. Laporta, and L. Gianfrani, “Primary gas thermometry by means of laser-absorption spectroscopy: Determination of the boltzmann constant,” Phys. Rev. Lett. 100, 200801 (2008).
[CrossRef] [PubMed]

Castrillo, A.

M. D. De Vizia, F. Rohart, ccedil ois, A. Castrillo, E. Fasci, L. Moretti, and L. Gianfrani, “Speed-dependent effects in the near-infrared spectrum of self-colliding h2o18 molecules,” Phys. Rev. A 83, 052506 (2011).
[CrossRef]

A. Castrillo, G. Casa, A. Merlone, G. Galzerano, P. Laporta, and L. Gianfrani, “On the determination of the Boltzmann constant by means of precision molecular spectroscopy in the near-infrared,” C. R. Physique 10, 894–906 (2009).
[CrossRef]

G. Casa, A. Castrillo, G. Galzerano, R. Wehr, A. Merlone, D. Di Serafino, P. Laporta, and L. Gianfrani, “Primary gas thermometry by means of laser-absorption spectroscopy: Determination of the boltzmann constant,” Phys. Rev. Lett. 100, 200801 (2008).
[CrossRef] [PubMed]

Chardonnet, C.

K. Djerroud, C. Lemarchand, A. Gauguet, C. Daussy, S. Briaudeau, B. Darquie, O. Lopez, A. Amy-Klein, C. Chardonnet, and C. J. Borde, “Measurement of the Boltzmann constant by the Doppler broadening technique at a 3.8 × 10−5 accuracy level,” C. R. Physique 10, 883–893 (2009).
[CrossRef]

C. Daussy, M. Guinet, A. Amy-Klein, K. Djerroud, Y. Hermier, S. Briaudeau, C. J. Bordé, and C. Chardonnet, “Direct determination of the boltzmann constant by an optical method,” Phys. Rev. Lett. 98, 250801 (2007).
[CrossRef] [PubMed]

C. Lemarchand, M. Triki, B. Darquié, Ch. J. Bordé, C. Chardonnet, and C. Daussy, “Progress towards an accurate determination of the Boltzmann constant by Doppler spectroscopy,” New J. Phys.13, 073028 (2011).
[CrossRef]

Cheng, C.-F.

B. Gao, W. Jiang, A.-W. Liu, Y. Lu, C.-F. Cheng, G.-S. Cheng, and S.-M. Hu, “Ultra sensitive near-infrared cavity ring down spectrometer for precise line profile measurement,” Rev. Sci. Instrum. 81, 043105 (2010).
[CrossRef] [PubMed]

Cheng, G.-S.

B. Gao, W. Jiang, A.-W. Liu, Y. Lu, C.-F. Cheng, G.-S. Cheng, and S.-M. Hu, “Ultra sensitive near-infrared cavity ring down spectrometer for precise line profile measurement,” Rev. Sci. Instrum. 81, 043105 (2010).
[CrossRef] [PubMed]

Ciurylo, R.

A. Cygan, D. Lisak, P. Maslowski, K. Bielska, S. Wojtewicz, J. Domyslawska, R. S. Trawinski, R. Ciurylo, H. Abe, and J. T. Hodges, “Pound-drever-hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[CrossRef] [PubMed]

A. Cygan, D. Lisak, R. S. Trawiński, and R. Ciuryło, “Influence of the line-shape model on the spectroscopic determination of the boltzmann constant,” Phys. Rev. A 82, 032515 (2010).
[CrossRef]

J. T. Hodges and R. Ciurylo, “Automated high-resolution frequency-stabilized cavity ring-down absorption spectrometer,” Rev. Sci. Instrum. 76, 023112 (2005).
[CrossRef]

Cygan, A.

A. Cygan, D. Lisak, P. Maslowski, K. Bielska, S. Wojtewicz, J. Domyslawska, R. S. Trawinski, R. Ciurylo, H. Abe, and J. T. Hodges, “Pound-drever-hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[CrossRef] [PubMed]

A. Cygan, D. Lisak, R. S. Trawiński, and R. Ciuryło, “Influence of the line-shape model on the spectroscopic determination of the boltzmann constant,” Phys. Rev. A 82, 032515 (2010).
[CrossRef]

Darquie, B.

K. Djerroud, C. Lemarchand, A. Gauguet, C. Daussy, S. Briaudeau, B. Darquie, O. Lopez, A. Amy-Klein, C. Chardonnet, and C. J. Borde, “Measurement of the Boltzmann constant by the Doppler broadening technique at a 3.8 × 10−5 accuracy level,” C. R. Physique 10, 883–893 (2009).
[CrossRef]

Darquié, B.

