Abstract

We report a simple technique that allows obtaining mid-infrared absorption spectra with nanoscale spatial resolution under low-power illumination from tunable quantum cascade lasers. Light absorption is detected by measuring associated sample thermal expansion with an atomic force microscope. To detect minute thermal expansion we tune the repetition frequency of laser pulses in resonance with the mechanical frequency of the atomic force microscope cantilever. Spatial resolution of better than 50 nm is experimentally demonstrated.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. H. Stuart, Infrared Spectroscopy: Fundamentals and Applications (Wiley, New York, 2004).
  2. I. W. Levin and R. Bhargava, “Fourier transform infrared vibrational spectroscopic imaging: integrating microscopy and molecular recognition,” Annu. Rev. Phys. Chem. 56(1), 429–474 (2005), and references therein.
    [CrossRef] [PubMed]
  3. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1987).
  4. M. Troccoli, L. Diehl, D. P. Bour, S. W. Corzine, N. Yu, C. Y. Wang, M. A. Belkin, G. Hofler, R. Lewicki, G. Wysocki, F. K. Tittel, and F. Capasso, “High performance quantum cascade lasers grown by metal-organic vapor phase epitaxy and their applications to trace gas sensing,” J. Lightwave Technol. 26(21), 3534–3555 (2008).
    [CrossRef]
  5. B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
    [CrossRef]
  6. F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
    [CrossRef] [PubMed]
  7. T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(3), 311–314 (2003).
    [CrossRef] [PubMed]
  8. M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, “Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution,” ChemPhysChem 6(10), 2197–2203 (2005).
    [CrossRef] [PubMed]
  9. A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
    [CrossRef] [PubMed]
  10. A. Dazzi, R. Prazeres, F. Glotin, and J. M. Ortega, “Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor,” Opt. Lett. 30(18), 2388–2390 (2005).
    [CrossRef] [PubMed]
  11. A. Dazzi, R. Prazeres, F. Glotin, J. M. Ortega, M. Al-Sawaftah, and M. de Frutos, “Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method,” Ultramicroscopy 108(7), 635–641 (2008).
    [CrossRef] [PubMed]
  12. K. Kjoller, J. R. Felts, D. Cook, C. B. Prater, and W. P. King, “High-sensitivity nanometer-scale infrared spectroscopy using a contact mode microcantilever with an internal resonator paddle,” Nanotechnology 21(18), 185705 (2010).
    [CrossRef] [PubMed]
  13. C. Prater, K. Kjoller, and R. Shetty, “Nanoscale infrared spectroscopy,” Mater. Today 13(11), 56–60 (2010).
    [CrossRef]
  14. We obtain sample temperature change in the range 5–50 K using the experimental parameters reported in Refs. [10,12,13] and the simulation results reported in Ref. [11].
  15. A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 27(21), 1902–1904 (2002).
    [CrossRef] [PubMed]
  16. H. Hida, M. Shikida, K. Fukuzawa, S. Murakami, K. Sato, K. Asaumi, Y. Iriye, and K. Sato, “Fabrication of a quartz tuning-fork probe with a sharp tip for AFM systems,” Sens. Actuators A Phys. 148(1), 311–318 (2008).
    [CrossRef]
  17. G. Y. Chen, R. J. Warmack, T. Thundat, D. P. Allison, and A. Huang, “Resonance response of scanning force microscopy cantilevers,” Rev. Sci. Instrum. 65(8), 2532–2537 (1994).
    [CrossRef]
  18. A. Dazzi, F. Glotin, and R. Carminati, “Theory of infrared nanospectroscopy by photothermal induced resonance,” J. Appl. Phys. 107(12), 124519 (2010).
    [CrossRef]
  19. J. R. Taylor, Classical Mechanics (University Science Books, Herndon, VA, 2005).
  20. U. Rabe, K. Janser, and W. Arnold, “Vibrations of free and surface‐coupled atomic force microscope cantilevers: theory and experiment,” Rev. Sci. Instrum. 67(9), 3281–3293 (1996).
    [CrossRef]
  21. N. Bloembergen, “Pulsed laser interactions with condensed matter,” Mat. Res. Soc. Symp. Proc. 51, 3 (1985).
    [CrossRef]
  22. J. E. Mark, ed., Physical Properties of Polymers Handbook, 2nd ed. (Springer, New York, 2007).
  23. T. Sikanen, T. Zwinger, S. Tuomikoski, S. Franssila, R. Lehtiniemi, C.-M. Fager, T. Kotiaho, and A. Pursula, “Temperature modeling and measurement of an electrokinetic separation chip,” Microfluidics Nanofluidics 5(4), 479–491 (2008).
    [CrossRef]
  24. R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
    [CrossRef]
  25. C. Y. Wang, L. Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kärtner, M. A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C. Y. Song, S. Haffouz, Z. R. Wasilewski, H. C. Liu, and F. Capasso, “Mode-locked pulses from mid-infrared quantum cascade lasers,” Opt. Express 17(15), 12929–12943 (2009).
    [CrossRef] [PubMed]
  26. A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
    [CrossRef]
  27. A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Tunable terahertz quantum cascade lasers with external gratings,” Opt. Lett. 35(7), 910–912 (2010).
    [CrossRef] [PubMed]

