Abstract

Passive harmonic mode-locking in soliton fiber laser is presented with excellent noise characteristics by employing a single-walled carbon nanotubes saturable absorber designed to interact with evanescent wave of the laser field. The 34th harmonic mode-locking pulses at 943.16 MHz repetition rate were stably generated with 18 mW output power, >50 dB side-mode suppression and −140 dB/Hz relative intensity noise. Soliton energy control with polarization controller further increased the harmonic order to 61st, 1.692 GHz, but with compromised performance. Scaling to higher-order harmonic mode-locking is discussed for practical application in optical communication system.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. V. Radushkevich and V. M. Lukyanovich, “O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte,” Z. Fis. Chim. 26, 88–95 (1952) (“About the structure of carbon formed by thermal decomposition of carbon monoxide on iron substrate,” Journal of Physical Chemistry of Russia).
  2. S. Iijima, “Helical microtubules of graphite carbon,” Nature 354(6348), 56–58 (1991).
    [CrossRef]
  3. R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon nanotubes--the route toward applications,” Science 297(5582), 787–792 (2002).
    [CrossRef] [PubMed]
  4. P. M. Ajayan, “Nanotubes from Carbon,” Chem. Rev. 99(7), 1787–1800 (1999).
    [CrossRef] [PubMed]
  5. P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2(6), 341–350 (2008).
    [CrossRef]
  6. M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, eds., “Carbon Nanotubes: Synthesis, Structure, Properties, and Applications,” Series: Topics in Applied Physics Vol. 80, Springer (2001).
  7. P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, and K. L. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82(12), 2548–2551 (1999).
    [CrossRef]
  8. Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
    [CrossRef]
  9. S. Y. Set, H. Yaguchi, M. Jablonski, Y. Tanaka, Y. Sakakibara, A. Rozhin, M. Tokumoto, H. Kataura, Y. chiba, and K. Kikuchi, in Proc. Optical Fiber Communication Conf. ’03, Atlanta, GA, p. FL2 (2003).
  10. W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, U. Griebner, V. Petrov, and F. Rotermund, “Mode-locked self-starting Cr:forsterite laser using a single-walled carbon nanotube saturable absorber,” Opt. Lett. 33(21), 2449–2451 (2008).
    [CrossRef] [PubMed]
  11. S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express 17(4), 2358–2363 (2009).
    [CrossRef] [PubMed]
  12. J. Wang, Y. Chen, and W. J. Blau, “Carbon nanotubes and nanotube composites for nonlinear optical devices,” J. Mater. Chem. 19(40), 7425–7443 (2009).
    [CrossRef]
  13. I. H. Baek, S. Y. Choi, H. W. Lee, W. B. Cho, V. Petrov, A. Agnesi, V. Pasiskevicius, D.-I. Yeom, K. Kim, and F. Rotermund, “Single-walled carbon nanotube saturable absorber assisted high-power mode-locking of a Ti:sapphire laser,” Opt. Express 19(8), 7833–7838 (2011).
    [CrossRef] [PubMed]
  14. K. Kieu and M. Mansuripur, “Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite,” Opt. Lett. 32(15), 2242–2244 (2007).
    [CrossRef] [PubMed]
  15. Y. W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, “Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers,” Opt. Lett. 32(2), 148–150 (2007).
    [CrossRef] [PubMed]
  16. S. Y. Choi, F. Rotermund, H. Jung, K. Oh, and D.-I. Yeom, “Femtosecond mode-locked fiber laser employing a hollow optical fiber filled with carbon nanotube dispersion as saturable absorber,” Opt. Express 17(24), 21788–21793 (2009).
    [CrossRef] [PubMed]
  17. J. H. Im, S. Y. Choi, F. Rotermund, and D.-I. Yeom, “All-fiber Er-doped dissipative soliton laser based on evanescent field interaction with carbon nanotube saturable absorber,” Opt. Express 18(21), 22141–22146 (2010).
    [CrossRef] [PubMed]
  18. R. A. Bergh, G. Kotler, and H. J. Shaw, “Single-mode fiber optic directional coupler,” Electron. Lett. 16(7), 260–261 (1980).
    [CrossRef]
  19. H. A. Haus, “Theory of modelocking with a fast saturable absorber,” J. Appl. Phys. 46(7), 3049–3058 (1975).
    [CrossRef]
  20. A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic mode locking of a fiber soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
    [CrossRef]
  21. F. Li, P. K. A. Wai, and J. N. Kutz, “Geometrical description of the onset of multi-pulsing in mode-locked laser cavities,” J. Opt. Soc. Am. B 27(10), 2068–2077 (2010).
    [CrossRef]
  22. D. Panasenko, P. Polynkin, A. Polynkin, J. V. Moloney, M. Mansuripur, and N. Peyghambarian, “Er-Yb femtosecond ring fiber oscillator with 1.1W average power and GHz repetition rates,” IEEE Photon. Technol. Lett. 18(7), 853–855 (2006).
    [CrossRef]
  23. K. Jiang, S. Fu, P. Shum, and C. Lin, “A Wavelength-Switchable Passively Harmonically Mode-Locked Fiber Laser With Low Pumping Threshold Using Single-Walled Carbon Nanotubes,” IEEE Photon. Technol. Lett. 22, 11 (2010).
  24. J. N. Kutz, “Mode-locked soliton lasers,” SIAM Rev. 48(4), 629–678 (2006).
    [CrossRef]
  25. A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
    [CrossRef]
  26. D. Derickson, ed., “Fiber Optic Test and Measurement,” pp.601–604, Prentice Hall (1998).
  27. H.-K. Lee, J.-H. Moon, S.-G. Mun, K.-M. Choi, and C.-H. Lee, “Decision Threshold Control Method for the Optical Receiver of a WDM-PON,” J. Opt. Commun. Netw 2(6), 381–388 (2010).
    [CrossRef]

