Abstract

We design As2Se3 and As2S3 chalcogenide photonic nanowires to optimize the soliton self-compression with short distances and ultralow input pulse energy. We numerically demonstrate the generation of single optical cycle in an As2S3 photonic nanowire: a 5.07 fs compressed pulse is obtained starting from 250 fs input pulse with 50 pJ in 0.84 mm-long As2S3 nanowire. Taking into account the high two photon absorption (TPA) coefficient in the As2Se3 glass, accurate modeling shows the compression of 250 fs down to 25.4 fs in 2.1 mm-long nanowire and with 10 pJ input pulse energy.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  2. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
    [CrossRef] [PubMed]
  3. E. C. Mägi, P. Steinvurzel, and B. J. Eggleton, “Tapered photonic crystal fibers,” Opt. Express 12(5), 776–784 (2004).
    [CrossRef] [PubMed]
  4. Y. K. Lizé, E. C. Mägi, V. G. Ta’eed, J. A. Bolger, P. Steinvurzel, and B. J. Eggleton, “Microstructured optical fiber photonic wires with subwavelength core diameter,” Opt. Express 12(14), 3209–3217 (2004).
    [CrossRef] [PubMed]
  5. R. R. Gattass, G. T. Svacha, L. M. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express 14(20), 9408–9414 (2006).
    [CrossRef] [PubMed]
  6. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12(13), 2864–2869 (2004).
    [CrossRef] [PubMed]
  7. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
    [CrossRef]
  8. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, “Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,” Opt. Lett. 8(5), 289–291 (1983).
    [CrossRef] [PubMed]
  9. C. M. Chen and P. L. Kelley, “Nonlinear pulse compression in optical fibers: scaling laws and numerical analysis,” J. Opt. Soc. Am. B 19(9), 1961–1967 (2002).
    [CrossRef]
  10. M. Foster, A. L. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13(18), 6848–6855 (2005).
    [CrossRef] [PubMed]
  11. J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27(2), 119–121 (2002).
    [CrossRef] [PubMed]
  12. D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
    [CrossRef] [PubMed]
  13. D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36(7), 1122–1124 (2011).
    [CrossRef] [PubMed]
  14. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
    [CrossRef] [PubMed]
  15. M. Zghal and R. Cherif, “Impact of small geometrical imperfections on chromatic dispersion and birefringence in photonic crystal fibers,” Opt. Eng. 46(12), 128002 (2007).
    [CrossRef]
  16. M. A. Foster, K. D. Moll, and A. L. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express 12(13), 2880–2887 (2004).
    [CrossRef] [PubMed]
  17. T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78(17), 3282–3285 (1997).
    [CrossRef]
  18. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).
  19. K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25(12), 2665–2673 (1989).
    [CrossRef]
  20. R. Cherif, A. Ben-Salem, M. Zghal, P. Besnard, T. Chartier, L. Brilland, and J. Troles, “Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for midinfrared supercontinuum generation,” Opt. Eng. 49(9), 095002 (2010).
    [CrossRef]
  21. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21(6), 1146–1155 (2004).
    [CrossRef]
  22. A. Ben-Salem, R. Cherif, and M. Zghal, “Raman response of a highly nonlinear As2Se3-based chalcogenide photonic crystal fiber,” Proc. PIERS, 1256–1260, Marrakesh, Morocco (2011).
  23. C. Xiong, E. Magi, F. Luan, A. Tuniz, S. Dekker, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Characterization of picosecond pulse nonlinear propagation in chalcogenide As2S3 fiber,” Appl. Opt. 48(29), 5467–5474 (2009).
    [CrossRef] [PubMed]
  24. A. Ben Salem, R. Cherif, and M. Zghal, “Generation of few optical cycles in air-silica nanowires,” Proc. SPIE 8001, 80011J (2011).
    [CrossRef]
  25. M. Bass, Handbook of Optics (McGraw Hill, 1997).
  26. D.-P. Wei, T. Galstian, I. Smolnikov, V. Plotnichenko, and A. Zohrabyan, “Spectral broadening of femtosecond pulses in a single-mode As-S glass fiber,” Opt. Express 13(7), 2439–2443 (2005).
    [CrossRef] [PubMed]
  27. B. Kibler, R. Fischer, P.-A. Lacourt, F. Courvoisier, R. Ferriere, L. Larger, D. N. Neshev, and J. M. Dudley, “Optimised one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fibre,” Electron. Lett. 43(17), 915–916 (2007).
    [CrossRef]
  28. G. Brambilla, “Optical fibre nanotaper sensors,” Opt. Fiber Technol. 16(6), 331–342 (2010).
    [CrossRef]