2011 (1)

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
[CrossRef] [PubMed]

2010 (4)

K. Kjoller, J. R. Felts, D. Cook, C. B. Prater, and W. P. King, “High-sensitivity nanometer-scale infrared spectroscopy using a contact mode microcantilever with an internal resonator paddle,” Nanotechnology 21(18), 185705 (2010).
[CrossRef] [PubMed]

C. Prater, K. Kjoller, and R. Shetty, “Nanoscale infrared spectroscopy,” Mater. Today 13(11), 56–60 (2010).
[CrossRef]

A. Dazzi, F. Glotin, and R. Carminati, “Theory of infrared nanospectroscopy by photothermal induced resonance,” J. Appl. Phys. 107(12), 124519 (2010).
[CrossRef]

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Tunable terahertz quantum cascade lasers with external gratings,” Opt. Lett. 35(7), 910–912 (2010).
[CrossRef] [PubMed]

2009 (3)

C. Y. Wang, L. Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kärtner, M. A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C. Y. Song, S. Haffouz, Z. R. Wasilewski, H. C. Liu, and F. Capasso, “Mode-locked pulses from mid-infrared quantum cascade lasers,” Opt. Express 17(15), 12929–12943 (2009).
[CrossRef] [PubMed]

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[CrossRef] [PubMed]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

2008 (4)

T. Sikanen, T. Zwinger, S. Tuomikoski, S. Franssila, R. Lehtiniemi, C.-M. Fager, T. Kotiaho, and A. Pursula, “Temperature modeling and measurement of an electrokinetic separation chip,” Microfluidics Nanofluidics 5(4), 479–491 (2008).
[CrossRef]

A. Dazzi, R. Prazeres, F. Glotin, J. M. Ortega, M. Al-Sawaftah, and M. de Frutos, “Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method,” Ultramicroscopy 108(7), 635–641 (2008).
[CrossRef] [PubMed]

H. Hida, M. Shikida, K. Fukuzawa, S. Murakami, K. Sato, K. Asaumi, Y. Iriye, and K. Sato, “Fabrication of a quartz tuning-fork probe with a sharp tip for AFM systems,” Sens. Actuators A Phys. 148(1), 311–318 (2008).
[CrossRef]

M. Troccoli, L. Diehl, D. P. Bour, S. W. Corzine, N. Yu, C. Y. Wang, M. A. Belkin, G. Hofler, R. Lewicki, G. Wysocki, F. K. Tittel, and F. Capasso, “High performance quantum cascade lasers grown by metal-organic vapor phase epitaxy and their applications to trace gas sensing,” J. Lightwave Technol. 26(21), 3534–3555 (2008).
[CrossRef]

2005 (3)

I. W. Levin and R. Bhargava, “Fourier transform infrared vibrational spectroscopic imaging: integrating microscopy and molecular recognition,” Annu. Rev. Phys. Chem. 56(1), 429–474 (2005), and references therein.
[CrossRef] [PubMed]

A. Dazzi, R. Prazeres, F. Glotin, and J. M. Ortega, “Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor,” Opt. Lett. 30(18), 2388–2390 (2005).
[CrossRef] [PubMed]

M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, “Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution,” ChemPhysChem 6(10), 2197–2203 (2005).
[CrossRef] [PubMed]

2003 (1)