C. Lemarchand, M. Triki, B. Darquié, Ch. J. Bordé, C. Chardonnet, and C. Daussy, “Progress towards an accurate determination of the Boltzmann constant by Doppler spectroscopy,” New J. Phys.13, 073028 (2011).
[CrossRef]

Daussy, C.

K. Djerroud, C. Lemarchand, A. Gauguet, C. Daussy, S. Briaudeau, B. Darquie, O. Lopez, A. Amy-Klein, C. Chardonnet, and C. J. Borde, “Measurement of the Boltzmann constant by the Doppler broadening technique at a 3.8 × 10−5 accuracy level,” C. R. Physique 10, 883–893 (2009).
[CrossRef]

C. Daussy, M. Guinet, A. Amy-Klein, K. Djerroud, Y. Hermier, S. Briaudeau, C. J. Bordé, and C. Chardonnet, “Direct determination of the boltzmann constant by an optical method,” Phys. Rev. Lett. 98, 250801 (2007).
[CrossRef] [PubMed]

C. Lemarchand, M. Triki, B. Darquié, Ch. J. Bordé, C. Chardonnet, and C. Daussy, “Progress towards an accurate determination of the Boltzmann constant by Doppler spectroscopy,” New J. Phys.13, 073028 (2011).
[CrossRef]

De Vizia, M. D.

M. D. De Vizia, F. Rohart, ccedil ois, A. Castrillo, E. Fasci, L. Moretti, and L. Gianfrani, “Speed-dependent effects in the near-infrared spectrum of self-colliding h2o18 molecules,” Phys. Rev. A 83, 052506 (2011).
[CrossRef]

Deacon, D.

A. O’Keefe and D. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–51 (1988).
[CrossRef]

Di Serafino, D.

G. Casa, A. Castrillo, G. Galzerano, R. Wehr, A. Merlone, D. Di Serafino, P. Laporta, and L. Gianfrani, “Primary gas thermometry by means of laser-absorption spectroscopy: Determination of the boltzmann constant,” Phys. Rev. Lett. 100, 200801 (2008).
[CrossRef] [PubMed]

Djerroud, K.

K. Djerroud, C. Lemarchand, A. Gauguet, C. Daussy, S. Briaudeau, B. Darquie, O. Lopez, A. Amy-Klein, C. Chardonnet, and C. J. Borde, “Measurement of the Boltzmann constant by the Doppler broadening technique at a 3.8 × 10−5 accuracy level,” C. R. Physique 10, 883–893 (2009).
[CrossRef]

C. Daussy, M. Guinet, A. Amy-Klein, K. Djerroud, Y. Hermier, S. Briaudeau, C. J. Bordé, and C. Chardonnet, “Direct determination of the boltzmann constant by an optical method,” Phys. Rev. Lett. 98, 250801 (2007).
[CrossRef] [PubMed]

Domyslawska, J.

A. Cygan, D. Lisak, P. Maslowski, K. Bielska, S. Wojtewicz, J. Domyslawska, R. S. Trawinski, R. Ciurylo, H. Abe, and J. T. Hodges, “Pound-drever-hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[CrossRef] [PubMed]

Drummond, J. R.

R. Wehr, J. R. Drummond, and A. D. May, “Design of a difference-frequency infrared laser spectrometer for absorption line-shape studies,” Applied Optics 46, 978–985 (2007).
[CrossRef] [PubMed]

Fasci, E.

M. D. De Vizia, F. Rohart, ccedil ois, A. Castrillo, E. Fasci, L. Moretti, and L. Gianfrani, “Speed-dependent effects in the near-infrared spectrum of self-colliding h2o18 molecules,” Phys. Rev. A 83, 052506 (2011).
[CrossRef]

Feng, X. J.

J. T. Zhang, H. Lin, J. P. Sun, X. J. Feng, K. A. Gillis, and M. R. Moldover, “Cylindrical acoustic resonator for the re-determination of the boltzmann constant,” Int. J. Thermophys. 31, 1273–1293 (2010).
[CrossRef]

Galzerano, G.

A. Castrillo, G. Casa, A. Merlone, G. Galzerano, P. Laporta, and L. Gianfrani, “On the determination of the Boltzmann constant by means of precision molecular spectroscopy in the near-infrared,” C. R. Physique 10, 894–906 (2009).
[CrossRef]

G. Casa, A. Castrillo, G. Galzerano, R. Wehr, A. Merlone, D. Di Serafino, P. Laporta, and L. Gianfrani, “Primary gas thermometry by means of laser-absorption spectroscopy: Determination of the boltzmann constant,” Phys. Rev. Lett. 100, 200801 (2008).
[CrossRef] [PubMed]

Gao, B.

