Abstract

The photo darkening (PD) absorption spectra from unseeded amplifier operation (by 915 nm pumping) of ytterbium / aluminum and co-doped silica fibers is after prolonged operation observed to develop a characteristic line at 2.6 eV (477 nm). This line is proposed to be due to inter center excitation transfer from type II oxygen deficiency centers ODC(II) to Tm3+ trace impurities. The ODC(II) is proposed to be the result of a displacive transition of a 4-fold silica ring hosting two 3-fold silicon units that presents two non-bridging oxygen to Yb3+ (as part of its 6-fold coordination by oxygen). The displacive transition is initiated by a charge disproportionation process which leads to NBO transfer in forming dioxasilirane (2-fold coordinated silicon with two NBO attached) next to silylene (2-fold coordinated silicon with a lone electron pair). In collaboration with a valence electron of Yb3+ a new ½ / 1½ chemical bond is formed on dioxasilirane which comprises the PD color center for the visible and near-infrared. Difference in solid acidity of the silica material co-doped with Yb/Al and Yb/P may explain the observed difference in spectral shapes by change of bond order to the formed chemical bond.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. T. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 14(24), 11539–11544 (2006).
    [CrossRef] [PubMed]
  2. S. Jetschke, S. Unger, U. Röpke, and J. Kirchhof, “Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power,” Opt. Express 15(22), 14838–14843 (2007).
    [CrossRef] [PubMed]
  3. S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express 16(20), 15540–15545 (2008).
    [CrossRef] [PubMed]
  4. S. Yoo, C. Basu, A. J. Boyland, C. Sones, J. Nilsson, J. K. Sahu, and D. Payne, “Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation,” Opt. Lett. 32(12), 1626–1628 (2007).
    [CrossRef] [PubMed]
  5. M. Engholm and L. Norin, “Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass,” Opt. Express 16(2), 1260–1268 (2008).
    [CrossRef] [PubMed]
  6. J. Jasapara, M. Andrejco, D. DiGiovanni, and R. Windeler, "Effect of heat and H2 gas on the photo-darkening of Yb+3 fibers," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CTuQ5.
  7. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
    [CrossRef]
  8. D. L. Griscom, “Trapped-electron centers in pure and doped glassy silica: A review and synthesis,” J. Non-Cryst. Solids 357(8-9), 1945–1962 (2011).
    [CrossRef]
  9. D. P. Partlow and A. J. Cohen, “Optical studies of biaxial Al-related color centers in smoky quartz,” Am. Mineralogist 71, 589–598 (1986).
  10. F. Mady, M. Benabdesselam, and W. Blanc, “Thermoluminescence characterization of traps involved in the photodarkening of ytterbium-doped silica fibers,” Opt. Lett. 35(21), 3541–3543 (2010).
    [CrossRef] [PubMed]
  11. C. G. Carlson, K. E. Keister, P. D. Dragic, A. Croteau, and J. G. Eden, “Photoexcitation of Yb-doped aluminosilicate fibers at 250 nm: evidence for excitation transfer from oxygen deficiency centers to Yb3+,” J. Opt. Soc. Am. B 27(10), 2087–2094 (2010).
    [CrossRef]
  12. M. J. Söderlund, J. J. Montiel i Ponsoda, J. P. Koplow, and S. Honkanen, “Heat-induced darkening and spectral broadening in photodarkened ytterbium-doped fiber under thermal cycling,” Opt. Express 17(12), 9940–9946 (2009).
    [CrossRef] [PubMed]
  13. J. K. Sahu, S. Yoo, A. J. Boyland, C. Basu, M. P. Kalita, A. Webb, C. L. Sones, J. Nilsson, and D. N. Payne, “488 nm irradiation induced photodarkening study of Yb doped aluminosilicate and phosphosilicate fibers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JTuA27.
  14. Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “Measurement of high photodarkening resistance in heavily Yb3+-doped phosphate fibres,” Electron. Lett. 44(1), 14–16 (2008).
    [CrossRef]
  15. M. Engholm, P. Jelger, F. Laurell, and L. Norin, “Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping,” Opt. Lett. 34(8), 1285–1287 (2009).
    [CrossRef] [PubMed]
  16. K. E. Mattsson, “Low photo darkening single mode RMO fiber,” Opt. Express 17(20), 17855–17861 (2009).
    [CrossRef] [PubMed]