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(3), 311–314 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (1)

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

1999 (1)

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
[CrossRef]

1996 (1)

U. Rabe, K. Janser, and W. Arnold, “Vibrations of free and surface‐coupled atomic force microscope cantilevers: theory and experiment,” Rev. Sci. Instrum. 67(9), 3281–3293 (1996).
[CrossRef]

1994 (1)

G. Y. Chen, R. J. Warmack, T. Thundat, D. P. Allison, and A. Huang, “Resonance response of scanning force microscopy cantilevers,” Rev. Sci. Instrum. 65(8), 2532–2537 (1994).
[CrossRef]

1985 (1)

N. Bloembergen, “Pulsed laser interactions with condensed matter,” Mat. Res. Soc. Symp. Proc. 51, 3 (1985).
[CrossRef]

Allison, D. P.

G. Y. Chen, R. J. Warmack, T. Thundat, D. P. Allison, and A. Huang, “Resonance response of scanning force microscopy cantilevers,” Rev. Sci. Instrum. 65(8), 2532–2537 (1994).
[CrossRef]

Al-Sawaftah, M.

A. Dazzi, R. Prazeres, F. Glotin, J. M. Ortega, M. Al-Sawaftah, and M. de Frutos, “Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method,” Ultramicroscopy 108(7), 635–641 (2008).
[CrossRef] [PubMed]

Arnold, W.

U. Rabe, K. Janser, and W. Arnold, “Vibrations of free and surface‐coupled atomic force microscope cantilevers: theory and experiment,” Rev. Sci. Instrum. 67(9), 3281–3293 (1996).
[CrossRef]

Asaumi, K.

H. Hida, M. Shikida, K. Fukuzawa, S. Murakami, K. Sato, K. Asaumi, Y. Iriye, and K. Sato, “Fabrication of a quartz tuning-fork probe with a sharp tip for AFM systems,” Sens. Actuators A Phys. 148(1), 311–318 (2008).
[CrossRef]

Bakhirkin, Y. A.

Beck, M.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

Belkin, M. A.

Belyanin, A.

Bethea, C. G.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

Bhargava, R.

I. W. Levin and R. Bhargava, “Fourier transform infrared vibrational spectroscopic imaging: integrating microscopy and molecular recognition,” Annu. Rev. Phys. Chem. 56(1), 429–474 (2005), and references therein.
[CrossRef] [PubMed]

Bloembergen, N.

N. Bloembergen, “Pulsed laser interactions with condensed matter,” Mat. Res. Soc. Symp. Proc. 51, 3 (1985).
[CrossRef]

Bonetti, Y.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

Bour, D. P.

Capasso, F.

Carminati, R.

A. Dazzi, F. Glotin, and R. Carminati, “Theory of infrared nanospectroscopy by photothermal induced resonance,” J. Appl. Phys. 107(12), 124519 (2010).
[CrossRef]

Chen, G. Y.

G. Y. Chen, R. J. Warmack, T. Thundat, D. P. Allison, and A. Huang, “Resonance response of scanning force microscopy cantilevers,” Rev. Sci. Instrum. 65(8), 2532–2537 (1994).
[CrossRef]

Cho, A. Y.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

Cook, D.

K. Kjoller, J. R. Felts, D. Cook, C. B. Prater, and W. P. King, “High-sensitivity nanometer-scale infrared spectroscopy using a contact mode microcantilever with an internal resonator paddle,” Nanotechnology 21(18), 185705 (2010).
[CrossRef] [PubMed]

Corzine, S. W.

Curl, R. F.

Curti, F. G.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

Dazzi, A.

A. Dazzi, F. Glotin, and R. Carminati, “Theory of infrared nanospectroscopy by photothermal induced resonance,” J. Appl. Phys. 107(12), 124519 (2010).
[CrossRef]

A. Dazzi, R. Prazeres, F. Glotin, J. M. Ortega, M. Al-Sawaftah, and M. de Frutos, “Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method,” Ultramicroscopy 108(7), 635–641 (2008).
[CrossRef] [PubMed]

A. Dazzi, R. Prazeres, F. Glotin, and J. M. Ortega, “Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor,” Opt. Lett. 30(18), 2388–2390 (2005).
[CrossRef] [PubMed]

de Frutos, M.