2011 (2)

2010 (2)

R. Cherif, A. Ben-Salem, M. Zghal, P. Besnard, T. Chartier, L. Brilland, and J. Troles, “Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for midinfrared supercontinuum generation,” Opt. Eng. 49(9), 095002 (2010).
[CrossRef]

G. Brambilla, “Optical fibre nanotaper sensors,” Opt. Fiber Technol. 16(6), 331–342 (2010).
[CrossRef]

2009 (1)

2008 (2)

2007 (2)

M. Zghal and R. Cherif, “Impact of small geometrical imperfections on chromatic dispersion and birefringence in photonic crystal fibers,” Opt. Eng. 46(12), 128002 (2007).
[CrossRef]

B. Kibler, R. Fischer, P.-A. Lacourt, F. Courvoisier, R. Ferriere, L. Larger, D. N. Neshev, and J. M. Dudley, “Optimised one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fibre,” Electron. Lett. 43(17), 915–916 (2007).
[CrossRef]

2006 (1)

2005 (2)

2004 (6)

2003 (1)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

2002 (2)

1997 (1)

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78(17), 3282–3285 (1997).
[CrossRef]

1989 (1)

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25(12), 2665–2673 (1989).
[CrossRef]

1983 (1)

1980 (1)

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[CrossRef]

Aggarwal, I. D.

Ashcom, J. B.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Ben Salem, A.

A. Ben Salem, R. Cherif, and M. Zghal, “Generation of few optical cycles in air-silica nanowires,” Proc. SPIE 8001, 80011J (2011).
[CrossRef]

Ben-Salem, A.

R. Cherif, A. Ben-Salem, M. Zghal, P. Besnard, T. Chartier, L. Brilland, and J. Troles, “Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for midinfrared supercontinuum generation,” Opt. Eng. 49(9), 095002 (2010).
[CrossRef]

Besnard, P.

R. Cherif, A. Ben-Salem, M. Zghal, P. Besnard, T. Chartier, L. Brilland, and J. Troles, “Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for midinfrared supercontinuum generation,” Opt. Eng. 49(9), 095002 (2010).
[CrossRef]

Birks, T. A.

Blow, K. J.

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25(12), 2665–2673 (1989).
[CrossRef]

Bolger, J. A.

Brabec, T.

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78(17), 3282–3285 (1997).
[CrossRef]

Brambilla, G.

G. Brambilla, “Optical fibre nanotaper sensors,” Opt. Fiber Technol. 16(6), 331–342 (2010).
[CrossRef]

Brilland, L.

R. Cherif, A. Ben-Salem, M. Zghal, P. Besnard, T. Chartier, L. Brilland, and J. Troles, “Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for midinfrared supercontinuum generation,” Opt. Eng. 49(9), 095002 (2010).
[CrossRef]

Cao, Q.

Chartier, T.

R. Cherif, A. Ben-Salem, M. Zghal, P. Besnard, T. Chartier, L. Brilland, and J. Troles, “Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for midinfrared supercontinuum generation,” Opt. Eng. 49(9), 095002 (2010).
[CrossRef]

Chen, C. M.

Cherif, R.