B. Gao, W. Jiang, A.-W. Liu, Y. Lu, C.-F. Cheng, G.-S. Cheng, and S.-M. Hu, “Ultra sensitive near-infrared cavity ring down spectrometer for precise line profile measurement,” Rev. Sci. Instrum. 81, 043105 (2010).
[CrossRef] [PubMed]

Gauguet, A.

K. Djerroud, C. Lemarchand, A. Gauguet, C. Daussy, S. Briaudeau, B. Darquie, O. Lopez, A. Amy-Klein, C. Chardonnet, and C. J. Borde, “Measurement of the Boltzmann constant by the Doppler broadening technique at a 3.8 × 10−5 accuracy level,” C. R. Physique 10, 883–893 (2009).
[CrossRef]

Gianfrani, L.

M. D. De Vizia, F. Rohart, ccedil ois, A. Castrillo, E. Fasci, L. Moretti, and L. Gianfrani, “Speed-dependent effects in the near-infrared spectrum of self-colliding h2o18 molecules,” Phys. Rev. A 83, 052506 (2011).
[CrossRef]

A. Castrillo, G. Casa, A. Merlone, G. Galzerano, P. Laporta, and L. Gianfrani, “On the determination of the Boltzmann constant by means of precision molecular spectroscopy in the near-infrared,” C. R. Physique 10, 894–906 (2009).
[CrossRef]

G. Casa, A. Castrillo, G. Galzerano, R. Wehr, A. Merlone, D. Di Serafino, P. Laporta, and L. Gianfrani, “Primary gas thermometry by means of laser-absorption spectroscopy: Determination of the boltzmann constant,” Phys. Rev. Lett. 100, 200801 (2008).
[CrossRef] [PubMed]

Gillis, K. A.

J. T. Zhang, H. Lin, J. P. Sun, X. J. Feng, K. A. Gillis, and M. R. Moldover, “Cylindrical acoustic resonator for the re-determination of the boltzmann constant,” Int. J. Thermophys. 31, 1273–1293 (2010).
[CrossRef]

Guinet, M.

C. Daussy, M. Guinet, A. Amy-Klein, K. Djerroud, Y. Hermier, S. Briaudeau, C. J. Bordé, and C. Chardonnet, “Direct determination of the boltzmann constant by an optical method,” Phys. Rev. Lett. 98, 250801 (2007).
[CrossRef] [PubMed]

Halonen, L.

X. Zhan and L. Halonen, “High-resolution photoacoustic study of the ν1 + 3ν3 band system of acetylene with a titanium:sapphire ring laser,” J. Mol. Spectorsc. 160, 464 (1993).
[CrossRef]

Hansch, T. W.

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef] [PubMed]

Havey, D. K.

D. A. Long, D. K. Havey, M. Okumura, C. E. Miller, and J. T. Hodges, “Cavity ring-down spectroscopy measurements of sub-doppler hyperfine structure,” Phys. Rev. A 81, 064502 (2010).
[CrossRef]

Hermier, Y.

C. Daussy, M. Guinet, A. Amy-Klein, K. Djerroud, Y. Hermier, S. Briaudeau, C. J. Bordé, and C. Chardonnet, “Direct determination of the boltzmann constant by an optical method,” Phys. Rev. Lett. 98, 250801 (2007).
[CrossRef] [PubMed]

Hodges, J. T.

A. Cygan, D. Lisak, P. Maslowski, K. Bielska, S. Wojtewicz, J. Domyslawska, R. S. Trawinski, R. Ciurylo, H. Abe, and J. T. Hodges, “Pound-drever-hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[CrossRef] [PubMed]

D. A. Long, D. K. Havey, M. Okumura, C. E. Miller, and J. T. Hodges, “Cavity ring-down spectroscopy measurements of sub-doppler hyperfine structure,” Phys. Rev. A 81, 064502 (2010).
[CrossRef]

J. T. Hodges and R. Ciurylo, “Automated high-resolution frequency-stabilized cavity ring-down absorption spectrometer,” Rev. Sci. Instrum. 76, 023112 (2005).
[CrossRef]

J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum. 75, 849–863 (2004).
[CrossRef]

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef] [PubMed]

Hong, F. L.

K. M. T. Yamada, A. Onae, F. L. Hong, H. Inaba, H. Matsumoto, Y. Nakajima, F. Ito, and T. Shimizu, “High precision line profile measurements on C-13 acetylene using a near infrared frequency comb spectrometer,” J. Mol. Spectorsc. 249, 95–99 (2008).
[CrossRef]

Hong, F.-L.

K. M. T. Yamada, A. Onae, F.-L. Hong, H. Inaba, and T. Shimizu, “Precise determination of the Doppler width of a rovibrational absorption line using a comb-locked diode laser,” C. R. Physique 10, 907–915 (2009).
[CrossRef]

Hu, S.-M.

