Abstract

We present spatial light interference tomography (SLIT), a label-free method for 3D imaging of transparent structures such as live cells. SLIT uses the principle of interferometric imaging with broadband fields and combines the optical gating due to the micron-scale coherence length with that of the high numerical aperture objective lens. Measuring the phase shift map associated with the object as it is translated through focus provides full information about the 3D distribution associated with the refractive index. Using a reconstruction algorithm based on the Born approximation, we show that the sample structure may be recovered via a 3D, complex field deconvolution. We illustrate the method with reconstructed tomographic refractive index distributions of microspheres, photonic crystals, and unstained living cells.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pawley, Handbook of biological confocal microscopy (Springer, New York, 2006).
  2. J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19(3), 373–385 (1999).
    [CrossRef] [PubMed]
  3. G. E. Bacon, X-ray and neutron diffraction (Pergamon, 1966).
  4. J. D. Watson and F. H. C. Crick, “Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid,” Nature 171(4356), 737–738 (1953).
    [CrossRef] [PubMed]
  5. N. Ban, P. Nissen, J. Hansen, P. B. Moore, and T. A. Steitz, “The complete atomic structure of the large ribosomal subunit at 2.4 A resolution,” Science 289(5481), 905–920 (2000).
    [CrossRef] [PubMed]
  6. E. Wolf, “History and Solution of the Phase Problem in the Theory of Structure Determination of Crystals from X-Ray Diffraction Measurements,” in Advances in Imaging and electron physics, P. W. E. Hawkes, ed. (Academic Press, San Diego, 2011).
  7. D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
    [CrossRef] [PubMed]
  8. P. Hariharan, Basics of holography (Cambridge University Press, Cambridge, UK; New York, NY, 2002).
  9. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1(4), 153–156 (1969).
    [CrossRef]
  10. M. Debailleul, V. Georges, B. Simon, R. Morin, and O. Haeberlé, “High-resolution three-dimensional tomographic diffractive microscopy of transparent inorganic and biological samples,” Opt. Lett. 34(1), 79–81 (2009).
    [CrossRef] [PubMed]
  11. G. N. Vishnyakov, G. G. Levin, V. L. Minaev, V. V. Pickalov, and A. V. Likhachev, “Tomographic Interference Microscopy of Living Cells,” Microscopy and Analysis 18, 15–17 (2004).
  12. F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45(32), 8209–8217 (2006).
    [CrossRef] [PubMed]
  13. J. Kühn, F. Montfort, T. Colomb, B. Rappaz, C. Moratal, N. Pavillon, P. Marquet, and C. Depeursinge, “Submicrometer tomography of cells by multiple-wavelength digital holographic microscopy in reflection,” Opt. Lett. 34(5), 653–655 (2009).
    [CrossRef] [PubMed]
  14. D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy--holographic optical coherence tomography,” Opt. Lett. 36(13), 2390–2392 (2011).
    [CrossRef] [PubMed]
  15. F. Charrière, A. Marian, T. Colomb, P. Marquet, and C. Depeursinge, “Amplitude point-spread function measurement of high-NA microscope objectives by digital holographic microscopy,” Opt. Lett. 32(16), 2456–2458 (2007).
    [CrossRef] [PubMed]
  16. A. Marian, F. Charrière, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, “On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography,” J. Microsc. 225(Pt 2), 156–169 (2007).
    [CrossRef] [PubMed]
  17. H. Ding and G. Popescu, “Coherent light imaging and scattering for biological investigations,” in Coherent light microscopy, P. Ferraro, A. Wax, and Z. Zalevsky, eds. (Springer, Berlin Heidelberg, 2011), pp. 229–265.
  18. G. Popescu, “Quantitative phase imaging of nanoscale cell structure and dynamics,” in Methods in Cell Biology, P. J. Bhanu, ed. (Elsevier, 2008), p. 87.
  19. C. Depeursinge, “Digital Holography Applied to Microscopy ” in Digital Holography and Three-Dimensional Display, T.-C. Poon, ed. (Springer US, 2006), p. 98.
  20. B. Q. Chen and J. J. Stamnes, “Validity of diffraction tomography based on the first born and the first rytov approximations,” Appl. Opt. 37(14), 2996–3006 (1998).
    [CrossRef] [PubMed]
  21. G. Gbur and E. Wolf, “Relation between computed tomography and diffraction tomography,” J. Opt. Soc. Am. A 18(9), 2132–2137 (2001).
    [CrossRef] [PubMed]
  22. P. S. Carney, E. Wolf, and G. S. Agarwal, “Diffraction tomography using power extinction measurements,” J. Opt. Soc. Am. A 16(11), 2643–2648 (1999).
    [CrossRef]
  23. V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205(Pt 2), 165–176 (2002).
    [CrossRef] [PubMed]
  24. A. M. Zysk, J. J. Reynolds, D. L. Marks, P. S. Carney, and S. A. Boppart, “Projected index computed tomography,” Opt. Lett. 28(9), 701–703 (2003).
    [CrossRef] [PubMed]
  25. F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14(16), 7005–7013 (2006).
    [CrossRef] [PubMed]
  26. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31(2), 178–180 (2006).
    [CrossRef] [PubMed]
  27. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
    [CrossRef] [PubMed]
  28. W. S. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Extended depth of focus in tomographic phase microscopy using a propagation algorithm,” Opt. Lett. 33(2), 171–173 (2008).
    [CrossRef] [PubMed]
  29. Z. Wang, L. J. Millet, M. Mir, H. Ding, S. Unarunotai, J. A. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
    [CrossRef] [PubMed]
  30. Z. Wang and G. Popescu, “Quantitative phase imaging with broadband fields,” Appl. Phys. Lett. 96(5), 051117 (2010).
    [CrossRef]
  31. M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Cambridge University Press, Cambridge; New York, 1999).
  32. R. P. Dougherty, “Extensions of DAMAS and Benefits and Limitations of Deconvolution in Beamforming,” 11th AIAA/CEAS Aeroacoustics Conference (26th AIAA Aeroacoustics Conference) AIAA, 2005–2961 (2005).
  33. P. A. Midgley and M. Weyland, “3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography,” Ultramicroscopy 96(3-4), 413–431 (2003).
    [CrossRef] [PubMed]
  34. F. Zernike, “How I discovered phase contrast,” Science 121(3141), 345–349 (1955).
    [CrossRef] [PubMed]
  35. N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett. 31(18), 2759–2761 (2006).
    [CrossRef] [PubMed]
  36. B. Lillis, M. Manning, H. Berney, E. Hurley, A. Mathewson, and M. M. Sheehan, “Dual polarisation interferometry characterisation of DNA immobilisation and hybridisation detection on a silanised support,” Biosens. Bioelectron. 21(8), 1459–1467 (2006).
    [CrossRef] [PubMed]
  37. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  38. G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
    [CrossRef] [PubMed]
  39. H. F. Ding and G. Popescu, “Instantaneous spatial light interference microscopy,” Opt. Express 18(2), 1569–1575 (2010).
    [CrossRef] [PubMed]
  40. L. J. Millet, M. E. Stewart, J. V. Sweedler, R. G. Nuzzo, and M. U. Gillette, “Microfluidic devices for culturing primary mammalian neurons at low densities,” Lab Chip 7(8), 987–994 (2007).
    [CrossRef] [PubMed]