  17. K. Bogumil, J. Orphal, and J. P. Burrows, “Temperature dependent absorption cross sections of O3, NO2, and other atmospheric trace gases measured with the SCIAMACHY spectrometer,” Proceeding Envisat Symposium Goteborg, Sweden (2000), http://earth.esa.int/pub/ESA DOC/gothenburg/099bog
  18. B. Schaudel, P. Goldner, M. Prassas, and F. Auzel, “Cooperative luminescence as a probe of clustering in Yb3+ doped glasses,” J. Alloy. Comp. 300–301(1-2), 443–449 (2000).
    [CrossRef]
  19. S. Jetschke, S. Unger, A. Schwuchow, M. Leich, V. Reichel, and J. Kirchhof, “Photodarkening in Yb-doped silica fibers: influence of the atmosphere during perform collapsing,” Proc. SPIE 6873, 68731G, 68731G-10 (2008).
    [CrossRef]
  20. L. Skuja, “Direct singlet-to-triplet optical absorption and luminescence excitation band of the twofold-coordinated silicon center in oxygen-deficient glassy SiO2,” J. Non-Cryst. Solids 167(3), 229–238 (1994).
    [CrossRef]
  21. J. T. Fournier and R. H. Bartram, “Inhomogeneous broadening of the optical spectra of Yb3+ in phosphate glass,” J. Phys. Chem. Solids 31(12), 2615–2624 (1970).
    [CrossRef]
  22. L. Pauling, “The nature of silicon-oxygen bonds,” Am. Mineral. 65, 321–323 (1980).
  23. V. O. Sokolov and V. B. Sulimov, “Threefold coordinated oxygen atom in silica glass,” J. Non-Cryst. Solids 217(2-3), 167–172 (1997).
    [CrossRef]
  24. S. Jetschke, M. Leich, S. Unger, A. Schwuchow, and J. Kirchhof, “Influence of Tm- or Er-codoping on the photodarkening kinetics in Yb fibers,” Opt. Express 19(15), 14473–14478 (2011).
    [CrossRef]
  25. R. Peretti, A.-M. Jurdyc, B. Jacquier, C. Gonnet, A. Pastouret, E. Burov, and O. Cavani, “How do traces of thulium explain photodarkening in Yb doped fibers?” Opt. Express 18(19), 20455–20460 (2010).
    [CrossRef] [PubMed]
  26. K. C. Snyder and W. B. Fowler, “Oxygen vacancy in α -quartz: a possible bi- and metastable defect,” Phys. Rev. B Condens. Matter 48(18), 13238–13243 (1993).
    [CrossRef] [PubMed]
  27. F. L. Galeener, “Planar rings in vitreous silica,” J. Non-Cryst. Solids 49(1-3), 53–62 (1982).
    [CrossRef]
  28. L. Giordano, P. V. Sushko, G. Pacchioni, and A. L. Shluger, “Electron trapping at point defects on hydroxylated silica surfaces,” Phys. Rev. Lett. 99(13), 136801 (2007).
    [CrossRef] [PubMed]
  29. K. Awazu and H. Kawazoe, “O2 molecules dissolved in synthetic silica glasses and their photochemical reactions induced by ArF excimer laser radiation,” J. Appl. Phys. 68(7), 3584–3591 (1990).
    [CrossRef]
  30. C. M. Carbonaro, P. C. Ricci, and A. Anedda, “Thermal quenching properties of ultraviolet emitting centers in mesoporous silica,” Phys. Rev. B 76(12), 125431 (2007).
    [CrossRef]
  31. V. A. Radtsig and I. N. Senchenya, “Hydrogenation of the silanone groups (≡Si-O)2Si=O. Experimental and quantum-chemical studies,” Russ. Chem. Bull. 45(8), 1849–1856 (1996).
    [CrossRef]
  32. P. H. Krupenie, “The spectrum of molecular oxygen,” J. Phys. Chem. Ref. Data 1(2), 423–534 (1972).
    [CrossRef]
  33. J. Rolfe, F. R. Lipsett, and W. J. King, “Optical absorption and fluorescence of oxygen in alkali halide crystals,” Phys. Rev. 123(2), 447–454 (1961).
    [CrossRef]
  34. R. D. Harcourt, “Pauling “3-electron bonds,” “increased-valence,” and 6-electron 4-center bonding,” J. Am. Chem. Soc. 102(16), 5195–5201 (1980).
    [CrossRef]
  35. G. Busca, “The surface acidity of solid oxides and its characterization by IR spectroscopic methods. An attempt at systematization,” Phys. Chem. Chem. Phys. 1(5), 723–736 (1999).
    [CrossRef]
  36. B. Morasse, S. Chatigny, E. Gagnon, C. Hovington, J.-P Martin, and J.-P. de Sandro, “Low photodarkening single cladding ytterbium fibre amplifier,” Proc. SPIE,  6453, 6453OH (2007)
  37. K. Arai, H. Namikawa, K. Kumata, T. Honda, T. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
    [CrossRef]
  38. A. Saitoh, S. Matsuishi, M. Oto, T. Miura, M. Hirano, and H. Hosono, “Elucidation of coordination structure around Ce3+ in doped SiO2 glasses using pulsed electron paramagnetic resonance: effect of phosphorus, boron, and phosphorus-boron codoping,” Phys. Rev. B 72(21), 212101 (2005).
    [CrossRef]
  39. W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers for 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
    [CrossRef]