B. Gao, W. Jiang, A.-W. Liu, Y. Lu, C.-F. Cheng, G.-S. Cheng, and S.-M. Hu, “Ultra sensitive near-infrared cavity ring down spectrometer for precise line profile measurement,” Rev. Sci. Instrum. 81, 043105 (2010).
[CrossRef] [PubMed]

Inaba, H.

K. M. T. Yamada, A. Onae, F.-L. Hong, H. Inaba, and T. Shimizu, “Precise determination of the Doppler width of a rovibrational absorption line using a comb-locked diode laser,” C. R. Physique 10, 907–915 (2009).
[CrossRef]

K. M. T. Yamada, A. Onae, F. L. Hong, H. Inaba, H. Matsumoto, Y. Nakajima, F. Ito, and T. Shimizu, “High precision line profile measurements on C-13 acetylene using a near infrared frequency comb spectrometer,” J. Mol. Spectorsc. 249, 95–99 (2008).
[CrossRef]

Ito, F.

K. M. T. Yamada, A. Onae, F. L. Hong, H. Inaba, H. Matsumoto, Y. Nakajima, F. Ito, and T. Shimizu, “High precision line profile measurements on C-13 acetylene using a near infrared frequency comb spectrometer,” J. Mol. Spectorsc. 249, 95–99 (2008).
[CrossRef]

Jiang, W.

B. Gao, W. Jiang, A.-W. Liu, Y. Lu, C.-F. Cheng, G.-S. Cheng, and S.-M. Hu, “Ultra sensitive near-infrared cavity ring down spectrometer for precise line profile measurement,” Rev. Sci. Instrum. 81, 043105 (2010).
[CrossRef] [PubMed]

Kachanov, A. A.

B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975–999 (2005).
[CrossRef]

Laporta, P.

A. Castrillo, G. Casa, A. Merlone, G. Galzerano, P. Laporta, and L. Gianfrani, “On the determination of the Boltzmann constant by means of precision molecular spectroscopy in the near-infrared,” C. R. Physique 10, 894–906 (2009).
[CrossRef]

G. Casa, A. Castrillo, G. Galzerano, R. Wehr, A. Merlone, D. Di Serafino, P. Laporta, and L. Gianfrani, “Primary gas thermometry by means of laser-absorption spectroscopy: Determination of the boltzmann constant,” Phys. Rev. Lett. 100, 200801 (2008).
[CrossRef] [PubMed]

Layer, H. P.

J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum. 75, 849–863 (2004).
[CrossRef]

Lemarchand, C.

K. Djerroud, C. Lemarchand, A. Gauguet, C. Daussy, S. Briaudeau, B. Darquie, O. Lopez, A. Amy-Klein, C. Chardonnet, and C. J. Borde, “Measurement of the Boltzmann constant by the Doppler broadening technique at a 3.8 × 10−5 accuracy level,” C. R. Physique 10, 883–893 (2009).
[CrossRef]

C. Lemarchand, M. Triki, B. Darquié, Ch. J. Bordé, C. Chardonnet, and C. Daussy, “Progress towards an accurate determination of the Boltzmann constant by Doppler spectroscopy,” New J. Phys.13, 073028 (2011).
[CrossRef]

Lin, H.

J. T. Zhang, H. Lin, J. P. Sun, X. J. Feng, K. A. Gillis, and M. R. Moldover, “Cylindrical acoustic resonator for the re-determination of the boltzmann constant,” Int. J. Thermophys. 31, 1273–1293 (2010).
[CrossRef]

Lisak, D.

A. Cygan, D. Lisak, P. Maslowski, K. Bielska, S. Wojtewicz, J. Domyslawska, R. S. Trawinski, R. Ciurylo, H. Abe, and J. T. Hodges, “Pound-drever-hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[CrossRef] [PubMed]

A. Cygan, D. Lisak, R. S. Trawiński, and R. Ciuryło, “Influence of the line-shape model on the spectroscopic determination of the boltzmann constant,” Phys. Rev. A 82, 032515 (2010).
[CrossRef]

Liu, A.-W.

B. Gao, W. Jiang, A.-W. Liu, Y. Lu, C.-F. Cheng, G.-S. Cheng, and S.-M. Hu, “Ultra sensitive near-infrared cavity ring down spectrometer for precise line profile measurement,” Rev. Sci. Instrum. 81, 043105 (2010).
[CrossRef] [PubMed]

Long, D. A.

D. A. Long, D. K. Havey, M. Okumura, C. E. Miller, and J. T. Hodges, “Cavity ring-down spectroscopy measurements of sub-doppler hyperfine structure,” Phys. Rev. A 81, 064502 (2010).
[CrossRef]

Lopez, O.

