Abstract

We have experimentally investigated the birefringent properties of photonic crystal fiber (PCF) coils in cooperation with a Sagnac loop interferometer. By reducing the bending radius of the PCF coils, very clear interference patterns can be observed for the bending-induced stress effect. Increasing the fiber turns can result in more obvious interference patterns with smaller fringe spacing but has no contribution to the increment of the birefringence value. The fabricated PCF coil is employed in the transverse displacement sensing. Very high sensing sensitivity of 90.4 nm/mm can be achieved due to the large displacement-induced bending radius variations.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Kumar and R. K. Varshney, “Propagation characteristics of dual-mode elliptical-core optical fibers,” Opt. Lett. 14(15), 817–819 (1989).
    [CrossRef] [PubMed]
  2. J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
    [CrossRef]
  3. P. St. J. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
    [CrossRef]
  4. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25(18), 1325–1327 (2000).
    [CrossRef] [PubMed]
  5. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
    [CrossRef]
  6. H. Y. Fu, H. Y. Tam, L.-Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Appl. Opt. 47(15), 2835–2839 (2008).
    [CrossRef] [PubMed]
  7. W. Eickhoff, “Temperature sensing by mode-mode interference in birefringent optical fibers,” Opt. Lett. 6(4), 204–206 (1981).
    [CrossRef] [PubMed]
  8. F. C. Fávero, S. M. M. Quintero, C. Martelli, A. M. B. Braga, V. V. Silva, I. C. S. Carvalho, R. W. A. Llerena, and L. C. G. Valente, “Hydrostatic pressure sensing with high birefringence photonic crystal fibers,” Sensors (Basel Switzerland) 10(11), 9698–9711 (2010).
    [CrossRef]
  9. O. Frazão, J. M. Baptista, and J. L. Santos, “Temperature-independent strain sensor based on a Hi-Bi photonic crystal fiber loop mirror,” IEEE Sens. J. 7(10), 1453–1455 (2007).
    [CrossRef]
  10. O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett. 21(17), 1277–1279 (2009).
    [CrossRef]
  11. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5(6), 273–275 (1980).
    [CrossRef] [PubMed]
  12. S. C. Rashleigh and R. Ulrich, “High birefringence in tension-coiled single-mode fibers,” Opt. Lett. 5(8), 354–356 (1980).
    [CrossRef] [PubMed]
  13. C. D. Perciante and J. A. Ferrari, “Cancellation of bending-induced birefringence in single-mode fibers: application to faraday sensors,” Appl. Opt. 45(9), 1951–1956 (2006).
    [CrossRef] [PubMed]
  14. J. Scheuer, “Fiber microcoil optical gyroscope,” Opt. Lett. 34(11), 1630–1632 (2009).
    [CrossRef] [PubMed]
  15. M. Sumetsky, “Optical microfiber coil delay line,” Opt. Express 17(9), 7196–7205 (2009).
    [CrossRef] [PubMed]
  16. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007).
    [CrossRef] [PubMed]
  17. M. Sumetsky, Y. Dulashko, and S. Ghalmi, “Fabrication of miniature optical fiber and microfiber coils,” Opt. Lasers Eng. 48(3), 272–275 (2010).
    [CrossRef]
  18. A. Bertholds and R. Dändliker, “High-resolution photoelastic pressure sensor using low-birefringence fiber,” Appl. Opt. 25(3), 340–343 (1986).
    [CrossRef] [PubMed]
  19. K. Bohnert, P. Gabus, J. Nehring, and H. Brandle, “Temperature and Vibration Insensitive Fiber-Optic Current Sensor,” J. Lightwave Technol. 20(2), 267–276 (2002).
    [CrossRef]
  20. D. Tang, A. H. Rose, G. W. Day, and S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coils: Applications to optical fiber current sensors,” J. Lightwave Technol. 9(8), 1031–1037 (1991).
    [CrossRef]
  21. T. Sørensen, J. Broeng, A. Bjarklev, E. Knudsen, and S. E. Barkou Libori, “Macro-bending loss properties of photonic crystal fibre,” Electron. Lett. 37(5), 287–289 (2001).
    [CrossRef]
  22. M. Nielsen, N. Mortensen, M. Albertsen, J. Folkenberg, A. Bjarklev, and D. Bonacinni, “Predicting macrobending loss for large-mode area photonic crystal fibers,” Opt. Express 12(8), 1775–1779 (2004).
    [CrossRef] [PubMed]
  23. H. Zhang, B. Liu, Z. Wang, J. Luo, S. Wang, C. Jia, and X. Ma, “Temperature-insensitive displacement sensor based on high-birefringence photonic crystal fiber loop mirror,” Opt. Appl. 40(1), 209–217 (2010).