2011

D. L. Griscom, “Trapped-electron centers in pure and doped glassy silica: A review and synthesis,” J. Non-Cryst. Solids 357(8-9), 1945–1962 (2011).
[CrossRef]

S. Jetschke, M. Leich, S. Unger, A. Schwuchow, and J. Kirchhof, “Influence of Tm- or Er-codoping on the photodarkening kinetics in Yb fibers,” Opt. Express 19(15), 14473–14478 (2011).
[CrossRef]

2010

2009

2008

M. Engholm and L. Norin, “Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass,” Opt. Express 16(2), 1260–1268 (2008).
[CrossRef] [PubMed]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express 16(20), 15540–15545 (2008).
[CrossRef] [PubMed]

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “Measurement of high photodarkening resistance in heavily Yb3+-doped phosphate fibres,” Electron. Lett. 44(1), 14–16 (2008).
[CrossRef]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, V. Reichel, and J. Kirchhof, “Photodarkening in Yb-doped silica fibers: influence of the atmosphere during perform collapsing,” Proc. SPIE 6873, 68731G, 68731G-10 (2008).
[CrossRef]

2007

L. Giordano, P. V. Sushko, G. Pacchioni, and A. L. Shluger, “Electron trapping at point defects on hydroxylated silica surfaces,” Phys. Rev. Lett. 99(13), 136801 (2007).
[CrossRef] [PubMed]

C. M. Carbonaro, P. C. Ricci, and A. Anedda, “Thermal quenching properties of ultraviolet emitting centers in mesoporous silica,” Phys. Rev. B 76(12), 125431 (2007).
[CrossRef]

B. Morasse, S. Chatigny, E. Gagnon, C. Hovington, J.-P Martin, and J.-P. de Sandro, “Low photodarkening single cladding ytterbium fibre amplifier,” Proc. SPIE,  6453, 6453OH (2007)

S. Yoo, C. Basu, A. J. Boyland, C. Sones, J. Nilsson, J. K. Sahu, and D. Payne, “Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation,” Opt. Lett. 32(12), 1626–1628 (2007).
[CrossRef] [PubMed]

S. Jetschke, S. Unger, U. Röpke, and J. Kirchhof, “Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power,” Opt. Express 15(22), 14838–14843 (2007).
[CrossRef] [PubMed]

2006

2005

A. Saitoh, S. Matsuishi, M. Oto, T. Miura, M. Hirano, and H. Hosono, “Elucidation of coordination structure around Ce3+ in doped SiO2 glasses using pulsed electron paramagnetic resonance: effect of phosphorus, boron, and phosphorus-boron codoping,” Phys. Rev. B 72(21), 212101 (2005).
[CrossRef]

2000

B. Schaudel, P. Goldner, M. Prassas, and F. Auzel, “Cooperative luminescence as a probe of clustering in Yb3+ doped glasses,” J. Alloy. Comp. 300–301(1-2), 443–449 (2000).
[CrossRef]

1999

G. Busca, “The surface acidity of solid oxides and its characterization by IR spectroscopic methods. An attempt at systematization,” Phys. Chem. Chem. Phys. 1(5), 723–736 (1999).
[CrossRef]

1998

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[CrossRef]

1997

V. O. Sokolov and V. B. Sulimov, “Threefold coordinated oxygen atom in silica glass,” J. Non-Cryst. Solids 217(2-3), 167–172 (1997).
[CrossRef]

1996

V. A. Radtsig and I. N. Senchenya, “Hydrogenation of the silanone groups (≡Si-O)2Si=O. Experimental and quantum-chemical studies,” Russ. Chem. Bull. 45(8), 1849–1856 (1996).
[CrossRef]

1994

L. Skuja, “Direct singlet-to-triplet optical absorption and luminescence excitation band of the twofold-coordinated silicon center in oxygen-deficient glassy SiO2,” J. Non-Cryst. Solids 167(3), 229–238 (1994).
[CrossRef]

1993

K. C. Snyder and W. B. Fowler, “Oxygen vacancy in α -quartz: a possible bi- and metastable defect,” Phys. Rev. B Condens. Matter 48(18), 13238–13243 (1993).
[CrossRef] [PubMed]

1991

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers for 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[CrossRef]

1990

K. Awazu and H. Kawazoe, “O2 molecules dissolved in synthetic silica glasses and their photochemical reactions induced by ArF excimer laser radiation,” J. Appl. Phys. 68(7), 3584–3591 (1990).
[CrossRef]

1986

D. P. Partlow and A. J. Cohen, “Optical studies of biaxial Al-related color centers in smoky quartz,” Am. Mineralogist 71, 589–598 (1986).

K. Arai, H. Namikawa, K. Kumata, T. Honda, T. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[CrossRef]

1982

F. L. Galeener, “Planar rings in vitreous silica,” J. Non-Cryst. Solids 49(1-3), 53–62 (1982).
[CrossRef]

1980

L. Pauling, “The nature of silicon-oxygen bonds,” Am. Mineral. 65, 321–323 (1980).

R. D. Harcourt, “Pauling “3-electron bonds,” “increased-valence,” and 6-electron 4-center bonding,” J. Am. Chem. Soc. 102(16), 5195–5201 (1980).
[CrossRef]

1972

P. H. Krupenie, “The spectrum of molecular oxygen,” J. Phys. Chem. Ref. Data 1(2), 423–534 (1972).
[CrossRef]

1970

J. T. Fournier and R. H. Bartram, “Inhomogeneous broadening of the optical spectra of Yb3+ in phosphate glass,” J. Phys. Chem. Solids 31(12), 2615–2624 (1970).
[CrossRef]

1961

J. Rolfe, F. R. Lipsett, and W. J. King, “Optical absorption and fluorescence of oxygen in alkali halide crystals,” Phys. Rev. 123(2), 447–454 (1961).
[CrossRef]

Anedda, A.

C. M. Carbonaro, P. C. Ricci, and A. Anedda, “Thermal quenching properties of ultraviolet emitting centers in mesoporous silica,” Phys. Rev. B 76(12), 125431 (2007).
[CrossRef]

Arai, K.

K. Arai, H. Namikawa, K. Kumata, T. Honda, T. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[CrossRef]

Auzel, F.