K. Djerroud, C. Lemarchand, A. Gauguet, C. Daussy, S. Briaudeau, B. Darquie, O. Lopez, A. Amy-Klein, C. Chardonnet, and C. J. Borde, “Measurement of the Boltzmann constant by the Doppler broadening technique at a 3.8 × 10−5 accuracy level,” C. R. Physique 10, 883–893 (2009).
[CrossRef]

Lu, Y.

B. Gao, W. Jiang, A.-W. Liu, Y. Lu, C.-F. Cheng, G.-S. Cheng, and S.-M. Hu, “Ultra sensitive near-infrared cavity ring down spectrometer for precise line profile measurement,” Rev. Sci. Instrum. 81, 043105 (2010).
[CrossRef] [PubMed]

Maslowski, P.

A. Cygan, D. Lisak, P. Maslowski, K. Bielska, S. Wojtewicz, J. Domyslawska, R. S. Trawinski, R. Ciurylo, H. Abe, and J. T. Hodges, “Pound-drever-hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[CrossRef] [PubMed]

Matsumoto, H.

K. M. T. Yamada, A. Onae, F. L. Hong, H. Inaba, H. Matsumoto, Y. Nakajima, F. Ito, and T. Shimizu, “High precision line profile measurements on C-13 acetylene using a near infrared frequency comb spectrometer,” J. Mol. Spectorsc. 249, 95–99 (2008).
[CrossRef]

May, A. D.

R. Wehr, J. R. Drummond, and A. D. May, “Design of a difference-frequency infrared laser spectrometer for absorption line-shape studies,” Applied Optics 46, 978–985 (2007).
[CrossRef] [PubMed]

Merlone, A.

A. Castrillo, G. Casa, A. Merlone, G. Galzerano, P. Laporta, and L. Gianfrani, “On the determination of the Boltzmann constant by means of precision molecular spectroscopy in the near-infrared,” C. R. Physique 10, 894–906 (2009).
[CrossRef]

G. Casa, A. Castrillo, G. Galzerano, R. Wehr, A. Merlone, D. Di Serafino, P. Laporta, and L. Gianfrani, “Primary gas thermometry by means of laser-absorption spectroscopy: Determination of the boltzmann constant,” Phys. Rev. Lett. 100, 200801 (2008).
[CrossRef] [PubMed]

Miller, C. E.

D. A. Long, D. K. Havey, M. Okumura, C. E. Miller, and J. T. Hodges, “Cavity ring-down spectroscopy measurements of sub-doppler hyperfine structure,” Phys. Rev. A 81, 064502 (2010).
[CrossRef]

Miller, W. W.

J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum. 75, 849–863 (2004).
[CrossRef]

Mills, I. M.

I. M. Mills, P. J. Mohr, T. J. Quinn, B. N. Taylor, and E. R. Williams, “Redefinition of the kilogram, ampere, kelvin and mole: a proposed approach to implementing cipm recommendation 1 (ci-2005),” Metrologia 43, 227–246 (2006).
[CrossRef]

Mohr, P. J.

P. J. Mohr, B. N. Taylor, and D. B. Neweo, “CODATA recommended values of the fundamental physical constants: 2006,” J. Phys. Chem. Ref. Data 37, 1187–1284 (2008).
[CrossRef]

I. M. Mills, P. J. Mohr, T. J. Quinn, B. N. Taylor, and E. R. Williams, “Redefinition of the kilogram, ampere, kelvin and mole: a proposed approach to implementing cipm recommendation 1 (ci-2005),” Metrologia 43, 227–246 (2006).
[CrossRef]

Moldover, M. R.

J. T. Zhang, H. Lin, J. P. Sun, X. J. Feng, K. A. Gillis, and M. R. Moldover, “Cylindrical acoustic resonator for the re-determination of the boltzmann constant,” Int. J. Thermophys. 31, 1273–1293 (2010).
[CrossRef]

Moretti, L.

M. D. De Vizia, F. Rohart, ccedil ois, A. Castrillo, E. Fasci, L. Moretti, and L. Gianfrani, “Speed-dependent effects in the near-infrared spectrum of self-colliding h2o18 molecules,” Phys. Rev. A 83, 052506 (2011).
[CrossRef]

Nakajima, Y.

K. M. T. Yamada, A. Onae, F. L. Hong, H. Inaba, H. Matsumoto, Y. Nakajima, F. Ito, and T. Shimizu, “High precision line profile measurements on C-13 acetylene using a near infrared frequency comb spectrometer,” J. Mol. Spectorsc. 249, 95–99 (2008).
[CrossRef]

Neweo, D. B.