2011 (2)

2010 (2)

H. F. Ding and G. Popescu, “Instantaneous spatial light interference microscopy,” Opt. Express 18(2), 1569–1575 (2010).
[CrossRef] [PubMed]

Z. Wang and G. Popescu, “Quantitative phase imaging with broadband fields,” Appl. Phys. Lett. 96(5), 051117 (2010).
[CrossRef]

2009 (2)

2008 (2)

W. S. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Extended depth of focus in tomographic phase microscopy using a propagation algorithm,” Opt. Lett. 33(2), 171–173 (2008).
[CrossRef] [PubMed]

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[CrossRef] [PubMed]

2007 (4)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

L. J. Millet, M. E. Stewart, J. V. Sweedler, R. G. Nuzzo, and M. U. Gillette, “Microfluidic devices for culturing primary mammalian neurons at low densities,” Lab Chip 7(8), 987–994 (2007).
[CrossRef] [PubMed]

F. Charrière, A. Marian, T. Colomb, P. Marquet, and C. Depeursinge, “Amplitude point-spread function measurement of high-NA microscope objectives by digital holographic microscopy,” Opt. Lett. 32(16), 2456–2458 (2007).
[CrossRef] [PubMed]

A. Marian, F. Charrière, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, “On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography,” J. Microsc. 225(Pt 2), 156–169 (2007).
[CrossRef] [PubMed]