B. Schaudel, P. Goldner, M. Prassas, and F. Auzel, “Cooperative luminescence as a probe of clustering in Yb3+ doped glasses,” J. Alloy. Comp. 300–301(1-2), 443–449 (2000).
[CrossRef]

Awazu, K.

K. Awazu and H. Kawazoe, “O2 molecules dissolved in synthetic silica glasses and their photochemical reactions induced by ArF excimer laser radiation,” J. Appl. Phys. 68(7), 3584–3591 (1990).
[CrossRef]

Bartram, R. H.

J. T. Fournier and R. H. Bartram, “Inhomogeneous broadening of the optical spectra of Yb3+ in phosphate glass,” J. Phys. Chem. Solids 31(12), 2615–2624 (1970).
[CrossRef]

Basu, C.

Benabdesselam, M.

Blanc, W.

Boyland, A. J.

Burov, E.

Busca, G.

G. Busca, “The surface acidity of solid oxides and its characterization by IR spectroscopic methods. An attempt at systematization,” Phys. Chem. Chem. Phys. 1(5), 723–736 (1999).
[CrossRef]

Byer, R. L.

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “Measurement of high photodarkening resistance in heavily Yb3+-doped phosphate fibres,” Electron. Lett. 44(1), 14–16 (2008).
[CrossRef]

Carbonaro, C. M.

C. M. Carbonaro, P. C. Ricci, and A. Anedda, “Thermal quenching properties of ultraviolet emitting centers in mesoporous silica,” Phys. Rev. B 76(12), 125431 (2007).
[CrossRef]

Carlson, C. G.

Cavani, O.

Chatigny, S.

B. Morasse, S. Chatigny, E. Gagnon, C. Hovington, J.-P Martin, and J.-P. de Sandro, “Low photodarkening single cladding ytterbium fibre amplifier,” Proc. SPIE,  6453, 6453OH (2007)

Cohen, A. J.

D. P. Partlow and A. J. Cohen, “Optical studies of biaxial Al-related color centers in smoky quartz,” Am. Mineralogist 71, 589–598 (1986).

Croteau, A.

de Sandro, J.-P.

B. Morasse, S. Chatigny, E. Gagnon, C. Hovington, J.-P Martin, and J.-P. de Sandro, “Low photodarkening single cladding ytterbium fibre amplifier,” Proc. SPIE,  6453, 6453OH (2007)

Digonnet, M. J. F.

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “Measurement of high photodarkening resistance in heavily Yb3+-doped phosphate fibres,” Electron. Lett. 44(1), 14–16 (2008).
[CrossRef]

Dragic, P. D.

Eden, J. G.

Engholm, M.

Fournier, J. T.

J. T. Fournier and R. H. Bartram, “Inhomogeneous broadening of the optical spectra of Yb3+ in phosphate glass,” J. Phys. Chem. Solids 31(12), 2615–2624 (1970).
[CrossRef]

Fowler, W. B.

K. C. Snyder and W. B. Fowler, “Oxygen vacancy in α -quartz: a possible bi- and metastable defect,” Phys. Rev. B Condens. Matter 48(18), 13238–13243 (1993).
[CrossRef] [PubMed]

Gagnon, E.

B. Morasse, S. Chatigny, E. Gagnon, C. Hovington, J.-P Martin, and J.-P. de Sandro, “Low photodarkening single cladding ytterbium fibre amplifier,” Proc. SPIE,  6453, 6453OH (2007)

Galeener, F. L.

F. L. Galeener, “Planar rings in vitreous silica,” J. Non-Cryst. Solids 49(1-3), 53–62 (1982).
[CrossRef]

Giordano, L.

L. Giordano, P. V. Sushko, G. Pacchioni, and A. L. Shluger, “Electron trapping at point defects on hydroxylated silica surfaces,” Phys. Rev. Lett. 99(13), 136801 (2007).
[CrossRef] [PubMed]

Goldner, P.

B. Schaudel, P. Goldner, M. Prassas, and F. Auzel, “Cooperative luminescence as a probe of clustering in Yb3+ doped glasses,” J. Alloy. Comp. 300–301(1-2), 443–449 (2000).
[CrossRef]

Gonnet, C.

Griscom, D. L.

D. L. Griscom, “Trapped-electron centers in pure and doped glassy silica: A review and synthesis,” J. Non-Cryst. Solids 357(8-9), 1945–1962 (2011).
[CrossRef]

Handa, T.

K. Arai, H. Namikawa, K. Kumata, T. Honda, T. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[CrossRef]

Harcourt, R. D.

R. D. Harcourt, “Pauling “3-electron bonds,” “increased-valence,” and 6-electron 4-center bonding,” J. Am. Chem. Soc. 102(16), 5195–5201 (1980).
[CrossRef]

Hirano, M.

A. Saitoh, S. Matsuishi, M. Oto, T. Miura, M. Hirano, and H. Hosono, “Elucidation of coordination structure around Ce3+ in doped SiO2 glasses using pulsed electron paramagnetic resonance: effect of phosphorus, boron, and phosphorus-boron codoping,” Phys. Rev. B 72(21), 212101 (2005).
[CrossRef]

Hoffman, H. J.

Honda, T.

K. Arai, H. Namikawa, K. Kumata, T. Honda, T. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[CrossRef]

Honkanen, S.

Hosono, H.