A. Dazzi, R. Prazeres, F. Glotin, J. M. Ortega, M. Al-Sawaftah, and M. de Frutos, “Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method,” Ultramicroscopy 108(7), 635–641 (2008).
[CrossRef] [PubMed]

Diehl, L.

Elsaesser, T.

M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, “Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution,” ChemPhysChem 6(10), 2197–2203 (2005).
[CrossRef] [PubMed]

Fager, C.-M.

T. Sikanen, T. Zwinger, S. Tuomikoski, S. Franssila, R. Lehtiniemi, C.-M. Fager, T. Kotiaho, and A. Pursula, “Temperature modeling and measurement of an electrokinetic separation chip,” Microfluidics Nanofluidics 5(4), 479–491 (2008).
[CrossRef]

Faist, J.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

Falciglia, J.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

Felts, J. R.

K. Kjoller, J. R. Felts, D. Cook, C. B. Prater, and W. P. King, “High-sensitivity nanometer-scale infrared spectroscopy using a contact mode microcantilever with an internal resonator paddle,” Nanotechnology 21(18), 185705 (2010).
[CrossRef] [PubMed]

Fischer, M.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

Franssila, S.

T. Sikanen, T. Zwinger, S. Tuomikoski, S. Franssila, R. Lehtiniemi, C.-M. Fager, T. Kotiaho, and A. Pursula, “Temperature modeling and measurement of an electrokinetic separation chip,” Microfluidics Nanofluidics 5(4), 479–491 (2008).
[CrossRef]

Fukuzawa, K.

H. Hida, M. Shikida, K. Fukuzawa, S. Murakami, K. Sato, K. Asaumi, Y. Iriye, and K. Sato, “Fabrication of a quartz tuning-fork probe with a sharp tip for AFM systems,” Sens. Actuators A Phys. 148(1), 311–318 (2008).
[CrossRef]

Gini, E.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

Gkortsas, V. M.

Glotin, F.

A. Dazzi, F. Glotin, and R. Carminati, “Theory of infrared nanospectroscopy by photothermal induced resonance,” J. Appl. Phys. 107(12), 124519 (2010).
[CrossRef]

A. Dazzi, R. Prazeres, F. Glotin, J. M. Ortega, M. Al-Sawaftah, and M. de Frutos, “Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method,” Ultramicroscopy 108(7), 635–641 (2008).
[CrossRef] [PubMed]

A. Dazzi, R. Prazeres, F. Glotin, and J. M. Ortega, “Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor,” Opt. Lett. 30(18), 2388–2390 (2005).
[CrossRef] [PubMed]

Gmachl, C.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

Grant, P.

Haffouz, S.

Ham, D.

Hida, H.

H. Hida, M. Shikida, K. Fukuzawa, S. Murakami, K. Sato, K. Asaumi, Y. Iriye, and K. Sato, “Fabrication of a quartz tuning-fork probe with a sharp tip for AFM systems,” Sens. Actuators A Phys. 148(1), 311–318 (2008).
[CrossRef]

Hillenbrand, R.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
[CrossRef] [PubMed]

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[CrossRef] [PubMed]

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(3), 311–314 (2003).
[CrossRef] [PubMed]

Hinrichs, K.

M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, “Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution,” ChemPhysChem 6(10), 2197–2203 (2005).
[CrossRef] [PubMed]

Hofler, G.

Hu, Q.

Huang, A.

G. Y. Chen, R. J. Warmack, T. Thundat, D. P. Allison, and A. Huang, “Resonance response of scanning force microscopy cantilevers,” Rev. Sci. Instrum. 65(8), 2532–2537 (1994).
[CrossRef]

Huber, A. J.

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[CrossRef] [PubMed]

Hugi, A.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

Hutchinson, A. L.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

Huth, F.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
[CrossRef] [PubMed]

Iriye, Y.

H. Hida, M. Shikida, K. Fukuzawa, S. Murakami, K. Sato, K. Asaumi, Y. Iriye, and K. Sato, “Fabrication of a quartz tuning-fork probe with a sharp tip for AFM systems,” Sens. Actuators A Phys. 148(1), 311–318 (2008).
[CrossRef]

Janser, K.