2006 (5)

B. Lillis, M. Manning, H. Berney, E. Hurley, A. Mathewson, and M. M. Sheehan, “Dual polarisation interferometry characterisation of DNA immobilisation and hybridisation detection on a silanised support,” Biosens. Bioelectron. 21(8), 1459–1467 (2006).
[CrossRef] [PubMed]

F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14(16), 7005–7013 (2006).
[CrossRef] [PubMed]

F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31(2), 178–180 (2006).
[CrossRef] [PubMed]

N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett. 31(18), 2759–2761 (2006).
[CrossRef] [PubMed]

F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45(32), 8209–8217 (2006).
[CrossRef] [PubMed]

2004 (1)

G. N. Vishnyakov, G. G. Levin, V. L. Minaev, V. V. Pickalov, and A. V. Likhachev, “Tomographic Interference Microscopy of Living Cells,” Microscopy and Analysis 18, 15–17 (2004).

2003 (2)

P. A. Midgley and M. Weyland, “3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography,” Ultramicroscopy 96(3-4), 413–431 (2003).
[CrossRef] [PubMed]

A. M. Zysk, J. J. Reynolds, D. L. Marks, P. S. Carney, and S. A. Boppart, “Projected index computed tomography,” Opt. Lett. 28(9), 701–703 (2003).
[CrossRef] [PubMed]

2002 (1)

V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205(Pt 2), 165–176 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (1)

N. Ban, P. Nissen, J. Hansen, P. B. Moore, and T. A. Steitz, “The complete atomic structure of the large ribosomal subunit at 2.4 A resolution,” Science 289(5481), 905–920 (2000).
[CrossRef] [PubMed]

1999 (2)

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19(3), 373–385 (1999).
[CrossRef] [PubMed]

P. S. Carney, E. Wolf, and G. S. Agarwal, “Diffraction tomography using power extinction measurements,” J. Opt. Soc. Am. A 16(11), 2643–2648 (1999).
[CrossRef]

1998 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1969 (1)

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1(4), 153–156 (1969).
[CrossRef]

1955 (1)

F. Zernike, “How I discovered phase contrast,” Science 121(3141), 345–349 (1955).
[CrossRef] [PubMed]

1953 (1)

J. D. Watson and F. H. C. Crick, “Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid,” Nature 171(4356), 737–738 (1953).
[CrossRef] [PubMed]

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Agarwal, G. S.

Badizadegan, K.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[CrossRef] [PubMed]

W. S. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Extended depth of focus in tomographic phase microscopy using a propagation algorithm,” Opt. Lett. 33(2), 171–173 (2008).
[CrossRef] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett. 31(18), 2759–2761 (2006).
[CrossRef] [PubMed]

Ban, N.

N. Ban, P. Nissen, J. Hansen, P. B. Moore, and T. A. Steitz, “The complete atomic structure of the large ribosomal subunit at 2.4 A resolution,” Science 289(5481), 905–920 (2000).
[CrossRef] [PubMed]

Berney, H.

B. Lillis, M. Manning, H. Berney, E. Hurley, A. Mathewson, and M. M. Sheehan, “Dual polarisation interferometry characterisation of DNA immobilisation and hybridisation detection on a silanised support,” Biosens. Bioelectron. 21(8), 1459–1467 (2006).
[CrossRef] [PubMed]

Best-Popescu, C.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[CrossRef] [PubMed]

Bonin, T.

Boppart, S. A.

Carney, P. S.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Charrière, F.

F. Charrière, A. Marian, T. Colomb, P. Marquet, and C. Depeursinge, “Amplitude point-spread function measurement of high-NA microscope objectives by digital holographic microscopy,” Opt. Lett. 32(16), 2456–2458 (2007).
[CrossRef] [PubMed]

A. Marian, F. Charrière, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, “On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography,” J. Microsc. 225(Pt 2), 156–169 (2007).
[CrossRef] [PubMed]

F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14(16), 7005–7013 (2006).
[CrossRef] [PubMed]

F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31(2), 178–180 (2006).
[CrossRef] [PubMed]

F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45(32), 8209–8217 (2006).
[CrossRef] [PubMed]

Chen, B. Q.

Choi, W.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

Choi, W. S.

Colomb, T.