A. Saitoh, S. Matsuishi, M. Oto, T. Miura, M. Hirano, and H. Hosono, “Elucidation of coordination structure around Ce3+ in doped SiO2 glasses using pulsed electron paramagnetic resonance: effect of phosphorus, boron, and phosphorus-boron codoping,” Phys. Rev. B 72(21), 212101 (2005).
[CrossRef]

Hovington, C.

B. Morasse, S. Chatigny, E. Gagnon, C. Hovington, J.-P Martin, and J.-P. de Sandro, “Low photodarkening single cladding ytterbium fibre amplifier,” Proc. SPIE,  6453, 6453OH (2007)

Ishii, T.

K. Arai, H. Namikawa, K. Kumata, T. Honda, T. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[CrossRef]

Jacquier, B.

Jelger, P.

Jetschke, S.

Jiang, S.

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “Measurement of high photodarkening resistance in heavily Yb3+-doped phosphate fibres,” Electron. Lett. 44(1), 14–16 (2008).
[CrossRef]

Jurdyc, A.-M.

Kawazoe, H.

K. Awazu and H. Kawazoe, “O2 molecules dissolved in synthetic silica glasses and their photochemical reactions induced by ArF excimer laser radiation,” J. Appl. Phys. 68(7), 3584–3591 (1990).
[CrossRef]

Keister, K. E.

King, W. J.

J. Rolfe, F. R. Lipsett, and W. J. King, “Optical absorption and fluorescence of oxygen in alkali halide crystals,” Phys. Rev. 123(2), 447–454 (1961).
[CrossRef]

Kirchhof, J.

Koplow, J. P.

Koponen, J. J.

Krupenie, P. H.

P. H. Krupenie, “The spectrum of molecular oxygen,” J. Phys. Chem. Ref. Data 1(2), 423–534 (1972).
[CrossRef]

Kumata, K.

K. Arai, H. Namikawa, K. Kumata, T. Honda, T. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[CrossRef]

Laurell, F.

Lee, Y. W.

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “Measurement of high photodarkening resistance in heavily Yb3+-doped phosphate fibres,” Electron. Lett. 44(1), 14–16 (2008).
[CrossRef]

Leich, M.

Lipsett, F. R.

J. Rolfe, F. R. Lipsett, and W. J. King, “Optical absorption and fluorescence of oxygen in alkali halide crystals,” Phys. Rev. 123(2), 447–454 (1961).
[CrossRef]

Mady, F.

Martin, J.-P

B. Morasse, S. Chatigny, E. Gagnon, C. Hovington, J.-P Martin, and J.-P. de Sandro, “Low photodarkening single cladding ytterbium fibre amplifier,” Proc. SPIE,  6453, 6453OH (2007)

Matsuishi, S.

A. Saitoh, S. Matsuishi, M. Oto, T. Miura, M. Hirano, and H. Hosono, “Elucidation of coordination structure around Ce3+ in doped SiO2 glasses using pulsed electron paramagnetic resonance: effect of phosphorus, boron, and phosphorus-boron codoping,” Phys. Rev. B 72(21), 212101 (2005).
[CrossRef]

Mattsson, K. E.

Miniscalco, W. J.

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers for 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[CrossRef]

Miura, T.

A. Saitoh, S. Matsuishi, M. Oto, T. Miura, M. Hirano, and H. Hosono, “Elucidation of coordination structure around Ce3+ in doped SiO2 glasses using pulsed electron paramagnetic resonance: effect of phosphorus, boron, and phosphorus-boron codoping,” Phys. Rev. B 72(21), 212101 (2005).
[CrossRef]

Montiel i Ponsoda, J. J.

Morasse, B.

B. Morasse, S. Chatigny, E. Gagnon, C. Hovington, J.-P Martin, and J.-P. de Sandro, “Low photodarkening single cladding ytterbium fibre amplifier,” Proc. SPIE,  6453, 6453OH (2007)

Namikawa, H.

K. Arai, H. Namikawa, K. Kumata, T. Honda, T. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[CrossRef]

Nilsson, J.

Norin, L.

Oto, M.

A. Saitoh, S. Matsuishi, M. Oto, T. Miura, M. Hirano, and H. Hosono, “Elucidation of coordination structure around Ce3+ in doped SiO2 glasses using pulsed electron paramagnetic resonance: effect of phosphorus, boron, and phosphorus-boron codoping,” Phys. Rev. B 72(21), 212101 (2005).
[CrossRef]

Pacchioni, G.

L. Giordano, P. V. Sushko, G. Pacchioni, and A. L. Shluger, “Electron trapping at point defects on hydroxylated silica surfaces,” Phys. Rev. Lett. 99(13), 136801 (2007).
[CrossRef] [PubMed]

Partlow, D. P.

D. P. Partlow and A. J. Cohen, “Optical studies of biaxial Al-related color centers in smoky quartz,” Am. Mineralogist 71, 589–598 (1986).

Pastouret, A.

Pauling, L.

L. Pauling, “The nature of silicon-oxygen bonds,” Am. Mineral. 65, 321–323 (1980).

Payne, D.

Peretti, R.

Prassas, M.

B. Schaudel, P. Goldner, M. Prassas, and F. Auzel, “Cooperative luminescence as a probe of clustering in Yb3+ doped glasses,” J. Alloy. Comp. 300–301(1-2), 443–449 (2000).
[CrossRef]

Radtsig, V. A.