U. Rabe, K. Janser, and W. Arnold, “Vibrations of free and surface‐coupled atomic force microscope cantilevers: theory and experiment,” Rev. Sci. Instrum. 67(9), 3281–3293 (1996).
[CrossRef]

Kärtner, F. X.

Keilmann, F.

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(3), 311–314 (2003).
[CrossRef] [PubMed]

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
[CrossRef]

Kim, D. H.

M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, “Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution,” ChemPhysChem 6(10), 2197–2203 (2005).
[CrossRef] [PubMed]

King, W. P.

K. Kjoller, J. R. Felts, D. Cook, C. B. Prater, and W. P. King, “High-sensitivity nanometer-scale infrared spectroscopy using a contact mode microcantilever with an internal resonator paddle,” Nanotechnology 21(18), 185705 (2010).
[CrossRef] [PubMed]

Kjoller, K.

C. Prater, K. Kjoller, and R. Shetty, “Nanoscale infrared spectroscopy,” Mater. Today 13(11), 56–60 (2010).
[CrossRef]

K. Kjoller, J. R. Felts, D. Cook, C. B. Prater, and W. P. King, “High-sensitivity nanometer-scale infrared spectroscopy using a contact mode microcantilever with an internal resonator paddle,” Nanotechnology 21(18), 185705 (2010).
[CrossRef] [PubMed]

Knoll, B.

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
[CrossRef]

Knoll, W.

M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, “Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution,” ChemPhysChem 6(10), 2197–2203 (2005).
[CrossRef] [PubMed]

Köck, T.

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[CrossRef] [PubMed]

Kosterev, A. A.

Kotiaho, T.

T. Sikanen, T. Zwinger, S. Tuomikoski, S. Franssila, R. Lehtiniemi, C.-M. Fager, T. Kotiaho, and A. Pursula, “Temperature modeling and measurement of an electrokinetic separation chip,” Microfluidics Nanofluidics 5(4), 479–491 (2008).
[CrossRef]

Kumar, S.

Kuznetsova, L.

Lee, A. W. M.

Lehtiniemi, R.

T. Sikanen, T. Zwinger, S. Tuomikoski, S. Franssila, R. Lehtiniemi, C.-M. Fager, T. Kotiaho, and A. Pursula, “Temperature modeling and measurement of an electrokinetic separation chip,” Microfluidics Nanofluidics 5(4), 479–491 (2008).
[CrossRef]

Levin, I. W.

I. W. Levin and R. Bhargava, “Fourier transform infrared vibrational spectroscopic imaging: integrating microscopy and molecular recognition,” Annu. Rev. Phys. Chem. 56(1), 429–474 (2005), and references therein.
[CrossRef] [PubMed]

Lewicki, R.

Li, X.

Liu, H. C.

Martini, R.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

Molina, L.

M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, “Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution,” ChemPhysChem 6(10), 2197–2203 (2005).
[CrossRef] [PubMed]

Murakami, S.

H. Hida, M. Shikida, K. Fukuzawa, S. Murakami, K. Sato, K. Asaumi, Y. Iriye, and K. Sato, “Fabrication of a quartz tuning-fork probe with a sharp tip for AFM systems,” Sens. Actuators A Phys. 148(1), 311–318 (2008).
[CrossRef]

Ocelic, N.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
[CrossRef] [PubMed]

Ortega, J. M.

A. Dazzi, R. Prazeres, F. Glotin, J. M. Ortega, M. Al-Sawaftah, and M. de Frutos, “Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method,” Ultramicroscopy 108(7), 635–641 (2008).
[CrossRef] [PubMed]

A. Dazzi, R. Prazeres, F. Glotin, and J. M. Ortega, “Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor,” Opt. Lett. 30(18), 2388–2390 (2005).
[CrossRef] [PubMed]

Paiella, R.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

Prater, C.

C. Prater, K. Kjoller, and R. Shetty, “Nanoscale infrared spectroscopy,” Mater. Today 13(11), 56–60 (2010).
[CrossRef]

Prater, C. B.

K. Kjoller, J. R. Felts, D. Cook, C. B. Prater, and W. P. King, “High-sensitivity nanometer-scale infrared spectroscopy using a contact mode microcantilever with an internal resonator paddle,” Nanotechnology 21(18), 185705 (2010).
[CrossRef] [PubMed]

Prazeres, R.

