Abstract

Detailed numerical analyses are presented of a continuous wave (cw), single spatial mode alkali vapor laser pumped by a diffraction-limited Ti: Sapphire laser. These analyses provide insight into the operation of alkali vapor lasers to aid in the development of high power, diode laser pumped alkali vapor lasers. It is demonstrated that in the laser considered the laser spatial pattern is significantly changed after each pass through the gain medium, and the laser spatial pattern in steady state operation is also very different from that of the passive cavity mode. According to the calculation, lasing significantly improves the pump absorption efficiency and changes the absorbed pump distribution. The effect of varying the transverse size of the pumped region is also analyzed and an optimum pump beam waist radius is demonstrated. In addition, the shift of the pump beam waist location is also studied. The computation method and its convergence behavior are also described in detail.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Beach, W. K. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, “End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling,” J. Opt. Soc. Am. B 21(12), 2151–2163 (2004).
    [CrossRef]
  2. W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett. 28(23), 2336–2338 (2003).
    [CrossRef] [PubMed]
  3. B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun. 260(2), 696–698 (2006).
    [CrossRef]
  4. B. V. Zhdanov and R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32(15), 2167–2169 (2007).
    [CrossRef] [PubMed]
  5. S. S. Q. Wu, T. F. Soules, R. H. Page, S. C. Mitchell, V. K. Kanz, and R. J. Beach, “Hydrocarbon-free resonance transition 795-nm rubidium laser,” Opt. Lett. 32(16), 2423–2425 (2007).
    [CrossRef] [PubMed]
  6. A. Gourevitch, G. Venus, V. Smirnov, D. A. Hostutler, and L. Glebov, “Continuous wave, 30 W laser-diode bar with 10 GHz linewidth for Rb laser pumping,” Opt. Lett. 33(7), 702–704 (2008).
    [CrossRef] [PubMed]
  7. H. Shu and M. Bass, “Three-dimensional computer model for simulating realistic solid-state lasers,” Appl. Opt. 46(23), 5687–5697 (2007).
    [CrossRef] [PubMed]
  8. H. Shu, Analytic and numeric modeling of diode laser pumped Yb:YAG laser oscillators and amplifiers, Ph.D dissertation (University of Central Florida, 2003).
  9. W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5(7), 1412–1423 (1988).
    [CrossRef]
  10. T. Y. Fan and R. L. Byer, “Modeling and CW Operation of a Quasi-Three-Level 946 nm Nd: YAG Laser,” IEEE J. Quantum Electron. 23(5), 605–612 (1987).
    [CrossRef]
  11. W. Koechner, Solid-State Laser Engineering (Springer, 1999).
  12. W. F. Krupke and L. L. Chase, “Ground-state depleted solid-state lasers: principles, characteristics and scaling,” Opt. Quantum Electron. 22(S1), S1–S22 (1990).
    [CrossRef]
  13. F. Sanchez, M. Brunel, and K. Ait-Ameur, “Pump-saturation effects in end-pumped solid-state lasers,” J. Opt. Soc. Am. B 15(9), 2390–2394 (1998).
    [CrossRef]
  14. Y. Sato and T. Taira, “Saturation Factors of Pump Absorption in Solid-State Lasers,” IEEE J. Quantum Electron. 40(3), 270–280 (2004).
    [CrossRef]
  15. Z. Konefał, “Observation of collision induced processes in rubidium-ethane vapour,” Opt. Commun. 164(1-3), 95–105 (1999).
    [CrossRef]
  16. A. E. Siegman, “Gain-guided, index-antiguided fiber lasers,” J. Opt. Soc. Am. B 24(8), 1677–1682 (2007).
    [CrossRef]
  17. Y. Chen, T. McComb, V. Sudesh, M. Richardson, and M. Bass, “Very large-core, single-mode, gain-guided, index-antiguided fiber lasers,” Opt. Lett. 32(17), 2505–2507 (2007).
    [CrossRef] [PubMed]

2008 (1)

2007 (5)

2006 (1)

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun. 260(2), 696–698 (2006).
[CrossRef]

2004 (2)

2003 (1)

1999 (1)

Z. Konefał, “Observation of collision induced processes in rubidium-ethane vapour,” Opt. Commun. 164(1-3), 95–105 (1999).
[CrossRef]

1998 (1)

1990 (1)

W. F. Krupke and L. L. Chase, “Ground-state depleted solid-state lasers: principles, characteristics and scaling,” Opt. Quantum Electron. 22(S1), S1–S22 (1990).
[CrossRef]

1988 (1)

1987 (1)

T. Y. Fan and R. L. Byer, “Modeling and CW Operation of a Quasi-Three-Level 946 nm Nd: YAG Laser,” IEEE J. Quantum Electron. 23(5), 605–612 (1987).
[CrossRef]

Ait-Ameur, K.

Bass, M.

Beach, R. J.

Brunel, M.

Byer, R. L.

T. Y. Fan and R. L. Byer, “Modeling and CW Operation of a Quasi-Three-Level 946 nm Nd: YAG Laser,” IEEE J. Quantum Electron. 23(5), 605–612 (1987).
[CrossRef]

Chase, L. L.

W. F. Krupke and L. L. Chase, “Ground-state depleted solid-state lasers: principles, characteristics and scaling,” Opt. Quantum Electron. 22(S1), S1–S22 (1990).
[CrossRef]

Chen, Y.

Dubinskii, M. A.

Ehrenreich, T.

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun. 260(2), 696–698 (2006).
[CrossRef]

Fan, T. Y.

T. Y. Fan and R. L. Byer, “Modeling and CW Operation of a Quasi-Three-Level 946 nm Nd: YAG Laser,” IEEE J. Quantum Electron. 23(5), 605–612 (1987).
[CrossRef]

Glebov, L.