V. A. Radtsig and I. N. Senchenya, “Hydrogenation of the silanone groups (≡Si-O)2Si=O. Experimental and quantum-chemical studies,” Russ. Chem. Bull. 45(8), 1849–1856 (1996).
[CrossRef]

Reichel, V.

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, V. Reichel, and J. Kirchhof, “Photodarkening in Yb-doped silica fibers: influence of the atmosphere during perform collapsing,” Proc. SPIE 6873, 68731G, 68731G-10 (2008).
[CrossRef]

Ricci, P. C.

C. M. Carbonaro, P. C. Ricci, and A. Anedda, “Thermal quenching properties of ultraviolet emitting centers in mesoporous silica,” Phys. Rev. B 76(12), 125431 (2007).
[CrossRef]

Rolfe, J.

J. Rolfe, F. R. Lipsett, and W. J. King, “Optical absorption and fluorescence of oxygen in alkali halide crystals,” Phys. Rev. 123(2), 447–454 (1961).
[CrossRef]

Röpke, U.

Sahu, J. K.

Saitoh, A.

A. Saitoh, S. Matsuishi, M. Oto, T. Miura, M. Hirano, and H. Hosono, “Elucidation of coordination structure around Ce3+ in doped SiO2 glasses using pulsed electron paramagnetic resonance: effect of phosphorus, boron, and phosphorus-boron codoping,” Phys. Rev. B 72(21), 212101 (2005).
[CrossRef]

Schaudel, B.

B. Schaudel, P. Goldner, M. Prassas, and F. Auzel, “Cooperative luminescence as a probe of clustering in Yb3+ doped glasses,” J. Alloy. Comp. 300–301(1-2), 443–449 (2000).
[CrossRef]

Schwuchow, A.

Senchenya, I. N.

V. A. Radtsig and I. N. Senchenya, “Hydrogenation of the silanone groups (≡Si-O)2Si=O. Experimental and quantum-chemical studies,” Russ. Chem. Bull. 45(8), 1849–1856 (1996).
[CrossRef]

Shluger, A. L.

L. Giordano, P. V. Sushko, G. Pacchioni, and A. L. Shluger, “Electron trapping at point defects on hydroxylated silica surfaces,” Phys. Rev. Lett. 99(13), 136801 (2007).
[CrossRef] [PubMed]

Sinha, S.

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “Measurement of high photodarkening resistance in heavily Yb3+-doped phosphate fibres,” Electron. Lett. 44(1), 14–16 (2008).
[CrossRef]

Skuja, L.

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[CrossRef]

L. Skuja, “Direct singlet-to-triplet optical absorption and luminescence excitation band of the twofold-coordinated silicon center in oxygen-deficient glassy SiO2,” J. Non-Cryst. Solids 167(3), 229–238 (1994).
[CrossRef]

Snyder, K. C.

K. C. Snyder and W. B. Fowler, “Oxygen vacancy in α -quartz: a possible bi- and metastable defect,” Phys. Rev. B Condens. Matter 48(18), 13238–13243 (1993).
[CrossRef] [PubMed]

Söderlund, M. J.

Sokolov, V. O.

V. O. Sokolov and V. B. Sulimov, “Threefold coordinated oxygen atom in silica glass,” J. Non-Cryst. Solids 217(2-3), 167–172 (1997).
[CrossRef]

Sones, C.

Sulimov, V. B.

V. O. Sokolov and V. B. Sulimov, “Threefold coordinated oxygen atom in silica glass,” J. Non-Cryst. Solids 217(2-3), 167–172 (1997).
[CrossRef]

Sushko, P. V.

L. Giordano, P. V. Sushko, G. Pacchioni, and A. L. Shluger, “Electron trapping at point defects on hydroxylated silica surfaces,” Phys. Rev. Lett. 99(13), 136801 (2007).
[CrossRef] [PubMed]

Tammela, S. K. T.

Unger, S.

Yoo, S.

Am. Mineral.

L. Pauling, “The nature of silicon-oxygen bonds,” Am. Mineral. 65, 321–323 (1980).

Am. Mineralogist

D. P. Partlow and A. J. Cohen, “Optical studies of biaxial Al-related color centers in smoky quartz,” Am. Mineralogist 71, 589–598 (1986).

Electron. Lett.

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “Measurement of high photodarkening resistance in heavily Yb3+-doped phosphate fibres,” Electron. Lett. 44(1), 14–16 (2008).
[CrossRef]

J. Alloy. Comp.

B. Schaudel, P. Goldner, M. Prassas, and F. Auzel, “Cooperative luminescence as a probe of clustering in Yb3+ doped glasses,” J. Alloy. Comp. 300–301(1-2), 443–449 (2000).
[CrossRef]

J. Am. Chem. Soc.

R. D. Harcourt, “Pauling “3-electron bonds,” “increased-valence,” and 6-electron 4-center bonding,” J. Am. Chem. Soc. 102(16), 5195–5201 (1980).
[CrossRef]

J. Appl. Phys.

K. Arai, H. Namikawa, K. Kumata, T. Honda, T. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[CrossRef]

K. Awazu and H. Kawazoe, “O2 molecules dissolved in synthetic silica glasses and their photochemical reactions induced by ArF excimer laser radiation,” J. Appl. Phys. 68(7), 3584–3591 (1990).
[CrossRef]