P. J. Mohr, B. N. Taylor, and D. B. Neweo, “CODATA recommended values of the fundamental physical constants: 2006,” J. Phys. Chem. Ref. Data 37, 1187–1284 (2008).
[CrossRef]

O’Keefe, A.

A. O’Keefe and D. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–51 (1988).
[CrossRef]

ois, ccedil

M. D. De Vizia, F. Rohart, ccedil ois, A. Castrillo, E. Fasci, L. Moretti, and L. Gianfrani, “Speed-dependent effects in the near-infrared spectrum of self-colliding h2o18 molecules,” Phys. Rev. A 83, 052506 (2011).
[CrossRef]

Okumura, M.

D. A. Long, D. K. Havey, M. Okumura, C. E. Miller, and J. T. Hodges, “Cavity ring-down spectroscopy measurements of sub-doppler hyperfine structure,” Phys. Rev. A 81, 064502 (2010).
[CrossRef]

Onae, A.

K. M. T. Yamada, A. Onae, F.-L. Hong, H. Inaba, and T. Shimizu, “Precise determination of the Doppler width of a rovibrational absorption line using a comb-locked diode laser,” C. R. Physique 10, 907–915 (2009).
[CrossRef]

K. M. T. Yamada, A. Onae, F. L. Hong, H. Inaba, H. Matsumoto, Y. Nakajima, F. Ito, and T. Shimizu, “High precision line profile measurements on C-13 acetylene using a near infrared frequency comb spectrometer,” J. Mol. Spectorsc. 249, 95–99 (2008).
[CrossRef]

Paldus, B. A.

B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975–999 (2005).
[CrossRef]

Quinn, T. J.

I. M. Mills, P. J. Mohr, T. J. Quinn, B. N. Taylor, and E. R. Williams, “Redefinition of the kilogram, ampere, kelvin and mole: a proposed approach to implementing cipm recommendation 1 (ci-2005),” Metrologia 43, 227–246 (2006).
[CrossRef]

Rohart, F.

M. D. De Vizia, F. Rohart, ccedil ois, A. Castrillo, E. Fasci, L. Moretti, and L. Gianfrani, “Speed-dependent effects in the near-infrared spectrum of self-colliding h2o18 molecules,” Phys. Rev. A 83, 052506 (2011).
[CrossRef]

Scace, G. E.

J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum. 75, 849–863 (2004).
[CrossRef]

Shimizu, T.

K. M. T. Yamada, A. Onae, F.-L. Hong, H. Inaba, and T. Shimizu, “Precise determination of the Doppler width of a rovibrational absorption line using a comb-locked diode laser,” C. R. Physique 10, 907–915 (2009).
[CrossRef]

K. M. T. Yamada, A. Onae, F. L. Hong, H. Inaba, H. Matsumoto, Y. Nakajima, F. Ito, and T. Shimizu, “High precision line profile measurements on C-13 acetylene using a near infrared frequency comb spectrometer,” J. Mol. Spectorsc. 249, 95–99 (2008).
[CrossRef]

Sun, J. P.

J. T. Zhang, H. Lin, J. P. Sun, X. J. Feng, K. A. Gillis, and M. R. Moldover, “Cylindrical acoustic resonator for the re-determination of the boltzmann constant,” Int. J. Thermophys. 31, 1273–1293 (2010).
[CrossRef]

Taylor, B. N.

P. J. Mohr, B. N. Taylor, and D. B. Neweo, “CODATA recommended values of the fundamental physical constants: 2006,” J. Phys. Chem. Ref. Data 37, 1187–1284 (2008).
[CrossRef]

I. M. Mills, P. J. Mohr, T. J. Quinn, B. N. Taylor, and E. R. Williams, “Redefinition of the kilogram, ampere, kelvin and mole: a proposed approach to implementing cipm recommendation 1 (ci-2005),” Metrologia 43, 227–246 (2006).
[CrossRef]

Trawinski, R. S.

A. Cygan, D. Lisak, P. Maslowski, K. Bielska, S. Wojtewicz, J. Domyslawska, R. S. Trawinski, R. Ciurylo, H. Abe, and J. T. Hodges, “Pound-drever-hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[CrossRef] [PubMed]

A. Cygan, D. Lisak, R. S. Trawiński, and R. Ciuryło, “Influence of the line-shape model on the spectroscopic determination of the boltzmann constant,” Phys. Rev. A 82, 032515 (2010).
[CrossRef]

Triki, M.

C. Lemarchand, M. Triki, B. Darquié, Ch. J. Bordé, C. Chardonnet, and C. Daussy, “Progress towards an accurate determination of the Boltzmann constant by Doppler spectroscopy,” New J. Phys.13, 073028 (2011).
[CrossRef]

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef] [PubMed]

Wehr, R.