2010

F. C. Fávero, S. M. M. Quintero, C. Martelli, A. M. B. Braga, V. V. Silva, I. C. S. Carvalho, R. W. A. Llerena, and L. C. G. Valente, “Hydrostatic pressure sensing with high birefringence photonic crystal fibers,” Sensors (Basel Switzerland) 10(11), 9698–9711 (2010).
[CrossRef]

M. Sumetsky, Y. Dulashko, and S. Ghalmi, “Fabrication of miniature optical fiber and microfiber coils,” Opt. Lasers Eng. 48(3), 272–275 (2010).
[CrossRef]

H. Zhang, B. Liu, Z. Wang, J. Luo, S. Wang, C. Jia, and X. Ma, “Temperature-insensitive displacement sensor based on high-birefringence photonic crystal fiber loop mirror,” Opt. Appl. 40(1), 209–217 (2010).

2009

J. Scheuer, “Fiber microcoil optical gyroscope,” Opt. Lett. 34(11), 1630–1632 (2009).
[CrossRef] [PubMed]

M. Sumetsky, “Optical microfiber coil delay line,” Opt. Express 17(9), 7196–7205 (2009).
[CrossRef] [PubMed]

O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett. 21(17), 1277–1279 (2009).
[CrossRef]

2008

2007

O. Frazão, J. M. Baptista, and J. L. Santos, “Temperature-independent strain sensor based on a Hi-Bi photonic crystal fiber loop mirror,” IEEE Sens. J. 7(10), 1453–1455 (2007).
[CrossRef]

F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007).
[CrossRef] [PubMed]

2006

2004

2002

2001

T. Sørensen, J. Broeng, A. Bjarklev, E. Knudsen, and S. E. Barkou Libori, “Macro-bending loss properties of photonic crystal fibre,” Electron. Lett. 37(5), 287–289 (2001).
[CrossRef]

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[CrossRef]

2000

1991

D. Tang, A. H. Rose, G. W. Day, and S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coils: Applications to optical fiber current sensors,” J. Lightwave Technol. 9(8), 1031–1037 (1991).
[CrossRef]

1989

1986

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[CrossRef]

A. Bertholds and R. Dändliker, “High-resolution photoelastic pressure sensor using low-birefringence fiber,” Appl. Opt. 25(3), 340–343 (1986).
[CrossRef] [PubMed]

1981

1980

Albertsen, M.

Arriaga, J.

Baptista, J. M.

O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett. 21(17), 1277–1279 (2009).
[CrossRef]

O. Frazão, J. M. Baptista, and J. L. Santos, “Temperature-independent strain sensor based on a Hi-Bi photonic crystal fiber loop mirror,” IEEE Sens. J. 7(10), 1453–1455 (2007).
[CrossRef]

Barkou Libori, S. E.

T. Sørensen, J. Broeng, A. Bjarklev, E. Knudsen, and S. E. Barkou Libori, “Macro-bending loss properties of photonic crystal fibre,” Electron. Lett. 37(5), 287–289 (2001).
[CrossRef]

Bertholds, A.

Birks, T. A.

Bjarklev, A.

M. Nielsen, N. Mortensen, M. Albertsen, J. Folkenberg, A. Bjarklev, and D. Bonacinni, “Predicting macrobending loss for large-mode area photonic crystal fibers,” Opt. Express 12(8), 1775–1779 (2004).
[CrossRef] [PubMed]

T. Sørensen, J. Broeng, A. Bjarklev, E. Knudsen, and S. E. Barkou Libori, “Macro-bending loss properties of photonic crystal fibre,” Electron. Lett. 37(5), 287–289 (2001).
[CrossRef]

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[CrossRef]

Bohnert, K.

Bonacinni, D.

Braga, A. M. B.

F. C. Fávero, S. M. M. Quintero, C. Martelli, A. M. B. Braga, V. V. Silva, I. C. S. Carvalho, R. W. A. Llerena, and L. C. G. Valente, “Hydrostatic pressure sensing with high birefringence photonic crystal fibers,” Sensors (Basel Switzerland) 10(11), 9698–9711 (2010).
[CrossRef]

Brambilla, G.