A. Dazzi, R. Prazeres, F. Glotin, J. M. Ortega, M. Al-Sawaftah, and M. de Frutos, “Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method,” Ultramicroscopy 108(7), 635–641 (2008).
[CrossRef] [PubMed]

A. Dazzi, R. Prazeres, F. Glotin, and J. M. Ortega, “Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor,” Opt. Lett. 30(18), 2388–2390 (2005).
[CrossRef] [PubMed]

Pursula, A.

T. Sikanen, T. Zwinger, S. Tuomikoski, S. Franssila, R. Lehtiniemi, C.-M. Fager, T. Kotiaho, and A. Pursula, “Temperature modeling and measurement of an electrokinetic separation chip,” Microfluidics Nanofluidics 5(4), 479–491 (2008).
[CrossRef]

Rabe, U.

U. Rabe, K. Janser, and W. Arnold, “Vibrations of free and surface‐coupled atomic force microscope cantilevers: theory and experiment,” Rev. Sci. Instrum. 67(9), 3281–3293 (1996).
[CrossRef]

Raschke, M. B.

M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, “Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution,” ChemPhysChem 6(10), 2197–2203 (2005).
[CrossRef] [PubMed]

Reno, J. L.

Sato, K.

H. Hida, M. Shikida, K. Fukuzawa, S. Murakami, K. Sato, K. Asaumi, Y. Iriye, and K. Sato, “Fabrication of a quartz tuning-fork probe with a sharp tip for AFM systems,” Sens. Actuators A Phys. 148(1), 311–318 (2008).
[CrossRef]

H. Hida, M. Shikida, K. Fukuzawa, S. Murakami, K. Sato, K. Asaumi, Y. Iriye, and K. Sato, “Fabrication of a quartz tuning-fork probe with a sharp tip for AFM systems,” Sens. Actuators A Phys. 148(1), 311–318 (2008).
[CrossRef]

Schneider, H.

Schnell, M.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
[CrossRef] [PubMed]

Shetty, R.

C. Prater, K. Kjoller, and R. Shetty, “Nanoscale infrared spectroscopy,” Mater. Today 13(11), 56–60 (2010).
[CrossRef]

Shikida, M.

H. Hida, M. Shikida, K. Fukuzawa, S. Murakami, K. Sato, K. Asaumi, Y. Iriye, and K. Sato, “Fabrication of a quartz tuning-fork probe with a sharp tip for AFM systems,” Sens. Actuators A Phys. 148(1), 311–318 (2008).
[CrossRef]

Sikanen, T.

T. Sikanen, T. Zwinger, S. Tuomikoski, S. Franssila, R. Lehtiniemi, C.-M. Fager, T. Kotiaho, and A. Pursula, “Temperature modeling and measurement of an electrokinetic separation chip,” Microfluidics Nanofluidics 5(4), 479–491 (2008).
[CrossRef]

Sivco, D. L.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

Song, C. Y.

Taubner, T.

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(3), 311–314 (2003).
[CrossRef] [PubMed]

Terazzi, R.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

Thundat, T.

G. Y. Chen, R. J. Warmack, T. Thundat, D. P. Allison, and A. Huang, “Resonance response of scanning force microscopy cantilevers,” Rev. Sci. Instrum. 65(8), 2532–2537 (1994).
[CrossRef]

Tittel, F. K.

Tredicucci, A.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

Troccoli, M.

Tuomikoski, S.

T. Sikanen, T. Zwinger, S. Tuomikoski, S. Franssila, R. Lehtiniemi, C.-M. Fager, T. Kotiaho, and A. Pursula, “Temperature modeling and measurement of an electrokinetic separation chip,” Microfluidics Nanofluidics 5(4), 479–491 (2008).
[CrossRef]

Wang, C. Y.

Warmack, R. J.

G. Y. Chen, R. J. Warmack, T. Thundat, D. P. Allison, and A. Huang, “Resonance response of scanning force microscopy cantilevers,” Rev. Sci. Instrum. 65(8), 2532–2537 (1994).
[CrossRef]

Wasilewski, Z. R.

Whittaker, E. A.

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

Williams, B. S.

Wittborn, J.

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
[CrossRef] [PubMed]

Wittmann, A.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

Wysocki, G.

Yu, N.

Ziegler, A.

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[CrossRef] [PubMed]

Zwinger, T.