A. Ben Salem, R. Cherif, and M. Zghal, “Generation of few optical cycles in air-silica nanowires,” Proc. SPIE 8001, 80011J (2011).
[CrossRef]

R. Cherif, A. Ben-Salem, M. Zghal, P. Besnard, T. Chartier, L. Brilland, and J. Troles, “Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for midinfrared supercontinuum generation,” Opt. Eng. 49(9), 095002 (2010).
[CrossRef]

M. Zghal and R. Cherif, “Impact of small geometrical imperfections on chromatic dispersion and birefringence in photonic crystal fibers,” Opt. Eng. 46(12), 128002 (2007).
[CrossRef]

Courvoisier, F.

B. Kibler, R. Fischer, P.-A. Lacourt, F. Courvoisier, R. Ferriere, L. Larger, D. N. Neshev, and J. M. Dudley, “Optimised one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fibre,” Electron. Lett. 43(17), 915–916 (2007).
[CrossRef]

Dekker, S.

Dekker, S. A.

Dudley, J. M.

B. Kibler, R. Fischer, P.-A. Lacourt, F. Courvoisier, R. Ferriere, L. Larger, D. N. Neshev, and J. M. Dudley, “Optimised one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fibre,” Electron. Lett. 43(17), 915–916 (2007).
[CrossRef]

Eggleton, B. J.

Ferriere, R.

B. Kibler, R. Fischer, P.-A. Lacourt, F. Courvoisier, R. Ferriere, L. Larger, D. N. Neshev, and J. M. Dudley, “Optimised one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fibre,” Electron. Lett. 43(17), 915–916 (2007).
[CrossRef]

Fischer, R.

B. Kibler, R. Fischer, P.-A. Lacourt, F. Courvoisier, R. Ferriere, L. Larger, D. N. Neshev, and J. M. Dudley, “Optimised one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fibre,” Electron. Lett. 43(17), 915–916 (2007).
[CrossRef]

Foster, M.

Foster, M. A.

Fu, L.

Gaeta, A. L.

Galstian, T.

Gattass, R. R.

R. R. Gattass, G. T. Svacha, L. M. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express 14(20), 9408–9414 (2006).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Gordon, J. P.

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, “Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,” Opt. Lett. 8(5), 289–291 (1983).
[CrossRef] [PubMed]

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[CrossRef]

Harbold, J. M.

He, S. L.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Hodelin, J.

Hudson, D. D.

Ilday, F. O.

Jackson, S. D.

Judge, A. C.

Kelley, P. L.

Kibler, B.

B. Kibler, R. Fischer, P.-A. Lacourt, F. Courvoisier, R. Ferriere, L. Larger, D. N. Neshev, and J. M. Dudley, “Optimised one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fibre,” Electron. Lett. 43(17), 915–916 (2007).
[CrossRef]

Krausz, F.

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78(17), 3282–3285 (1997).
[CrossRef]

Lacourt, P.-A.

B. Kibler, R. Fischer, P.-A. Lacourt, F. Courvoisier, R. Ferriere, L. Larger, D. N. Neshev, and J. M. Dudley, “Optimised one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fibre,” Electron. Lett. 43(17), 915–916 (2007).
[CrossRef]

Lamont, M. R. E.

Larger, L.

B. Kibler, R. Fischer, P.-A. Lacourt, F. Courvoisier, R. Ferriere, L. Larger, D. N. Neshev, and J. M. Dudley, “Optimised one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fibre,” Electron. Lett. 43(17), 915–916 (2007).
[CrossRef]

Lenz, G.

Leon-Saval, S. G.

Li, E.

Lipson, M.

Lizé, Y. K.

Lou, J.

Lou, J. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Luan, F.

Magi, E.

Mägi, E. C.

Mason, M. W.

Maxwell, I.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

Moll, K. D.

Mollenauer, L. F.

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, “Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,” Opt. Lett. 8(5), 289–291 (1983).
[CrossRef] [PubMed]

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[CrossRef]

Neshev, D. N.