G. Casa, A. Castrillo, G. Galzerano, R. Wehr, A. Merlone, D. Di Serafino, P. Laporta, and L. Gianfrani, “Primary gas thermometry by means of laser-absorption spectroscopy: Determination of the boltzmann constant,” Phys. Rev. Lett. 100, 200801 (2008).
[CrossRef] [PubMed]

R. Wehr, J. R. Drummond, and A. D. May, “Design of a difference-frequency infrared laser spectrometer for absorption line-shape studies,” Applied Optics 46, 978–985 (2007).
[CrossRef] [PubMed]

Williams, E. R.

I. M. Mills, P. J. Mohr, T. J. Quinn, B. N. Taylor, and E. R. Williams, “Redefinition of the kilogram, ampere, kelvin and mole: a proposed approach to implementing cipm recommendation 1 (ci-2005),” Metrologia 43, 227–246 (2006).
[CrossRef]

Wojtewicz, S.

A. Cygan, D. Lisak, P. Maslowski, K. Bielska, S. Wojtewicz, J. Domyslawska, R. S. Trawinski, R. Ciurylo, H. Abe, and J. T. Hodges, “Pound-drever-hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[CrossRef] [PubMed]

Yamada, K. M. T.

K. M. T. Yamada, A. Onae, F.-L. Hong, H. Inaba, and T. Shimizu, “Precise determination of the Doppler width of a rovibrational absorption line using a comb-locked diode laser,” C. R. Physique 10, 907–915 (2009).
[CrossRef]

K. M. T. Yamada, A. Onae, F. L. Hong, H. Inaba, H. Matsumoto, Y. Nakajima, F. Ito, and T. Shimizu, “High precision line profile measurements on C-13 acetylene using a near infrared frequency comb spectrometer,” J. Mol. Spectorsc. 249, 95–99 (2008).
[CrossRef]

Zalicki, P.

P. Zalicki and R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

Zare, R. N.

P. Zalicki and R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

Zhan, X.

X. Zhan and L. Halonen, “High-resolution photoacoustic study of the ν1 + 3ν3 band system of acetylene with a titanium:sapphire ring laser,” J. Mol. Spectorsc. 160, 464 (1993).
[CrossRef]

Zhang, J. T.

J. T. Zhang, H. Lin, J. P. Sun, X. J. Feng, K. A. Gillis, and M. R. Moldover, “Cylindrical acoustic resonator for the re-determination of the boltzmann constant,” Int. J. Thermophys. 31, 1273–1293 (2010).
[CrossRef]

Applied Optics

R. Wehr, J. R. Drummond, and A. D. May, “Design of a difference-frequency infrared laser spectrometer for absorption line-shape studies,” Applied Optics 46, 978–985 (2007).
[CrossRef] [PubMed]

C. R. Physique

C. J. Borde, “On the theory of linear absorption line shapes in gases,” C. R. Physique 10, 866–882 (2009).
[CrossRef]

K. Djerroud, C. Lemarchand, A. Gauguet, C. Daussy, S. Briaudeau, B. Darquie, O. Lopez, A. Amy-Klein, C. Chardonnet, and C. J. Borde, “Measurement of the Boltzmann constant by the Doppler broadening technique at a 3.8 × 10−5 accuracy level,” C. R. Physique 10, 883–893 (2009).
[CrossRef]

A. Castrillo, G. Casa, A. Merlone, G. Galzerano, P. Laporta, and L. Gianfrani, “On the determination of the Boltzmann constant by means of precision molecular spectroscopy in the near-infrared,” C. R. Physique 10, 894–906 (2009).
[CrossRef]

K. M. T. Yamada, A. Onae, F.-L. Hong, H. Inaba, and T. Shimizu, “Precise determination of the Doppler width of a rovibrational absorption line using a comb-locked diode laser,” C. R. Physique 10, 907–915 (2009).
[CrossRef]

Can. J. Phys.

B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975–999 (2005).
[CrossRef]

Int. J. Thermophys.

J. T. Zhang, H. Lin, J. P. Sun, X. J. Feng, K. A. Gillis, and M. R. Moldover, “Cylindrical acoustic resonator for the re-determination of the boltzmann constant,” Int. J. Thermophys. 31, 1273–1293 (2010).
[CrossRef]

J. Chem. Phys.

P. Zalicki and R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

J. Mol. Spectorsc.

X. Zhan and L. Halonen, “High-resolution photoacoustic study of the ν1 + 3ν3 band system of acetylene with a titanium:sapphire ring laser,” J. Mol. Spectorsc. 160, 464 (1993).
[CrossRef]