T. Sikanen, T. Zwinger, S. Tuomikoski, S. Franssila, R. Lehtiniemi, C.-M. Fager, T. Kotiaho, and A. Pursula, “Temperature modeling and measurement of an electrokinetic separation chip,” Microfluidics Nanofluidics 5(4), 479–491 (2008).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

I. W. Levin and R. Bhargava, “Fourier transform infrared vibrational spectroscopic imaging: integrating microscopy and molecular recognition,” Annu. Rev. Phys. Chem. 56(1), 429–474 (2005), and references therein.
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[CrossRef]

ChemPhysChem (1)

M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, “Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution,” ChemPhysChem 6(10), 2197–2203 (2005).
[CrossRef] [PubMed]

Electron. Lett. (1)

R. Martini, C. Gmachl, J. Falciglia, F. G. Curti, C. G. Bethea, F. Capasso, E. A. Whittaker, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “High-speed modulation and free-space optical audio/video transmission using quantum cascade lasers,” Electron. Lett. 37(3), 191–193 (2001).
[CrossRef]

J. Appl. Phys. (1)

A. Dazzi, F. Glotin, and R. Carminati, “Theory of infrared nanospectroscopy by photothermal induced resonance,” J. Appl. Phys. 107(12), 124519 (2010).
[CrossRef]

J. Lightwave Technol. (1)

J. Microsc. (1)

T. Taubner, R. Hillenbrand, and F. Keilmann, “Performance of visible and mid-infrared scattering-type near-field optical microscopes,” J. Microsc. 210(3), 311–314 (2003).
[CrossRef] [PubMed]

Mat. Res. Soc. Symp. Proc. (1)

N. Bloembergen, “Pulsed laser interactions with condensed matter,” Mat. Res. Soc. Symp. Proc. 51, 3 (1985).
[CrossRef]

Mater. Today (1)

C. Prater, K. Kjoller, and R. Shetty, “Nanoscale infrared spectroscopy,” Mater. Today 13(11), 56–60 (2010).
[CrossRef]

Microfluidics Nanofluidics (1)

T. Sikanen, T. Zwinger, S. Tuomikoski, S. Franssila, R. Lehtiniemi, C.-M. Fager, T. Kotiaho, and A. Pursula, “Temperature modeling and measurement of an electrokinetic separation chip,” Microfluidics Nanofluidics 5(4), 479–491 (2008).
[CrossRef]

Nanotechnology (1)

K. Kjoller, J. R. Felts, D. Cook, C. B. Prater, and W. P. King, “High-sensitivity nanometer-scale infrared spectroscopy using a contact mode microcantilever with an internal resonator paddle,” Nanotechnology 21(18), 185705 (2010).
[CrossRef] [PubMed]

Nat. Mater. (1)

F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater. 10(5), 352–356 (2011).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[CrossRef] [PubMed]

Nature (1)

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Rev. Sci. Instrum. (2)

G. Y. Chen, R. J. Warmack, T. Thundat, D. P. Allison, and A. Huang, “Resonance response of scanning force microscopy cantilevers,” Rev. Sci. Instrum. 65(8), 2532–2537 (1994).
[CrossRef]

U. Rabe, K. Janser, and W. Arnold, “Vibrations of free and surface‐coupled atomic force microscope cantilevers: theory and experiment,” Rev. Sci. Instrum. 67(9), 3281–3293 (1996).
[CrossRef]

Sens. Actuators A Phys. (1)

H. Hida, M. Shikida, K. Fukuzawa, S. Murakami, K. Sato, K. Asaumi, Y. Iriye, and K. Sato, “Fabrication of a quartz tuning-fork probe with a sharp tip for AFM systems,” Sens. Actuators A Phys. 148(1), 311–318 (2008).
[CrossRef]

Ultramicroscopy (1)

A. Dazzi, R. Prazeres, F. Glotin, J. M. Ortega, M. Al-Sawaftah, and M. de Frutos, “Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method,” Ultramicroscopy 108(7), 635–641 (2008).
[CrossRef] [PubMed]

Other (5)

J. E. Mark, ed., Physical Properties of Polymers Handbook, 2nd ed. (Springer, New York, 2007).

J. R. Taylor, Classical Mechanics (University Science Books, Herndon, VA, 2005).

B. H. Stuart, Infrared Spectroscopy: Fundamentals and Applications (Wiley, New York, 2004).

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1987).