B. Kibler, R. Fischer, P.-A. Lacourt, F. Courvoisier, R. Ferriere, L. Larger, D. N. Neshev, and J. M. Dudley, “Optimised one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fibre,” Electron. Lett. 43(17), 915–916 (2007).
[CrossRef]

Nguyen, V. Q.

Plotnichenko, V.

Roelens, M. A. F.

Sanghera, J.

Sanghera, J. S.

Shaw, L. B.

Shen, M. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Slusher, R. E.

Smolnikov, I.

St. J. Russell, P.

Steinvurzel, P.

Stolen, R. H.

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, “Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,” Opt. Lett. 8(5), 289–291 (1983).
[CrossRef] [PubMed]

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[CrossRef]

Svacha, G. T.

Ta’eed, V. G.

Tomlinson, W. J.

Tong, L.

Tong, L. M.

R. R. Gattass, G. T. Svacha, L. M. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express 14(20), 9408–9414 (2006).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Trebino, R.

Troles, J.

R. Cherif, A. Ben-Salem, M. Zghal, P. Besnard, T. Chartier, L. Brilland, and J. Troles, “Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for midinfrared supercontinuum generation,” Opt. Eng. 49(9), 095002 (2010).
[CrossRef]

Tuniz, A.

Turner, A. C.

Wadsworth, W. J.

Wei, D.-P.

Wise, F. W.

Wood, D.

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25(12), 2665–2673 (1989).
[CrossRef]

Xiong, C.

Yeom, D. I.

Zghal, M.

A. Ben Salem, R. Cherif, and M. Zghal, “Generation of few optical cycles in air-silica nanowires,” Proc. SPIE 8001, 80011J (2011).
[CrossRef]

R. Cherif, A. Ben-Salem, M. Zghal, P. Besnard, T. Chartier, L. Brilland, and J. Troles, “Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for midinfrared supercontinuum generation,” Opt. Eng. 49(9), 095002 (2010).
[CrossRef]

M. Zghal and R. Cherif, “Impact of small geometrical imperfections on chromatic dispersion and birefringence in photonic crystal fibers,” Opt. Eng. 46(12), 128002 (2007).
[CrossRef]

Zohrabyan, A.

Appl. Opt. (1)

Electron. Lett. (1)

B. Kibler, R. Fischer, P.-A. Lacourt, F. Courvoisier, R. Ferriere, L. Larger, D. N. Neshev, and J. M. Dudley, “Optimised one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fibre,” Electron. Lett. 43(17), 915–916 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25(12), 2665–2673 (1989).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nature (1)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Opt. Eng. (2)

R. Cherif, A. Ben-Salem, M. Zghal, P. Besnard, T. Chartier, L. Brilland, and J. Troles, “Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for midinfrared supercontinuum generation,” Opt. Eng. 49(9), 095002 (2010).
[CrossRef]

M. Zghal and R. Cherif, “Impact of small geometrical imperfections on chromatic dispersion and birefringence in photonic crystal fibers,” Opt. Eng. 46(12), 128002 (2007).
[CrossRef]

Opt. Express (9)

E. C. Mägi, P. Steinvurzel, and B. J. Eggleton, “Tapered photonic crystal fibers,” Opt. Express 12(5), 776–784 (2004).
[CrossRef] [PubMed]

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[CrossRef] [PubMed]

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12(13), 2864–2869 (2004).
[CrossRef] [PubMed]

M. A. Foster, K. D. Moll, and A. L. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express 12(13), 2880–2887 (2004).
[CrossRef] [PubMed]

Y. K. Lizé, E. C. Mägi, V. G. Ta’eed, J. A. Bolger, P. Steinvurzel, and B. J. Eggleton, “Microstructured optical fiber photonic wires with subwavelength core diameter,” Opt. Express 12(14), 3209–3217 (2004).
[CrossRef] [PubMed]