J. Kühn, F. Montfort, T. Colomb, B. Rappaz, C. Moratal, N. Pavillon, P. Marquet, and C. Depeursinge, “Submicrometer tomography of cells by multiple-wavelength digital holographic microscopy in reflection,” Opt. Lett. 34(5), 653–655 (2009).
[CrossRef] [PubMed]

A. Marian, F. Charrière, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, “On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography,” J. Microsc. 225(Pt 2), 156–169 (2007).
[CrossRef] [PubMed]

F. Charrière, A. Marian, T. Colomb, P. Marquet, and C. Depeursinge, “Amplitude point-spread function measurement of high-NA microscope objectives by digital holographic microscopy,” Opt. Lett. 32(16), 2456–2458 (2007).
[CrossRef] [PubMed]

F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14(16), 7005–7013 (2006).
[CrossRef] [PubMed]

F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45(32), 8209–8217 (2006).
[CrossRef] [PubMed]

F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31(2), 178–180 (2006).
[CrossRef] [PubMed]

Conchello, J. A.

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19(3), 373–385 (1999).
[CrossRef] [PubMed]

Cooper, J.

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19(3), 373–385 (1999).
[CrossRef] [PubMed]

Crick, F. H. C.

J. D. Watson and F. H. C. Crick, “Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid,” Nature 171(4356), 737–738 (1953).
[CrossRef] [PubMed]

Cuche, E.

Dasari, R. R.

W. S. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Extended depth of focus in tomographic phase microscopy using a propagation algorithm,” Opt. Lett. 33(2), 171–173 (2008).
[CrossRef] [PubMed]

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[CrossRef] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett. 31(18), 2759–2761 (2006).
[CrossRef] [PubMed]

Debailleul, M.

Deflores, L.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[CrossRef] [PubMed]

Depeursinge, C.

J. Kühn, F. Montfort, T. Colomb, B. Rappaz, C. Moratal, N. Pavillon, P. Marquet, and C. Depeursinge, “Submicrometer tomography of cells by multiple-wavelength digital holographic microscopy in reflection,” Opt. Lett. 34(5), 653–655 (2009).
[CrossRef] [PubMed]

A. Marian, F. Charrière, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, “On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography,” J. Microsc. 225(Pt 2), 156–169 (2007).
[CrossRef] [PubMed]

F. Charrière, A. Marian, T. Colomb, P. Marquet, and C. Depeursinge, “Amplitude point-spread function measurement of high-NA microscope objectives by digital holographic microscopy,” Opt. Lett. 32(16), 2456–2458 (2007).
[CrossRef] [PubMed]

F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14(16), 7005–7013 (2006).
[CrossRef] [PubMed]

F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45(32), 8209–8217 (2006).
[CrossRef] [PubMed]

F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31(2), 178–180 (2006).
[CrossRef] [PubMed]

Ding, H.

Ding, H. F.

Fang-Yen, C.

Feld, M. S.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[CrossRef] [PubMed]

W. S. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Extended depth of focus in tomographic phase microscopy using a propagation algorithm,” Opt. Lett. 33(2), 171–173 (2008).
[CrossRef] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett. 31(18), 2759–2761 (2006).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Gbur, G.

Georges, V.

Gillette, M. U.

Z. Wang, L. J. Millet, M. Mir, H. Ding, S. Unarunotai, J. A. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
[CrossRef] [PubMed]

L. J. Millet, M. E. Stewart, J. V. Sweedler, R. G. Nuzzo, and M. U. Gillette, “Microfluidic devices for culturing primary mammalian neurons at low densities,” Lab Chip 7(8), 987–994 (2007).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Haeberlé, O.

Hansen, J.

N. Ban, P. Nissen, J. Hansen, P. B. Moore, and T. A. Steitz, “The complete atomic structure of the large ribosomal subunit at 2.4 A resolution,” Science 289(5481), 905–920 (2000).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Heger, T. J.

F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14(16), 7005–7013 (2006).
[CrossRef] [PubMed]

Herminjard, S.

Hillmann, D.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hurley, E.

B. Lillis, M. Manning, H. Berney, E. Hurley, A. Mathewson, and M. M. Sheehan, “Dual polarisation interferometry characterisation of DNA immobilisation and hybridisation detection on a silanised support,” Biosens. Bioelectron. 21(8), 1459–1467 (2006).
[CrossRef] [PubMed]

Hüttmann, G.

Ikeda, T.

Karpova, T.

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19(3), 373–385 (1999).
[CrossRef] [PubMed]

Koch, P.

