Abstract

We present a novel method, based on stimulated Brillouin scattering (SBS), for the simultaneous distributed measurement of fast strain variations along the entire length of the sensing fiber. A specially synthesized and adaptable probe wave is used to place the Brillouin interaction always on the slope of the local Brillouin gain spectrum, allowing a single pump pulse to sample fast strain variations along the full length of a fiber with an arbitrary distribution of the Brillouin frequency shift. In this early demonstration of the method, strain vibrations of a few hundred Hz are demonstrated, simultaneously measured on two different sections of an 85m long fiber, having different static Brillouin shifts and with a spatial resolution of 1.5m.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin Gain Spectrum Characterization in Single-Mode Optical Fibers,” IEEE J. Light. Technol. 15(10), 1842–1851 (1997).
    [CrossRef]
  2. A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-Pulse Brillouin Optical Time-Domain Sensor with 20-mm Spatial Resolution,” IEEE J. Light. Technol. 25(1), 381–386 (2007).
    [CrossRef]
  3. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
    [CrossRef] [PubMed]
  4. S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thevenaz, “High spatial and spectral resolution long-range sensing using brillouin echoes,” IEEE J. Light. Tech. 28(20), 2993–3003 (2010).
    [CrossRef]
  5. K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
    [CrossRef] [PubMed]
  6. Y. S. Kwang and K. Hotate, “Distributed Fiber Strain Sensor with 1-kHz Sampling Rate Based on Brillouin Optical Correlation Domain Analysis,” IEEE Photon. Technol. Lett.  19(23), 1928–1930 (2007).
    [CrossRef]
  7. K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011).
    [CrossRef] [PubMed]
  8. L. Thévenaz, “Inelastic Scatterings and Applications to Distributed Sensing” in Advanced Fiber Optics - Concepts and Technology, Thévenaz L. ed, (Lausanne, Switzerland: EPFL Press, 2011).
  9. Z. Zhang and X. Bao, “Distributed optical fiber vibration sensor based on spectrum analysis of Polarization-OTDR system,” Opt. Express 16(14), 10240–10247 (2008).
    [CrossRef] [PubMed]
  10. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
    [CrossRef] [PubMed]
  11. A. Voskoboinik, J. Wang, B. Shamee, R. S. Nuccio, L. Zhang, M. Chitgarha, E. A. Willner, and M. Tur, “SBS-Based Fiber Optical Sensing Using Frequency-Domain Simultaneous Tone Interrogation, ” IEEE J. Light.Technol. 29, 1729–1735 (2011).
  12. K. Hotate and S. S. L. Ong, “Distributed fiber Brillouin strain sensing by correlation-based continuous-wave technique ~cm-order spatial resolution and dynamic strain measurement,” Proc. SPIE 4920, 299–310 (2002).
    [CrossRef]
  13. R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett. 34(17), 2613–2615 (2009).
    [CrossRef] [PubMed]
  14. Y. Peled, A. Motil, L. Yaron, and M. Tur, “Distributed and dynamical Brillouin sensing in optical fibers,” Proc. SPIE 7753, 775323, 775323-4 (2011).
    [CrossRef]
  15. K. Shimizu, T. Horiguchi, and Y. Koyamada, “Measurement of distributed strain and temperature in a branched optical fiber network by use of Brillouin optical time-domain reflectometry,” Opt. Lett. 20(5), 507–509 (1995).
    [CrossRef] [PubMed]
  16. X. Bao, A. Brown, M. Demerchant, and J. Smith, “Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses,” Opt. Lett. 24(8), 510–512 (1999).
    [CrossRef] [PubMed]

2011 (3)

K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011).
[CrossRef] [PubMed]

A. Voskoboinik, J. Wang, B. Shamee, R. S. Nuccio, L. Zhang, M. Chitgarha, E. A. Willner, and M. Tur, “SBS-Based Fiber Optical Sensing Using Frequency-Domain Simultaneous Tone Interrogation, ” IEEE J. Light.Technol. 29, 1729–1735 (2011).

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Distributed and dynamical Brillouin sensing in optical fibers,” Proc. SPIE 7753, 775323, 775323-4 (2011).
[CrossRef]

2010 (1)

S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thevenaz, “High spatial and spectral resolution long-range sensing using brillouin echoes,” IEEE J. Light. Tech. 28(20), 2993–3003 (2010).
[CrossRef]

2009 (1)

2008 (3)

2007 (2)

Y. S. Kwang and K. Hotate, “Distributed Fiber Strain Sensor with 1-kHz Sampling Rate Based on Brillouin Optical Correlation Domain Analysis,” IEEE Photon. Technol. Lett.  19(23), 1928–1930 (2007).
[CrossRef]

A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-Pulse Brillouin Optical Time-Domain Sensor with 20-mm Spatial Resolution,” IEEE J. Light. Technol. 25(1), 381–386 (2007).
[CrossRef]

2006 (1)

2002 (1)

K. Hotate and S. S. L. Ong, “Distributed fiber Brillouin strain sensing by correlation-based continuous-wave technique ~cm-order spatial resolution and dynamic strain measurement,” Proc. SPIE 4920, 299–310 (2002).
[CrossRef]

1999 (1)

1997 (1)

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin Gain Spectrum Characterization in Single-Mode Optical Fibers,” IEEE J. Light. Technol. 15(10), 1842–1851 (1997).
[CrossRef]

1995 (1)

Bao, X.