D.-P. Wei, T. Galstian, I. Smolnikov, V. Plotnichenko, and A. Zohrabyan, “Spectral broadening of femtosecond pulses in a single-mode As-S glass fiber,” Opt. Express 13(7), 2439–2443 (2005).
[CrossRef] [PubMed]

M. Foster, A. L. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13(18), 6848–6855 (2005).
[CrossRef] [PubMed]

R. R. Gattass, G. T. Svacha, L. M. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express 14(20), 9408–9414 (2006).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
[CrossRef] [PubMed]

Opt. Fiber Technol. (1)

G. Brambilla, “Optical fibre nanotaper sensors,” Opt. Fiber Technol. 16(6), 331–342 (2010).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. Lett. (2)

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[CrossRef]

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78(17), 3282–3285 (1997).
[CrossRef]

Proc. SPIE (1)

A. Ben Salem, R. Cherif, and M. Zghal, “Generation of few optical cycles in air-silica nanowires,” Proc. SPIE 8001, 80011J (2011).
[CrossRef]

Other (3)

M. Bass, Handbook of Optics (McGraw Hill, 1997).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).

A. Ben-Salem, R. Cherif, and M. Zghal, “Raman response of a highly nonlinear As2Se3-based chalcogenide photonic crystal fiber,” Proc. PIERS, 1256–1260, Marrakesh, Morocco (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Calculated chromatic dispersion of air-As2Se3 nanowires with core diameters ranging from 600 nm to 1000 nm.

Fig. 2
Fig. 2

(a) Fractional powers inside and outside the core and (b) effective mode area (Aeff) and nonlinear coefficient (γ) of various air-As2Se3 nanowire diameters at λp = 1550 nm.

Fig. 3
Fig. 3

Impact of the initial chirp on the compression efficiency.

Fig. 4
Fig. 4

(a) Temporal and (b) spectral evolution of 250 fs input pulse with 10 pJ input energy in the 800 nm air-As2Se3 nanowire at λp = 1550 nm, with and without TPA.

Fig. 5
Fig. 5

Calculated chromatic dispersion of air-As2S3 nanowires with core diameters ranging from 600 nm to 1000 nm.

Fig. 6
Fig. 6

(a) Fractional powers inside and outside the core and (b) effective mode area (Aeff) and nonlinear coefficient (γ) of different air-As2S3 nanowires at λp = 1550 nm.

Fig. 7
Fig. 7

Temporal evolution of 250 fs input pulse with 50 pJ input energy in the 800 nm air-As2S3 nanowire at λp = 1550 nm.

Fig. 8
Fig. 8

Spectral evolution of 250 fs input pulse with 50 pJ input energy in the 800 nm air-As2S3 nanowire at λp = 1550 nm.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

2 E+( n 2 k 0 2 β 2 )E=0
[ J υ ' (U) U J υ (U) + K υ ' (W) W K υ (W) ][ J υ ' (U) U J υ (U) + ( n cl n c ) 2 K υ ' (W) W K υ (W) ]= ( νβ k 0 n c ) 2 ( V UW ) 4
[ K ] { E }   k 0 2   n eff 2 [ M ] { E }={ 0 }
D c  = λ c d 2 n eff d λ 2
γ= 2π λ n 2 . S z 2 d 2 r ( S z d 2 r ) 2
η= 0 d/2 0 2π S z .rdr.dφ 0 0 2π S z .rdr.dφ
A z = α 2 A+ m0 j m+1 β m m! m A t m +j( γ+j α 2 2 A eff )( 1+ j ω 0 t )                                                               ×( A(z,t) 0 + R(t') | A(z,tt') | 2 dt' )
R(t)=(1 f R )δ(t)+ f R h R (t)
h R (t)= τ 1 ²+ τ 2 ² τ 1 τ 2 ² exp( t τ 2 )sin( t τ 1 )
A(0,t)= P 0 sech( t T 0 )exp(iC t 2 2 T 0 2 )

Metrics