Kuehn, J.

Kühn, J.

Lauer, V.

V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205(Pt 2), 165–176 (2002).
[CrossRef] [PubMed]

Levin, G. G.

G. N. Vishnyakov, G. G. Levin, V. L. Minaev, V. V. Pickalov, and A. V. Likhachev, “Tomographic Interference Microscopy of Living Cells,” Microscopy and Analysis 18, 15–17 (2004).

Likhachev, A. V.

G. N. Vishnyakov, G. G. Levin, V. L. Minaev, V. V. Pickalov, and A. V. Likhachev, “Tomographic Interference Microscopy of Living Cells,” Microscopy and Analysis 18, 15–17 (2004).

Lillis, B.

B. Lillis, M. Manning, H. Berney, E. Hurley, A. Mathewson, and M. M. Sheehan, “Dual polarisation interferometry characterisation of DNA immobilisation and hybridisation detection on a silanised support,” Biosens. Bioelectron. 21(8), 1459–1467 (2006).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Lue, N.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[CrossRef] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett. 31(18), 2759–2761 (2006).
[CrossRef] [PubMed]

Lührs, C.

Manning, M.

B. Lillis, M. Manning, H. Berney, E. Hurley, A. Mathewson, and M. M. Sheehan, “Dual polarisation interferometry characterisation of DNA immobilisation and hybridisation detection on a silanised support,” Biosens. Bioelectron. 21(8), 1459–1467 (2006).
[CrossRef] [PubMed]

Marian, A.

A. Marian, F. Charrière, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, “On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography,” J. Microsc. 225(Pt 2), 156–169 (2007).
[CrossRef] [PubMed]

F. Charrière, A. Marian, T. Colomb, P. Marquet, and C. Depeursinge, “Amplitude point-spread function measurement of high-NA microscope objectives by digital holographic microscopy,” Opt. Lett. 32(16), 2456–2458 (2007).
[CrossRef] [PubMed]

F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31(2), 178–180 (2006).
[CrossRef] [PubMed]

Marks, D. L.

Marquet, P.

J. Kühn, F. Montfort, T. Colomb, B. Rappaz, C. Moratal, N. Pavillon, P. Marquet, and C. Depeursinge, “Submicrometer tomography of cells by multiple-wavelength digital holographic microscopy in reflection,” Opt. Lett. 34(5), 653–655 (2009).
[CrossRef] [PubMed]

F. Charrière, A. Marian, T. Colomb, P. Marquet, and C. Depeursinge, “Amplitude point-spread function measurement of high-NA microscope objectives by digital holographic microscopy,” Opt. Lett. 32(16), 2456–2458 (2007).
[CrossRef] [PubMed]

A. Marian, F. Charrière, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, “On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography,” J. Microsc. 225(Pt 2), 156–169 (2007).
[CrossRef] [PubMed]

F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14(16), 7005–7013 (2006).
[CrossRef] [PubMed]

F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45(32), 8209–8217 (2006).
[CrossRef] [PubMed]

F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31(2), 178–180 (2006).
[CrossRef] [PubMed]

Mathewson, A.

B. Lillis, M. Manning, H. Berney, E. Hurley, A. Mathewson, and M. M. Sheehan, “Dual polarisation interferometry characterisation of DNA immobilisation and hybridisation detection on a silanised support,” Biosens. Bioelectron. 21(8), 1459–1467 (2006).
[CrossRef] [PubMed]

McNally, J. G.

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19(3), 373–385 (1999).
[CrossRef] [PubMed]

Midgley, P. A.

P. A. Midgley and M. Weyland, “3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography,” Ultramicroscopy 96(3-4), 413–431 (2003).
[CrossRef] [PubMed]

Millet, L. J.

Z. Wang, L. J. Millet, M. Mir, H. Ding, S. Unarunotai, J. A. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
[CrossRef] [PubMed]

L. J. Millet, M. E. Stewart, J. V. Sweedler, R. G. Nuzzo, and M. U. Gillette, “Microfluidic devices for culturing primary mammalian neurons at low densities,” Lab Chip 7(8), 987–994 (2007).
[CrossRef] [PubMed]

Minaev, V. L.

G. N. Vishnyakov, G. G. Levin, V. L. Minaev, V. V. Pickalov, and A. V. Likhachev, “Tomographic Interference Microscopy of Living Cells,” Microscopy and Analysis 18, 15–17 (2004).