Brandle, H.

Broeng, J.

T. Sørensen, J. Broeng, A. Bjarklev, E. Knudsen, and S. E. Barkou Libori, “Macro-bending loss properties of photonic crystal fibre,” Electron. Lett. 37(5), 287–289 (2001).
[CrossRef]

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[CrossRef]

Carvalho, I. C. S.

F. C. Fávero, S. M. M. Quintero, C. Martelli, A. M. B. Braga, V. V. Silva, I. C. S. Carvalho, R. W. A. Llerena, and L. C. G. Valente, “Hydrostatic pressure sensing with high birefringence photonic crystal fibers,” Sensors (Basel Switzerland) 10(11), 9698–9711 (2010).
[CrossRef]

Dändliker, R.

Day, G. W.

D. Tang, A. H. Rose, G. W. Day, and S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coils: Applications to optical fiber current sensors,” J. Lightwave Technol. 9(8), 1031–1037 (1991).
[CrossRef]

Dong, X.

Dulashko, Y.

M. Sumetsky, Y. Dulashko, and S. Ghalmi, “Fabrication of miniature optical fiber and microfiber coils,” Opt. Lasers Eng. 48(3), 272–275 (2010).
[CrossRef]

Eickhoff, W.

Etzel, S. M.

D. Tang, A. H. Rose, G. W. Day, and S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coils: Applications to optical fiber current sensors,” J. Lightwave Technol. 9(8), 1031–1037 (1991).
[CrossRef]

Fávero, F. C.

F. C. Fávero, S. M. M. Quintero, C. Martelli, A. M. B. Braga, V. V. Silva, I. C. S. Carvalho, R. W. A. Llerena, and L. C. G. Valente, “Hydrostatic pressure sensing with high birefringence photonic crystal fibers,” Sensors (Basel Switzerland) 10(11), 9698–9711 (2010).
[CrossRef]

Ferrari, J. A.

Folkenberg, J.

Frazão, O.

O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett. 21(17), 1277–1279 (2009).
[CrossRef]

O. Frazão, J. M. Baptista, and J. L. Santos, “Temperature-independent strain sensor based on a Hi-Bi photonic crystal fiber loop mirror,” IEEE Sens. J. 7(10), 1453–1455 (2007).
[CrossRef]

Fu, H. Y.

Gabus, P.

Ghalmi, S.

M. Sumetsky, Y. Dulashko, and S. Ghalmi, “Fabrication of miniature optical fiber and microfiber coils,” Opt. Lasers Eng. 48(3), 272–275 (2010).
[CrossRef]

Hansen, T. P.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[CrossRef]

Horak, P.

Jensen, J. R.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[CrossRef]

Jesus, C.

O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett. 21(17), 1277–1279 (2009).
[CrossRef]

Jia, C.

H. Zhang, B. Liu, Z. Wang, J. Luo, S. Wang, C. Jia, and X. Ma, “Temperature-insensitive displacement sensor based on high-birefringence photonic crystal fiber loop mirror,” Opt. Appl. 40(1), 209–217 (2010).

Khijwania, S. K.

Knight, J. C.

Knudsen, E.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[CrossRef]

T. Sørensen, J. Broeng, A. Bjarklev, E. Knudsen, and S. E. Barkou Libori, “Macro-bending loss properties of photonic crystal fibre,” Electron. Lett. 37(5), 287–289 (2001).
[CrossRef]

Kumar, A.

Libori, S. E. B.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[CrossRef]

Liu, B.

H. Zhang, B. Liu, Z. Wang, J. Luo, S. Wang, C. Jia, and X. Ma, “Temperature-insensitive displacement sensor based on high-birefringence photonic crystal fiber loop mirror,” Opt. Appl. 40(1), 209–217 (2010).

Llerena, R. W. A.

F. C. Fávero, S. M. M. Quintero, C. Martelli, A. M. B. Braga, V. V. Silva, I. C. S. Carvalho, R. W. A. Llerena, and L. C. G. Valente, “Hydrostatic pressure sensing with high birefringence photonic crystal fibers,” Sensors (Basel Switzerland) 10(11), 9698–9711 (2010).
[CrossRef]

Lu, C.