We obtain sample temperature change in the range 5–50 K using the experimental parameters reported in Refs. [10,12,13] and the simulation results reported in Ref. [11].

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Mechanism of AFM cantilever deflection during sample photoexpansion. Blue solid curve shows the dependence of the interaction force between the sample surface and the AFM cantilever tip on tip-surface distance (z), assuming sample surface is at z = 0. Red dashed curve is shifted along z-axis by sample photoexpansion Δt. FT is the photoexpansion force acting on the AFM cantilever; z0 is the position of the AFM cantilever in contact mode. The figure is not drawn to scale. (b) Schematic of experimental setup for photoexpansion microscopy in mid-IR as described in text. A photograph of an actual QCL source used in experiments is shown in comparison with a US 25¢ coin to indicate device dimensions.

Fig. 2
Fig. 2

(a) The photoexpansion signal recorded as a function of the QCL pulse repetition frequency. (b) Photoexpansion spectra. Square data points and solid lines are the photoexpansion spectra of SU-8 (black) and LOR-3A (red) obtained with the laser repetition frequency set at the AFM cantilever resonance of 155 kHz (solid lines are B-splines connecting the data points). Dashed lines are the absorption spectra of SU-8 (black) and LOR-3A (red) as measured by a FTIR spectrometer. Dotted lines near zero-level are the photoexpansion spectra of SU-8 (black) and LOR-3A (red) obtained with the laser repetition frequency set at 130 kHz, away from the AFM cantilever resonance. (c) Zoom-in of the photoexpansion spectra obtained with the laser pulse repetition frequency set at 130 kHz (dotted lines in (b)). Squares are the data points. The spectral features are indistinguishable from noise.

Fig. 3
Fig. 3

Simulations of the temperature distribution in inhomogeneous polymer samples before, during, and after a single laser pulse. The samples are assumed to be illuminated by a 100 mW 40 ns-square pulse, focused to a 100 μm-radius area. (a) Temperature distribution at the end of a laser pulse in a sample consisting of a SU-8 block (300 nm wide and 300 nm thick) placed on top of a 300-nm-thick layer of LOR-3A on a silicon substrate. (b) Temperature variation along the dashed line in (a) before (0 ns), during (10 ns), and after (40 ns, 200 ns, and 5 μs) the laser pulse. (c) Temperature distribution at the very end of a laser pulse in a sample consisting of a SU-8 block (300 nm wide and 300 nm thick) embedded within a 300-nm-thick layer of LOR-3A on a silicon substrate. (d) Temperature variation along the dashed line in (c) before (0 ns), during (10 ns), and after (40 ns, 200 ns, and 5 μs) the laser pulse. The SU-8 parameters are taken from Ref. [23]: thermal conductance κ = 0.3 Wm−1K−1, material density ρ = 1.2 × 103 kg·m−3 and heat capacity C = 1.2 × 103 J·kg−1·K−1; κ, ρ, and C for LOR-3A are assumed to be the same for simplicity. The power absorption coefficient is set as 1.7 × 103 cm−1 for SU-8, according to the FTIR data at 1180 cm−1. For figure clarity, LOR-3A is assumed non-absorbing.

Fig. 4
Fig. 4

(a) The AFM topographic image of the 50-nm-thick SU-8 pattern of a Texas Longhorn on top of a 70-nm-thick LOR-0.7A film on an undoped silicon substrate. Inset: the zoom-in image of the section of the SU-8 pattern with four points marking the positions at which the photoexpansion spectra shown in (b-e) are taken. The separation between the adjacent points is 50 nm. (b-e) Photoexpansion spectra (squares are data points, solid lines are for eye guiding) obtained at four sample points shown in (a). Dashed lines are FTIR absorption spectra of SU-8 (b,c) and LOR-0.7A (d,e). (f) Photoexpansion image of Texas Longhorn pattern in (a) taken at laser wavelength of 1204 cm−1. The image size is 128 by 128 pixels, each pixel correspond to a 50-nm-by-50-nm square.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

z ¨ +2γ z ˙ + ω 0 2 (z z 0 ) 2 = F T (t),
ΔzΔ z 1 ×Q,

Metrics