Mir, M.

Mitchell, E. A. D.

F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14(16), 7005–7013 (2006).
[CrossRef] [PubMed]

Montfort, F.

Moore, P. B.

N. Ban, P. Nissen, J. Hansen, P. B. Moore, and T. A. Steitz, “The complete atomic structure of the large ribosomal subunit at 2.4 A resolution,” Science 289(5481), 905–920 (2000).
[CrossRef] [PubMed]

Moratal, C.

Morin, R.

Nissen, P.

N. Ban, P. Nissen, J. Hansen, P. B. Moore, and T. A. Steitz, “The complete atomic structure of the large ribosomal subunit at 2.4 A resolution,” Science 289(5481), 905–920 (2000).
[CrossRef] [PubMed]

Nuzzo, R. G.

L. J. Millet, M. E. Stewart, J. V. Sweedler, R. G. Nuzzo, and M. U. Gillette, “Microfluidic devices for culturing primary mammalian neurons at low densities,” Lab Chip 7(8), 987–994 (2007).
[CrossRef] [PubMed]

Oh, S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

Park, Y.

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[CrossRef] [PubMed]

Pavillon, N.

J. Kühn, F. Montfort, T. Colomb, B. Rappaz, C. Moratal, N. Pavillon, P. Marquet, and C. Depeursinge, “Submicrometer tomography of cells by multiple-wavelength digital holographic microscopy in reflection,” Opt. Lett. 34(5), 653–655 (2009).
[CrossRef] [PubMed]

F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14(16), 7005–7013 (2006).
[CrossRef] [PubMed]

Pickalov, V. V.

G. N. Vishnyakov, G. G. Levin, V. L. Minaev, V. V. Pickalov, and A. V. Likhachev, “Tomographic Interference Microscopy of Living Cells,” Microscopy and Analysis 18, 15–17 (2004).

Popescu, G.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Rappaz, B.

J. Kühn, F. Montfort, T. Colomb, B. Rappaz, C. Moratal, N. Pavillon, P. Marquet, and C. Depeursinge, “Submicrometer tomography of cells by multiple-wavelength digital holographic microscopy in reflection,” Opt. Lett. 34(5), 653–655 (2009).
[CrossRef] [PubMed]

F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14(16), 7005–7013 (2006).
[CrossRef] [PubMed]

Reynolds, J. J.

Rogers, J. A.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sheehan, M. M.

B. Lillis, M. Manning, H. Berney, E. Hurley, A. Mathewson, and M. M. Sheehan, “Dual polarisation interferometry characterisation of DNA immobilisation and hybridisation detection on a silanised support,” Biosens. Bioelectron. 21(8), 1459–1467 (2006).
[CrossRef] [PubMed]

Simon, B.

Stamnes, J. J.

Steitz, T. A.

N. Ban, P. Nissen, J. Hansen, P. B. Moore, and T. A. Steitz, “The complete atomic structure of the large ribosomal subunit at 2.4 A resolution,” Science 289(5481), 905–920 (2000).
[CrossRef] [PubMed]

Stewart, M. E.

L. J. Millet, M. E. Stewart, J. V. Sweedler, R. G. Nuzzo, and M. U. Gillette, “Microfluidic devices for culturing primary mammalian neurons at low densities,” Lab Chip 7(8), 987–994 (2007).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sweedler, J. V.

L. J. Millet, M. E. Stewart, J. V. Sweedler, R. G. Nuzzo, and M. U. Gillette, “Microfluidic devices for culturing primary mammalian neurons at low densities,” Lab Chip 7(8), 987–994 (2007).
[CrossRef] [PubMed]

Unarunotai, S.

Vishnyakov, G. N.

G. N. Vishnyakov, G. G. Levin, V. L. Minaev, V. V. Pickalov, and A. V. Likhachev, “Tomographic Interference Microscopy of Living Cells,” Microscopy and Analysis 18, 15–17 (2004).

Wang, Z.

Watson, J. D.

J. D. Watson and F. H. C. Crick, “Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid,” Nature 171(4356), 737–738 (1953).
[CrossRef] [PubMed]

Weyland, M.

P. A. Midgley and M. Weyland, “3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography,” Ultramicroscopy 96(3-4), 413–431 (2003).
[CrossRef] [PubMed]

Wolf, E.

Zernike, F.