Bernini, R.

Beugnot, J.-C.

S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thevenaz, “High spatial and spectral resolution long-range sensing using brillouin echoes,” IEEE J. Light. Tech. 28(20), 2993–3003 (2010).
[CrossRef]

Brown, A.

Brown, A. W.

A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-Pulse Brillouin Optical Time-Domain Sensor with 20-mm Spatial Resolution,” IEEE J. Light. Technol. 25(1), 381–386 (2007).
[CrossRef]

Brown, K.

A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-Pulse Brillouin Optical Time-Domain Sensor with 20-mm Spatial Resolution,” IEEE J. Light. Technol. 25(1), 381–386 (2007).
[CrossRef]

Chen, L.

Chitgarha, M.

A. Voskoboinik, J. Wang, B. Shamee, R. S. Nuccio, L. Zhang, M. Chitgarha, E. A. Willner, and M. Tur, “SBS-Based Fiber Optical Sensing Using Frequency-Domain Simultaneous Tone Interrogation, ” IEEE J. Light.Technol. 29, 1729–1735 (2011).

Colpitts, B. G.

A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-Pulse Brillouin Optical Time-Domain Sensor with 20-mm Spatial Resolution,” IEEE J. Light. Technol. 25(1), 381–386 (2007).
[CrossRef]

Demerchant, M.

Eyal, A.

Foaleng, S. M.

S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thevenaz, “High spatial and spectral resolution long-range sensing using brillouin echoes,” IEEE J. Light. Tech. 28(20), 2993–3003 (2010).
[CrossRef]

He, Z.

Horiguchi, T.

Hotate, K.

K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011).
[CrossRef] [PubMed]

Y. S. Kwang and K. Hotate, “Distributed Fiber Strain Sensor with 1-kHz Sampling Rate Based on Brillouin Optical Correlation Domain Analysis,” IEEE Photon. Technol. Lett.  19(23), 1928–1930 (2007).
[CrossRef]

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
[CrossRef] [PubMed]

K. Hotate and S. S. L. Ong, “Distributed fiber Brillouin strain sensing by correlation-based continuous-wave technique ~cm-order spatial resolution and dynamic strain measurement,” Proc. SPIE 4920, 299–310 (2002).
[CrossRef]

Kishi, M.

Koyamada, Y.

Kwang, Y. S.

Y. S. Kwang and K. Hotate, “Distributed Fiber Strain Sensor with 1-kHz Sampling Rate Based on Brillouin Optical Correlation Domain Analysis,” IEEE Photon. Technol. Lett.  19(23), 1928–1930 (2007).
[CrossRef]

Li, W.

Li, Y.

Minardo, A.

Motil, A.

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Distributed and dynamical Brillouin sensing in optical fibers,” Proc. SPIE 7753, 775323, 775323-4 (2011).
[CrossRef]

Nikles, M.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin Gain Spectrum Characterization in Single-Mode Optical Fibers,” IEEE J. Light. Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Nuccio, R. S.

A. Voskoboinik, J. Wang, B. Shamee, R. S. Nuccio, L. Zhang, M. Chitgarha, E. A. Willner, and M. Tur, “SBS-Based Fiber Optical Sensing Using Frequency-Domain Simultaneous Tone Interrogation, ” IEEE J. Light.Technol. 29, 1729–1735 (2011).

Ong, S. S. L.

K. Hotate and S. S. L. Ong, “Distributed fiber Brillouin strain sensing by correlation-based continuous-wave technique ~cm-order spatial resolution and dynamic strain measurement,” Proc. SPIE 4920, 299–310 (2002).
[CrossRef]

Peled, Y.

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Distributed and dynamical Brillouin sensing in optical fibers,” Proc. SPIE 7753, 775323, 775323-4 (2011).
[CrossRef]

Robert, P. A.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin Gain Spectrum Characterization in Single-Mode Optical Fibers,” IEEE J. Light. Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Shamee, B.

A. Voskoboinik, J. Wang, B. Shamee, R. S. Nuccio, L. Zhang, M. Chitgarha, E. A. Willner, and M. Tur, “SBS-Based Fiber Optical Sensing Using Frequency-Domain Simultaneous Tone Interrogation, ” IEEE J. Light.Technol. 29, 1729–1735 (2011).