K. M. T. Yamada, A. Onae, F. L. Hong, H. Inaba, H. Matsumoto, Y. Nakajima, F. Ito, and T. Shimizu, “High precision line profile measurements on C-13 acetylene using a near infrared frequency comb spectrometer,” J. Mol. Spectorsc. 249, 95–99 (2008).
[CrossRef]

J. Phys. Chem. Ref. Data

P. J. Mohr, B. N. Taylor, and D. B. Neweo, “CODATA recommended values of the fundamental physical constants: 2006,” J. Phys. Chem. Ref. Data 37, 1187–1284 (2008).
[CrossRef]

Metrologia

I. M. Mills, P. J. Mohr, T. J. Quinn, B. N. Taylor, and E. R. Williams, “Redefinition of the kilogram, ampere, kelvin and mole: a proposed approach to implementing cipm recommendation 1 (ci-2005),” Metrologia 43, 227–246 (2006).
[CrossRef]

Nature

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[CrossRef] [PubMed]

Phys. Rev. A

M. D. De Vizia, F. Rohart, ccedil ois, A. Castrillo, E. Fasci, L. Moretti, and L. Gianfrani, “Speed-dependent effects in the near-infrared spectrum of self-colliding h2o18 molecules,” Phys. Rev. A 83, 052506 (2011).
[CrossRef]

D. A. Long, D. K. Havey, M. Okumura, C. E. Miller, and J. T. Hodges, “Cavity ring-down spectroscopy measurements of sub-doppler hyperfine structure,” Phys. Rev. A 81, 064502 (2010).
[CrossRef]

A. Cygan, D. Lisak, R. S. Trawiński, and R. Ciuryło, “Influence of the line-shape model on the spectroscopic determination of the boltzmann constant,” Phys. Rev. A 82, 032515 (2010).
[CrossRef]

Phys. Rev. Lett.

C. Daussy, M. Guinet, A. Amy-Klein, K. Djerroud, Y. Hermier, S. Briaudeau, C. J. Bordé, and C. Chardonnet, “Direct determination of the boltzmann constant by an optical method,” Phys. Rev. Lett. 98, 250801 (2007).
[CrossRef] [PubMed]

G. Casa, A. Castrillo, G. Galzerano, R. Wehr, A. Merlone, D. Di Serafino, P. Laporta, and L. Gianfrani, “Primary gas thermometry by means of laser-absorption spectroscopy: Determination of the boltzmann constant,” Phys. Rev. Lett. 100, 200801 (2008).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

B. Gao, W. Jiang, A.-W. Liu, Y. Lu, C.-F. Cheng, G.-S. Cheng, and S.-M. Hu, “Ultra sensitive near-infrared cavity ring down spectrometer for precise line profile measurement,” Rev. Sci. Instrum. 81, 043105 (2010).
[CrossRef] [PubMed]

A. O’Keefe and D. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–51 (1988).
[CrossRef]

A. Cygan, D. Lisak, P. Maslowski, K. Bielska, S. Wojtewicz, J. Domyslawska, R. S. Trawinski, R. Ciurylo, H. Abe, and J. T. Hodges, “Pound-drever-hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011).
[CrossRef] [PubMed]

J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum. 75, 849–863 (2004).
[CrossRef]

J. T. Hodges and R. Ciurylo, “Automated high-resolution frequency-stabilized cavity ring-down absorption spectrometer,” Rev. Sci. Instrum. 76, 023112 (2005).
[CrossRef]

Other

C. Lemarchand, M. Triki, B. Darquié, Ch. J. Bordé, C. Chardonnet, and C. Daussy, “Progress towards an accurate determination of the Boltzmann constant by Doppler spectroscopy,” New J. Phys.13, 073028 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Relative deviations in γD resulting from the noise level and frequency uncertainty.

Fig. 2
Fig. 2

Relative deviation on the Doppler line width from spectrum recorded with different sample pressure. The linear fit gives the extrapolation to the zero pressure limit.

Fig. 3
Fig. 3

Relative deviations in the determined line width with different nonlinearity coefficients in the detection, for direct absorption measurement (upper) and for cavity ring-down measurement (lower).

Fig. 4
Fig. 4

Schematics of a frequency-stabilized CRDS setup. AOM: acousto-optic modulator; EOM: electro-optic modulator. DAQ: Data acquisition card.

Fig. 5
Fig. 5

Spectrum of a 12C2H2 line near 788 nm at the room temperature. Left panel: observed and simulated spectrum (upper) and the fitting residual (lower). Right panel: temperature values derived from the Gaussian widths of a series of spectrum obtained with different sample gas pressure.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

γ D ν 0 = ( 8 k B T ln 2 m c 2 ) 1 / 2
τ = L / c ln R + α L
α = 1 c τ + ln R L
I = I 0 + δ I 0 2

Metrics