F. Zernike, “How I discovered phase contrast,” Science 121(3141), 345–349 (1955).
[CrossRef] [PubMed]

Zysk, A. M.

Am. J. Physiol. Cell Physiol. (1)

G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R. R. Dasari, M. S. Feld, and K. Badizadegan, “Optical imaging of cell mass and growth dynamics,” Am. J. Physiol. Cell Physiol. 295(2), C538–C544 (2008).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Z. Wang and G. Popescu, “Quantitative phase imaging with broadband fields,” Appl. Phys. Lett. 96(5), 051117 (2010).
[CrossRef]

Biosens. Bioelectron. (1)

B. Lillis, M. Manning, H. Berney, E. Hurley, A. Mathewson, and M. M. Sheehan, “Dual polarisation interferometry characterisation of DNA immobilisation and hybridisation detection on a silanised support,” Biosens. Bioelectron. 21(8), 1459–1467 (2006).
[CrossRef] [PubMed]

J. Microsc. (2)

A. Marian, F. Charrière, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, “On the complex three-dimensional amplitude point spread function of lenses and microscope objectives: theoretical aspects, simulations and measurements by digital holography,” J. Microsc. 225(Pt 2), 156–169 (2007).
[CrossRef] [PubMed]

V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205(Pt 2), 165–176 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (2)

Lab Chip (1)

L. J. Millet, M. E. Stewart, J. V. Sweedler, R. G. Nuzzo, and M. U. Gillette, “Microfluidic devices for culturing primary mammalian neurons at low densities,” Lab Chip 7(8), 987–994 (2007).
[CrossRef] [PubMed]

Methods (1)

J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19(3), 373–385 (1999).
[CrossRef] [PubMed]

Microscopy and Analysis (1)

G. N. Vishnyakov, G. G. Levin, V. L. Minaev, V. V. Pickalov, and A. V. Likhachev, “Tomographic Interference Microscopy of Living Cells,” Microscopy and Analysis 18, 15–17 (2004).

Nat. Methods (1)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[CrossRef] [PubMed]

Nature (2)

J. D. Watson and F. H. C. Crick, “Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid,” Nature 171(4356), 737–738 (1953).
[CrossRef] [PubMed]

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Opt. Commun. (1)

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1(4), 153–156 (1969).
[CrossRef]

Opt. Express (1)

F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14(16), 7005–7013 (2006).
[CrossRef] [PubMed]

Opt. Lett. (1)

F. Charrière, A. Marian, T. Colomb, P. Marquet, and C. Depeursinge, “Amplitude point-spread function measurement of high-NA microscope objectives by digital holographic microscopy,” Opt. Lett. 32(16), 2456–2458 (2007).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (7)

D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy--holographic optical coherence tomography,” Opt. Lett. 36(13), 2390–2392 (2011).
[CrossRef] [PubMed]

A. M. Zysk, J. J. Reynolds, D. L. Marks, P. S. Carney, and S. A. Boppart, “Projected index computed tomography,” Opt. Lett. 28(9), 701–703 (2003).
[CrossRef] [PubMed]

F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31(2), 178–180 (2006).
[CrossRef] [PubMed]

N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett. 31(18), 2759–2761 (2006).
[CrossRef] [PubMed]

W. S. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Extended depth of focus in tomographic phase microscopy using a propagation algorithm,” Opt. Lett. 33(2), 171–173 (2008).
[CrossRef] [PubMed]

M. Debailleul, V. Georges, B. Simon, R. Morin, and O. Haeberlé, “High-resolution three-dimensional tomographic diffractive microscopy of transparent inorganic and biological samples,” Opt. Lett. 34(1), 79–81 (2009).
[CrossRef] [PubMed]

J. Kühn, F. Montfort, T. Colomb, B. Rappaz, C. Moratal, N. Pavillon, P. Marquet, and C. Depeursinge, “Submicrometer tomography of cells by multiple-wavelength digital holographic microscopy in reflection,” Opt. Lett. 34(5), 653–655 (2009).
[CrossRef] [PubMed]

Science (3)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

F. Zernike, “How I discovered phase contrast,” Science 121(3141), 345–349 (1955).
[CrossRef] [PubMed]

N. Ban, P. Nissen, J. Hansen, P. B. Moore, and T. A. Steitz, “The complete atomic structure of the large ribosomal subunit at 2.4 A resolution,” Science 289(5481), 905–920 (2000).
[CrossRef] [PubMed]

Ultramicroscopy (1)

P. A. Midgley and M. Weyland, “3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography,” Ultramicroscopy 96(3-4), 413–431 (2003).
[CrossRef] [PubMed]

Other (9)

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Cambridge University Press, Cambridge; New York, 1999).