Shimizu, K.

Smith, J.

Song, K. Y.

Thevenaz, L.

S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thevenaz, “High spatial and spectral resolution long-range sensing using brillouin echoes,” IEEE J. Light. Tech. 28(20), 2993–3003 (2010).
[CrossRef]

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin Gain Spectrum Characterization in Single-Mode Optical Fibers,” IEEE J. Light. Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Thévenaz, L.

Tur, M.

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Distributed and dynamical Brillouin sensing in optical fibers,” Proc. SPIE 7753, 775323, 775323-4 (2011).
[CrossRef]

A. Voskoboinik, J. Wang, B. Shamee, R. S. Nuccio, L. Zhang, M. Chitgarha, E. A. Willner, and M. Tur, “SBS-Based Fiber Optical Sensing Using Frequency-Domain Simultaneous Tone Interrogation, ” IEEE J. Light.Technol. 29, 1729–1735 (2011).

S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thevenaz, “High spatial and spectral resolution long-range sensing using brillouin echoes,” IEEE J. Light. Tech. 28(20), 2993–3003 (2010).
[CrossRef]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
[CrossRef] [PubMed]

Voskoboinik, A.

A. Voskoboinik, J. Wang, B. Shamee, R. S. Nuccio, L. Zhang, M. Chitgarha, E. A. Willner, and M. Tur, “SBS-Based Fiber Optical Sensing Using Frequency-Domain Simultaneous Tone Interrogation, ” IEEE J. Light.Technol. 29, 1729–1735 (2011).

Wang, J.

A. Voskoboinik, J. Wang, B. Shamee, R. S. Nuccio, L. Zhang, M. Chitgarha, E. A. Willner, and M. Tur, “SBS-Based Fiber Optical Sensing Using Frequency-Domain Simultaneous Tone Interrogation, ” IEEE J. Light.Technol. 29, 1729–1735 (2011).

Willner, E. A.

A. Voskoboinik, J. Wang, B. Shamee, R. S. Nuccio, L. Zhang, M. Chitgarha, E. A. Willner, and M. Tur, “SBS-Based Fiber Optical Sensing Using Frequency-Domain Simultaneous Tone Interrogation, ” IEEE J. Light.Technol. 29, 1729–1735 (2011).

Yaron, L.

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Distributed and dynamical Brillouin sensing in optical fibers,” Proc. SPIE 7753, 775323, 775323-4 (2011).
[CrossRef]

Zadok, A.

Zeni, L.

Zhang, L.

A. Voskoboinik, J. Wang, B. Shamee, R. S. Nuccio, L. Zhang, M. Chitgarha, E. A. Willner, and M. Tur, “SBS-Based Fiber Optical Sensing Using Frequency-Domain Simultaneous Tone Interrogation, ” IEEE J. Light.Technol. 29, 1729–1735 (2011).

Zhang, Z.

Zilka, E.

IEEE J. Light. Tech. (1)

S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thevenaz, “High spatial and spectral resolution long-range sensing using brillouin echoes,” IEEE J. Light. Tech. 28(20), 2993–3003 (2010).
[CrossRef]

IEEE J. Light. Technol. (2)

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin Gain Spectrum Characterization in Single-Mode Optical Fibers,” IEEE J. Light. Technol. 15(10), 1842–1851 (1997).
[CrossRef]

A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-Pulse Brillouin Optical Time-Domain Sensor with 20-mm Spatial Resolution,” IEEE J. Light. Technol. 25(1), 381–386 (2007).
[CrossRef]

IEEE J. Light.Technol. (1)

A. Voskoboinik, J. Wang, B. Shamee, R. S. Nuccio, L. Zhang, M. Chitgarha, E. A. Willner, and M. Tur, “SBS-Based Fiber Optical Sensing Using Frequency-Domain Simultaneous Tone Interrogation, ” IEEE J. Light.Technol. 29, 1729–1735 (2011).

IEEE Photon. Technol. Lett. (1)

Y. S. Kwang and K. Hotate, “Distributed Fiber Strain Sensor with 1-kHz Sampling Rate Based on Brillouin Optical Correlation Domain Analysis,” IEEE Photon. Technol. Lett.  19(23), 1928–1930 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Proc. SPIE (2)

Y. Peled, A. Motil, L. Yaron, and M. Tur, “Distributed and dynamical Brillouin sensing in optical fibers,” Proc. SPIE 7753, 775323, 775323-4 (2011).
[CrossRef]

K. Hotate and S. S. L. Ong, “Distributed fiber Brillouin strain sensing by correlation-based continuous-wave technique ~cm-order spatial resolution and dynamic strain measurement,” Proc. SPIE 4920, 299–310 (2002).
[CrossRef]

Other (1)

L. Thévenaz, “Inelastic Scatterings and Applications to Distributed Sensing” in Advanced Fiber Optics - Concepts and Technology, Thévenaz L. ed, (Lausanne, Switzerland: EPFL Press, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

An example of the Brillouin gain spectrum (BGS) distance-frequency distribution along a sensing fiber, having 3 different BGS sections with three different static −3dB frequency values, ν ¯ B,3dB (z) , of 10.9, 10.95 and 10.85GHz, respectively, see inset.