Luo, J.

H. Zhang, B. Liu, Z. Wang, J. Luo, S. Wang, C. Jia, and X. Ma, “Temperature-insensitive displacement sensor based on high-birefringence photonic crystal fiber loop mirror,” Opt. Appl. 40(1), 209–217 (2010).

Ma, X.

H. Zhang, B. Liu, Z. Wang, J. Luo, S. Wang, C. Jia, and X. Ma, “Temperature-insensitive displacement sensor based on high-birefringence photonic crystal fiber loop mirror,” Opt. Appl. 40(1), 209–217 (2010).

Mangan, B. J.

Martelli, C.

F. C. Fávero, S. M. M. Quintero, C. Martelli, A. M. B. Braga, V. V. Silva, I. C. S. Carvalho, R. W. A. Llerena, and L. C. G. Valente, “Hydrostatic pressure sensing with high birefringence photonic crystal fibers,” Sensors (Basel Switzerland) 10(11), 9698–9711 (2010).
[CrossRef]

Mortensen, N.

Nehring, J.

Nielsen, M.

Noda, J.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[CrossRef]

Okamoto, K.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[CrossRef]

Ortigosa-Blanch, A.

Perciante, C. D.

Quintero, S. M. M.

F. C. Fávero, S. M. M. Quintero, C. Martelli, A. M. B. Braga, V. V. Silva, I. C. S. Carvalho, R. W. A. Llerena, and L. C. G. Valente, “Hydrostatic pressure sensing with high birefringence photonic crystal fibers,” Sensors (Basel Switzerland) 10(11), 9698–9711 (2010).
[CrossRef]

Rashleigh, S. C.

Rose, A. H.

D. Tang, A. H. Rose, G. W. Day, and S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coils: Applications to optical fiber current sensors,” J. Lightwave Technol. 9(8), 1031–1037 (1991).
[CrossRef]

Roy, P.

O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett. 21(17), 1277–1279 (2009).
[CrossRef]

Russell, P. St. J.

Santos, J. L.

O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett. 21(17), 1277–1279 (2009).
[CrossRef]

O. Frazão, J. M. Baptista, and J. L. Santos, “Temperature-independent strain sensor based on a Hi-Bi photonic crystal fiber loop mirror,” IEEE Sens. J. 7(10), 1453–1455 (2007).
[CrossRef]

Sasaki, Y.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[CrossRef]

Scheuer, J.

Shao, L.-Y.

Silva, V. V.

F. C. Fávero, S. M. M. Quintero, C. Martelli, A. M. B. Braga, V. V. Silva, I. C. S. Carvalho, R. W. A. Llerena, and L. C. G. Valente, “Hydrostatic pressure sensing with high birefringence photonic crystal fibers,” Sensors (Basel Switzerland) 10(11), 9698–9711 (2010).
[CrossRef]

Simonsen, H.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[CrossRef]

Sørensen, T.

T. Sørensen, J. Broeng, A. Bjarklev, E. Knudsen, and S. E. Barkou Libori, “Macro-bending loss properties of photonic crystal fibre,” Electron. Lett. 37(5), 287–289 (2001).
[CrossRef]

Sumetsky, M.

M. Sumetsky, Y. Dulashko, and S. Ghalmi, “Fabrication of miniature optical fiber and microfiber coils,” Opt. Lasers Eng. 48(3), 272–275 (2010).
[CrossRef]

M. Sumetsky, “Optical microfiber coil delay line,” Opt. Express 17(9), 7196–7205 (2009).
[CrossRef] [PubMed]

Tam, H. Y.

Tang, D.

D. Tang, A. H. Rose, G. W. Day, and S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coils: Applications to optical fiber current sensors,” J. Lightwave Technol. 9(8), 1031–1037 (1991).
[CrossRef]

Ulrich, R.

Valente, L. C. G.

F. C. Fávero, S. M. M. Quintero, C. Martelli, A. M. B. Braga, V. V. Silva, I. C. S. Carvalho, R. W. A. Llerena, and L. C. G. Valente, “Hydrostatic pressure sensing with high birefringence photonic crystal fibers,” Sensors (Basel Switzerland) 10(11), 9698–9711 (2010).
[CrossRef]

Varshney, R. K.

Wadsworth, W. J.

Wai, P. K. A.

Wang, S.