Gourevitch, A.

Hostutler, D. A.

Kanz, V. K.

Knize, R. J.

B. V. Zhdanov and R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32(15), 2167–2169 (2007).
[CrossRef] [PubMed]

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun. 260(2), 696–698 (2006).
[CrossRef]

Konefal, Z.

Z. Konefał, “Observation of collision induced processes in rubidium-ethane vapour,” Opt. Commun. 164(1-3), 95–105 (1999).
[CrossRef]

Krupke, W. F.

W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett. 28(23), 2336–2338 (2003).
[CrossRef] [PubMed]

W. F. Krupke and L. L. Chase, “Ground-state depleted solid-state lasers: principles, characteristics and scaling,” Opt. Quantum Electron. 22(S1), S1–S22 (1990).
[CrossRef]

Krupke, W. K.

McComb, T.

Merkle, L. D.

Mitchell, S. C.

Page, R. H.

Payne, S. A.

Richardson, M.

Risk, W. P.

Sanchez, F.

Sato, Y.

Y. Sato and T. Taira, “Saturation Factors of Pump Absorption in Solid-State Lasers,” IEEE J. Quantum Electron. 40(3), 270–280 (2004).
[CrossRef]

Shu, H.

Siegman, A. E.

Smirnov, V.

Soules, T. F.

Sudesh, V.

Taira, T.

Y. Sato and T. Taira, “Saturation Factors of Pump Absorption in Solid-State Lasers,” IEEE J. Quantum Electron. 40(3), 270–280 (2004).
[CrossRef]

Venus, G.

Wu, S. S. Q.

Zhdanov, B. V.

B. V. Zhdanov and R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32(15), 2167–2169 (2007).
[CrossRef] [PubMed]

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun. 260(2), 696–698 (2006).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (2)

T. Y. Fan and R. L. Byer, “Modeling and CW Operation of a Quasi-Three-Level 946 nm Nd: YAG Laser,” IEEE J. Quantum Electron. 23(5), 605–612 (1987).
[CrossRef]

Y. Sato and T. Taira, “Saturation Factors of Pump Absorption in Solid-State Lasers,” IEEE J. Quantum Electron. 40(3), 270–280 (2004).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Commun. (2)

Z. Konefał, “Observation of collision induced processes in rubidium-ethane vapour,” Opt. Commun. 164(1-3), 95–105 (1999).
[CrossRef]

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun. 260(2), 696–698 (2006).
[CrossRef]

Opt. Lett. (5)

Opt. Quantum Electron. (1)

W. F. Krupke and L. L. Chase, “Ground-state depleted solid-state lasers: principles, characteristics and scaling,” Opt. Quantum Electron. 22(S1), S1–S22 (1990).
[CrossRef]

Other (2)

H. Shu, Analytic and numeric modeling of diode laser pumped Yb:YAG laser oscillators and amplifiers, Ph.D dissertation (University of Central Florida, 2003).

W. Koechner, Solid-State Laser Engineering (Springer, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic energy level diagram for alkali metal vapors.

Fig. 2
Fig. 2

The calculated output laser power (open triangles) versus the input pump power before entering the Cs cell, together with the experimental results (solid circles) presented in [1]. The output coupler reflectivity used in the calculation and in the experiment is 0.5.

Fig. 3
Fig. 3

(a) Output laser intensity as a function of the x coordinate for y = 0 just after passing the output coupler; (b) output laser intensity in the transverse x-y plane; (c) intensity of the laser before entering the Cs cell from the left window; (d) intensity of the laser before leaving the Cs cell from the right window; (e) intensity of the laser before entering the Cs cell from the right window; (f) intensity of the laser before leaving the Cs cell from the left window. The solid lines represent the calculated laser intensity; the dashed lines in (c), (d), (e) and (f) represent the intensity pattern of a TEM00 Gaussian beam right at its beam waist with the beam waist radius of 262.5 µm at 1/e2 of the axial intensity, and are scaled for comparison with the numerical calculation.

Fig. 4
Fig. 4

The calculated output laser power versus the pump beam waist radius at 1/e2 of the axial intensity.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d N 3 dt = σ p ( N 1 1 2 N 3 ) I p h ν p γ 32 N 3 + γ 32 2 e ΔE k B T N 2 N 3 τ 3 d N 2 dt =σ( N 2 N 1 ) I h ν L + γ 32 N 3 γ 32 2 e ΔE k B T N 2 N 2 τ 2 d N 1 dt = σ p ( N 1 1 2 N 3 ) I p h ν p +σ( N 2 N 1 ) I h ν L + N 2 τ 2 + N 3 τ 3
N 1 = σ p I p 2h ν p + γ 32 + 1 τ 3 σ p I p 2h ν p + γ 32 2 e ΔE k B T + γ 32 + 1 τ 3 σI h ν L + γ 32 2 e ΔE k B T + γ 32 + 1 τ 2 γ 32 3 σ p I p 2h ν p + γ 32 + 1 τ 3 + σ p I p 2h ν p + γ 32 2 e ΔE k B T + γ 32 + 1 τ 3 σI h ν L + γ 32 2 e ΔE k B T + γ 32 + 1 τ 2 ( σI h ν L γ 32 ) N 0 N 2 = ( σI h ν L γ 32 ) N 1 + γ 32 N 0 σI h ν L + γ 32 2 e ΔE k B T + γ 32 + 1 τ 2 N 3 = N 0 N 1 N 2
g( x,y,z )=σ( N 2 N 1 )=σ[ N 2 ( x,y,z ) N 1 ( x,y,z ) ]
α p ( x,y,z )= σ p ( N 1 1 2 N 3 )= σ p [ N 1 ( x,y,z ) 1 2 N 3 ( x,y,z ) ]

Metrics