R. P. Dougherty, “Extensions of DAMAS and Benefits and Limitations of Deconvolution in Beamforming,” 11th AIAA/CEAS Aeroacoustics Conference (26th AIAA Aeroacoustics Conference) AIAA, 2005–2961 (2005).

E. Wolf, “History and Solution of the Phase Problem in the Theory of Structure Determination of Crystals from X-Ray Diffraction Measurements,” in Advances in Imaging and electron physics, P. W. E. Hawkes, ed. (Academic Press, San Diego, 2011).

G. E. Bacon, X-ray and neutron diffraction (Pergamon, 1966).

J. B. Pawley, Handbook of biological confocal microscopy (Springer, New York, 2006).

P. Hariharan, Basics of holography (Cambridge University Press, Cambridge, UK; New York, NY, 2002).

H. Ding and G. Popescu, “Coherent light imaging and scattering for biological investigations,” in Coherent light microscopy, P. Ferraro, A. Wax, and Z. Zalevsky, eds. (Springer, Berlin Heidelberg, 2011), pp. 229–265.

G. Popescu, “Quantitative phase imaging of nanoscale cell structure and dynamics,” in Methods in Cell Biology, P. J. Bhanu, ed. (Elsevier, 2008), p. 87.

C. Depeursinge, “Digital Holography Applied to Microscopy ” in Digital Holography and Three-Dimensional Display, T.-C. Poon, ed. (Springer US, 2006), p. 98.

Supplementary Material (5)

» Media 1: MOV (230 KB)     
» Media 2: MOV (7884 KB)     
» Media 3: MOV (1794 KB)     
» Media 4: MOV (7780 KB)     
» Media 5: MOV (4430 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Visualization of 3D sectioning of SLIM. (a) Sectioning effect of SLIM with coherence gating. (b) An x-z cut through a live neuron; the bottom of the image corresponds to the glass surface. The soma and nucleolus (arrow) are clearly visible. (c-d) Images of the same neuron at the depths indicated by the dash lines in (b). Scale bar for (b-d): 10 μm.

Fig. 2
Fig. 2

SLIT based on scattering theory. (a) Schematic plot for 3D reconstruction. (b-d) Counterparts of Fig. 1 b-d after 3D reconstruction. Scale bar for (b-d): 10 μm.

Fig. 3
Fig. 3

Measured point spread function (PSF). Objective: Zeiss EC Plan-Neofluar 40 × /0.75. a, The PSF in the x-z plane. b, PSF profiles along x- and z-axis.

Fig. 4
Fig. 4

Refractive index map of 3.1 μm polystyrene beads in immersion oil (Zeiss Immersol 518F, refractive index 1.518) at different Z positions. Objective: Zeiss Plan-Apochromatic 63 × /1.4 oil.

Fig. 5
Fig. 5

Comparison of sectioning effect in phase contrast, SLIM and SLIT measurement of the same photonic crystal samples. The sample is made by 1 μm silica beads index matched with isopropyl alcohol (IPA). Scale bar: 2 μm. Objective: Zeiss Plan-Apochromat 63 × /1.4 oil.

Fig. 6
Fig. 6

Tomography capability. (a)-(b) Refractive index distribution through a live neuron at position z = 0.4 μm (a) and 6.0 μm (b). The soma and nucleolus (arrow) are clearly visible. Scale bars, 10 μm. (c) 3D rendering of the same cell. The field of view is 100 μm × 75 μm × 14 μm and NA = 0.75. (d) confocal microscopy of a stained neuron with same field of view and NA = 1.2. Neurons were labeled with anti-polysialic acid IgG #735. The 3D rendering in (c) and (d) was done by ImageJ 3D viewer.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

U ( r ) = V χ ( r ' ) P ( r - r ' ) d 3 r ' ,
U ˜ ( q ) = χ ˜ ( q ) P ˜ ( q ) ,
χ ˜ ( q ) = U ˜ ( q ) / P ˜ ( q ) ,
U ( r ) = χ ( r ) 3 D P ( r ) ,
U w ( r ) = χ ( r ) 3 D P w ( r ) ,

Metrics