H. Zhang, B. Liu, Z. Wang, J. Luo, S. Wang, C. Jia, and X. Ma, “Temperature-insensitive displacement sensor based on high-birefringence photonic crystal fiber loop mirror,” Opt. Appl. 40(1), 209–217 (2010).

Wang, Z.

H. Zhang, B. Liu, Z. Wang, J. Luo, S. Wang, C. Jia, and X. Ma, “Temperature-insensitive displacement sensor based on high-birefringence photonic crystal fiber loop mirror,” Opt. Appl. 40(1), 209–217 (2010).

Xu, F.

Zhang, H.

H. Zhang, B. Liu, Z. Wang, J. Luo, S. Wang, C. Jia, and X. Ma, “Temperature-insensitive displacement sensor based on high-birefringence photonic crystal fiber loop mirror,” Opt. Appl. 40(1), 209–217 (2010).

Appl. Opt.

Electron. Lett.

T. Sørensen, J. Broeng, A. Bjarklev, E. Knudsen, and S. E. Barkou Libori, “Macro-bending loss properties of photonic crystal fibre,” Electron. Lett. 37(5), 287–289 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett. 21(17), 1277–1279 (2009).
[CrossRef]

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[CrossRef]

IEEE Sens. J.

O. Frazão, J. M. Baptista, and J. L. Santos, “Temperature-independent strain sensor based on a Hi-Bi photonic crystal fiber loop mirror,” IEEE Sens. J. 7(10), 1453–1455 (2007).
[CrossRef]

J. Lightwave Technol.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[CrossRef]

P. St. J. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
[CrossRef]

K. Bohnert, P. Gabus, J. Nehring, and H. Brandle, “Temperature and Vibration Insensitive Fiber-Optic Current Sensor,” J. Lightwave Technol. 20(2), 267–276 (2002).
[CrossRef]

D. Tang, A. H. Rose, G. W. Day, and S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coils: Applications to optical fiber current sensors,” J. Lightwave Technol. 9(8), 1031–1037 (1991).
[CrossRef]

Opt. Appl.

H. Zhang, B. Liu, Z. Wang, J. Luo, S. Wang, C. Jia, and X. Ma, “Temperature-insensitive displacement sensor based on high-birefringence photonic crystal fiber loop mirror,” Opt. Appl. 40(1), 209–217 (2010).

Opt. Express

Opt. Lasers Eng.

M. Sumetsky, Y. Dulashko, and S. Ghalmi, “Fabrication of miniature optical fiber and microfiber coils,” Opt. Lasers Eng. 48(3), 272–275 (2010).
[CrossRef]

Opt. Lett.

Sensors (Basel Switzerland)

F. C. Fávero, S. M. M. Quintero, C. Martelli, A. M. B. Braga, V. V. Silva, I. C. S. Carvalho, R. W. A. Llerena, and L. C. G. Valente, “Hydrostatic pressure sensing with high birefringence photonic crystal fibers,” Sensors (Basel Switzerland) 10(11), 9698–9711 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Illustration of a section of a bent optical fiber.

Fig. 2
Fig. 2

(a) Cross-section of the employed LMA-10 PCF. (b) Fabricated PCF coil with 24 fiber turns. (b) Experimental setup for measuring the birefringent properties of the PCF coils.

Fig. 3
Fig. 3

(a) The transmission spectra and (b) corresponding birefringence of PCF coils with variant bending radius R. The length of the PCF is 90 cm.

Fig. 4
Fig. 4

(a) The transmission spectra of PCF coils with variant fiber turns N for R = 0.61 cm. (b) The calculated birefringence of PCF coils with variant bending radius R and fiber turns N.

Fig. 5
Fig. 5

(a) Configuration of the PCF coil in the transverse displacement sensing. The displacement Δ was controlled by a 5-axis translation stage. (b) The measured spectra for variant displacements. (c) The wavelength shift of the transmission dip versus the displacement of the PCF coil and SMF coil. The squares and circles are the measured results of the PCF and SMF coils, respectively, and the solid lines are the linear fittings.

Fig. 6
Fig. 6

Temperature sensitivities of the PCF and SMF coils

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

B b =C[ (E/2) (r/R) 2 + σ ¯ z (r/R)(23ν)/(1ν) ]
C= n 3 ( p 11 p 12 )(1+ν)/2E
B= λ 2 /LΔλ

Metrics