Fig. 2
Fig. 2

An example of a pump pulse, propagating against a complex probe wave, which comprises 3 different optical frequencies, corresponding to the fiber of Fig. 1. Note that each probe segment has twice the length of the corresponding fiber section, as per Eq. (5).

Fig. 3
Fig. 3

Experimental setup: AWG: arbitrary waveform generator, EOM: electro-optic modulator, EDFA: Erbium-doped fiber amplifier, CIR: circulator, FBG: fiber Bragg grating, PS: polarization scrambler, IS: isolator, ATT: attenuator, FUT: fiber under test, PD: photodiode.

Fig. 4
Fig. 4

The 85m FUT, comprising five sections of SMF fiber. The two 1m sections are mounted on manually stretching stages, making it possible to adjust their static Brillouin frequency shifts. Additionally, audio speakers are physically attached to these two sections in order to induce fast strain variations of various frequencies and magnitudes. All sections, with the exception of the two patch cords are made of the same fiber.

Fig. 5
Fig. 5

Top: Strain-induced gain vibrations at 150Hz and 400Hz were measured at the two 1m fiber sections, when adjusted to have the same BGS. Bottom: Time sequences from two columns of the measured data matrix, corresponding to the centers of the first and second sections, after 1kHz low pass filtering. Here gain variations were converted to frequency values. Note that each segment was excited by a different speaker and no effort was made to induce vibrations of the same magnitude in the two sections.

Fig. 6
Fig. 6

Classical BOTDA was employed to measure the static Brillouin gain spectrum (BGS) distance-frequency distribution along the FUT of Fig. 4 when sections I and II were non-uniformly stretched. A 15ns pump pulse was used against a CW probe wave, whose frequency was sequentially swept to cover the relevant frequency range.

Fig. 7
Fig. 7

A blow-up of the sections of interest appears this 3D drawing, indicating that the FWHM of the BGS is of ~60MHz, which is due to the use of a relatively short pump pulse of 15ns.

Fig. 8
Fig. 8

Top: Strain-induced gain vibrations at 180Hz and 320Hz were measured at the two 1m fiber sections, having different BGS. Bottom: Time sequences from two columns of the measured data matrix, corresponding to the centers of the first and second sections, after 1kHz low pass filtering. Here too, gain variations were converted to frequency values. Like in Fig. 5, the difference in magnitude between the 180Hz and 320Hz vibrations is due to different excitation conditions.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ν B (t,z)= ν ¯ B (z)+Δ ν B (t,z)
E Probe (t)= A 0 exp{ j[2π ν Pump tϕ(t)] },
ϕ(t)=2π 0 t ν ¯ B,3dB ( V g t'/2 ) dt',
E Probe (t,z)= A 0 exp{ j[2π ν Pump (t[zL]/ V g )ϕ(t[zL]/ V g )] },t[Lz]/ V g ,
ν Probe (t,z)= ν Pump dϕ dt = ν Pump ν ¯ B,3dB ( V g (t+[zL]/ V g )/2 ) = ν Pump ν ¯ B,3dB ( [ V g t+zL]/2 )
E Pump (t)=A(t)exp{j[2π ν Pump t]},
E Pump (t,z)=A( t[z+L]/ V g )exp{ j[2π ν Pump (t[z+L]/ V g )] }
ν Probe ( t 0 , z 0 )= ν Pump ν ¯ B,3dB ( [ V g [ z 0 +L]/ V g + z 0 L]/2 )= ν Pump ν ¯ B,3dB ( z 0 )
ϕ(t)=2π 0 t ν ¯ B,3dB ( V g t'/2 ) dt'=2π f c t+2π 0 t ( ν ¯ B,3dB ( V g t'/2 ) f c ) dt'
V I (t)= V 0 cos[ ϕ AWG (t) ]; V Q (t)= V 0 sin[ ϕ AWG (t) ]
V RF (t)= V I (t)cos(2π f c t) V Q (t)sin(2π f c t)= V 0 cos(2π f c t+ ϕ AWG (t))= V 0 cos(ϕ(t)) = V 0 cos[ 2π 0 t ν ¯ B,3dB ( V g t'/2 )dt' ]
E Probe (t)= E EOM1 (t)exp[ j( 2π ν Pump t2π t ν ¯ B,3dB ( V g t'/2 )dt' ) ],

Metrics