J. Lightwave Technol.

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers for 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[CrossRef]

J. Non-Cryst. Solids

V. O. Sokolov and V. B. Sulimov, “Threefold coordinated oxygen atom in silica glass,” J. Non-Cryst. Solids 217(2-3), 167–172 (1997).
[CrossRef]

F. L. Galeener, “Planar rings in vitreous silica,” J. Non-Cryst. Solids 49(1-3), 53–62 (1982).
[CrossRef]

L. Skuja, “Direct singlet-to-triplet optical absorption and luminescence excitation band of the twofold-coordinated silicon center in oxygen-deficient glassy SiO2,” J. Non-Cryst. Solids 167(3), 229–238 (1994).
[CrossRef]

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[CrossRef]

D. L. Griscom, “Trapped-electron centers in pure and doped glassy silica: A review and synthesis,” J. Non-Cryst. Solids 357(8-9), 1945–1962 (2011).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. Ref. Data

P. H. Krupenie, “The spectrum of molecular oxygen,” J. Phys. Chem. Ref. Data 1(2), 423–534 (1972).
[CrossRef]

J. Phys. Chem. Solids

J. T. Fournier and R. H. Bartram, “Inhomogeneous broadening of the optical spectra of Yb3+ in phosphate glass,” J. Phys. Chem. Solids 31(12), 2615–2624 (1970).
[CrossRef]

Opt. Express

M. J. Söderlund, J. J. Montiel i Ponsoda, J. P. Koplow, and S. Honkanen, “Heat-induced darkening and spectral broadening in photodarkened ytterbium-doped fiber under thermal cycling,” Opt. Express 17(12), 9940–9946 (2009).
[CrossRef] [PubMed]

K. E. Mattsson, “Low photo darkening single mode RMO fiber,” Opt. Express 17(20), 17855–17861 (2009).
[CrossRef] [PubMed]

R. Peretti, A.-M. Jurdyc, B. Jacquier, C. Gonnet, A. Pastouret, E. Burov, and O. Cavani, “How do traces of thulium explain photodarkening in Yb doped fibers?” Opt. Express 18(19), 20455–20460 (2010).
[CrossRef] [PubMed]

S. Jetschke, S. Unger, U. Röpke, and J. Kirchhof, “Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power,” Opt. Express 15(22), 14838–14843 (2007).
[CrossRef] [PubMed]

M. Engholm and L. Norin, “Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass,” Opt. Express 16(2), 1260–1268 (2008).
[CrossRef] [PubMed]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, “Efficient Yb laser fibers with low photodarkening by optimization of the core composition,” Opt. Express 16(20), 15540–15545 (2008).
[CrossRef] [PubMed]

J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. T. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 14(24), 11539–11544 (2006).
[CrossRef] [PubMed]

S. Jetschke, M. Leich, S. Unger, A. Schwuchow, and J. Kirchhof, “Influence of Tm- or Er-codoping on the photodarkening kinetics in Yb fibers,” Opt. Express 19(15), 14473–14478 (2011).
[CrossRef]

Opt. Lett.

Phys. Chem. Chem. Phys.

G. Busca, “The surface acidity of solid oxides and its characterization by IR spectroscopic methods. An attempt at systematization,” Phys. Chem. Chem. Phys. 1(5), 723–736 (1999).
[CrossRef]

Phys. Rev.

J. Rolfe, F. R. Lipsett, and W. J. King, “Optical absorption and fluorescence of oxygen in alkali halide crystals,” Phys. Rev. 123(2), 447–454 (1961).
[CrossRef]

Phys. Rev. B

C. M. Carbonaro, P. C. Ricci, and A. Anedda, “Thermal quenching properties of ultraviolet emitting centers in mesoporous silica,” Phys. Rev. B 76(12), 125431 (2007).
[CrossRef]

A. Saitoh, S. Matsuishi, M. Oto, T. Miura, M. Hirano, and H. Hosono, “Elucidation of coordination structure around Ce3+ in doped SiO2 glasses using pulsed electron paramagnetic resonance: effect of phosphorus, boron, and phosphorus-boron codoping,” Phys. Rev. B 72(21), 212101 (2005).
[CrossRef]

Phys. Rev. B Condens. Matter

K. C. Snyder and W. B. Fowler, “Oxygen vacancy in α -quartz: a possible bi- and metastable defect,” Phys. Rev. B Condens. Matter 48(18), 13238–13243 (1993).
[CrossRef] [PubMed]

Phys. Rev. Lett.

L. Giordano, P. V. Sushko, G. Pacchioni, and A. L. Shluger, “Electron trapping at point defects on hydroxylated silica surfaces,” Phys. Rev. Lett. 99(13), 136801 (2007).
[CrossRef] [PubMed]

Proc. SPIE

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, V. Reichel, and J. Kirchhof, “Photodarkening in Yb-doped silica fibers: influence of the atmosphere during perform collapsing,” Proc. SPIE 6873, 68731G, 68731G-10 (2008).
[CrossRef]

B. Morasse, S. Chatigny, E. Gagnon, C. Hovington, J.-P Martin, and J.-P. de Sandro, “Low photodarkening single cladding ytterbium fibre amplifier,” Proc. SPIE,  6453, 6453OH (2007)

Russ. Chem. Bull.

V. A. Radtsig and I. N. Senchenya, “Hydrogenation of the silanone groups (≡Si-O)2Si=O. Experimental and quantum-chemical studies,” Russ. Chem. Bull. 45(8), 1849–1856 (1996).
[CrossRef]

Other

K. Bogumil, J. Orphal, and J. P. Burrows, “Temperature dependent absorption cross sections of O3, NO2, and other atmospheric trace gases measured with the SCIAMACHY spectrometer,” Proceeding Envisat Symposium Goteborg, Sweden (2000), http://earth.esa.int/pub/ESA DOC/gothenburg/099bog

J. K. Sahu, S. Yoo, A. J. Boyland, C. Basu, M. P. Kalita, A. Webb, C. L. Sones, J. Nilsson, and D. N. Payne, “488 nm irradiation induced photodarkening study of Yb doped aluminosilicate and phosphosilicate fibers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JTuA27.

J. Jasapara, M. Andrejco, D. DiGiovanni, and R. Windeler, "Effect of heat and H2 gas on the photo-darkening of Yb+3 fibers," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CTuQ5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

a) Experimental set-up for measurement of PD in unseeded amplifier, b) double cladding fiber cross section–single mode core comprising 7 areas surrounded silica pump core and an air clad and outer silica tube protected by a thin polymeric coating (not shown)—the insert show a cross sectional view of the nanostructure silica (index matched to Δn against silica to support single mode operation of the 7 area core) with < 100 nm diameter for the individual rare earth co-doped silica nano-structure islands.

Fig. 2
Fig. 2

a) PD absorption spectra for 0.63 and 0.7 at % Yb (Al co-doped) fibers together with 1 atm. 0.26 mol O3 absorption spectrum, b) PD absorption spectra of Yb/Al co-doped fibers superimposed “O3 absorption”. The three lowest spectra are for fiber #3 at three different population inversion levels.

Fig. 3
Fig. 3

a) PD absorption spectra for fiber #6 (Yb/Al co-doped) uniform core fiber with attenuation growing as function of time, where arrow “a” indicate the 470 nm–480 nm dip and a second feature at “b” being visible as function of time, b) PD absorption spectra of Yb/P co-doped fiber showing weak absorption signal without observable 470 nm - 480 nm or 558 nm dips.

Fig. 4
Fig. 4

a) PD absorption at 400 nm and 477 nm (dip depth) as function of time along with their ratio as function of time, b) PD core spectra for Yb/Al and Yb/P co-doped silica show considerable difference in the visible and comparable absorption in the near infrared. The two spectra can be decomposed by the four Gaussian centers shown—here one is O3 absorption as indicated by the open squares.

Fig. 5
Fig. 5

a) Difference luminescence spectra from high Yb concentration (Al co-doped) and low Yb concentration (Al and P co-doped) fibers showing significant difference in 500 - 558 nm luminescence reflecting their difference when inspected by the eye: green for Yb/Al co-doped fibers and blue for Yb/P co-doped fibers, b) the high Yb concentration emission and background reference luminescence show identical emission for pump (450–460 nm) and pulling bands (636 nm).

Fig. 6
Fig. 6

Difference luminescence spectra after 46 hours PD operation of a) two nano-structure (fiber #2 and #3) and one uniform Yb/Al co-doped core fiber (#6) showing growth to peak “a” and “b” while “c” decreases, b) one Yb/P co-doped uniform core fiber (#7) showing excess decrease in luminescence at peak “c” which indicates that the pump power may have reduced during PD operation. This is followed by decrease in peak “a” while peak “b” show growth. All spectra are for 46% population inversion.

Fig. 7
Fig. 7

a) An ODC(I) presents two NBO to Yb3+ in accommodating part of Yb3+ 6-fold coordination to oxygen b) two-fold coordinated Si20 model for ODC(II) next to Yb3+, c) neutral oxygen vacancy (NOV) model for the ODC(II) precursor where the center silicon is shifted to its un-relaxed (puckered) position.

Fig. 8
Fig. 8

a) A four-fold defect ring accommodates ODC(I) adjacent to Yb3+ (shown at the top with its valence electron bond indicated by the dotted ellipse), only silicon and bridging oxygen of the ring are shown along with two NBOs presented to Yb3+, b) Vigorous displacive transition shifts the position of oxygen (indicated by arrows) while the silicon remain in fixed positions—except for the two three-fold coordinated units where rotations around the out of plane bridging oxygen (indicated by curved arrows) lead to shift in both NBOs and silicon centers, c) one NBO moves into the vicinity of the strained Si∙∙Si bond, that assisted by structural relaxation and by photon excitation in a d) charge disproportionation process results in a Si20 center next to a fully linked dioxasilirane ( = Si<O2) through NBO transfer e) ≡Si+ hole trap opposed NBO electron trap in charge disproportionation process final step prior to ODC(II) formation.

Fig. 9
Fig. 9

a) Anion dioxasilirane forms “1½” superoxide bond between oxygen, the open and closed dots are electrons of opposite spin while the black center is silicon surrounded by four oxygen, b) Anion dioxasilirane forms “½” superoxide bond, c) potential energy for four stable states of super oxide from [32] (dots) fitted by solid lines (Morse potential curves) while the dotted lines are Morse potential curves for the six stable states of molecular oxygen O2 fitted to data by [32]. By applying the electron affinity of atomic oxygen the experimental electron affinity of O2 fits the data as indicated.

Metrics