2011 (1)

2010 (4)

J. H. Im, S. Y. Choi, F. Rotermund, and D.-I. Yeom, “All-fiber Er-doped dissipative soliton laser based on evanescent field interaction with carbon nanotube saturable absorber,” Opt. Express 18(21), 22141–22146 (2010).
[CrossRef] [PubMed]

F. Li, P. K. A. Wai, and J. N. Kutz, “Geometrical description of the onset of multi-pulsing in mode-locked laser cavities,” J. Opt. Soc. Am. B 27(10), 2068–2077 (2010).
[CrossRef]

K. Jiang, S. Fu, P. Shum, and C. Lin, “A Wavelength-Switchable Passively Harmonically Mode-Locked Fiber Laser With Low Pumping Threshold Using Single-Walled Carbon Nanotubes,” IEEE Photon. Technol. Lett. 22, 11 (2010).

H.-K. Lee, J.-H. Moon, S.-G. Mun, K.-M. Choi, and C.-H. Lee, “Decision Threshold Control Method for the Optical Receiver of a WDM-PON,” J. Opt. Commun. Netw 2(6), 381–388 (2010).
[CrossRef]

2009 (3)

2008 (2)

2007 (2)

2006 (2)

J. N. Kutz, “Mode-locked soliton lasers,” SIAM Rev. 48(4), 629–678 (2006).
[CrossRef]

D. Panasenko, P. Polynkin, A. Polynkin, J. V. Moloney, M. Mansuripur, and N. Peyghambarian, “Er-Yb femtosecond ring fiber oscillator with 1.1W average power and GHz repetition rates,” IEEE Photon. Technol. Lett. 18(7), 853–855 (2006).
[CrossRef]

2005 (1)

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
[CrossRef]

2002 (2)

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[CrossRef]

R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon nanotubes--the route toward applications,” Science 297(5582), 787–792 (2002).
[CrossRef] [PubMed]

1999 (2)

P. M. Ajayan, “Nanotubes from Carbon,” Chem. Rev. 99(7), 1787–1800 (1999).
[CrossRef] [PubMed]

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, and K. L. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82(12), 2548–2551 (1999).
[CrossRef]

1993 (1)

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic mode locking of a fiber soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
[CrossRef]

1991 (1)

S. Iijima, “Helical microtubules of graphite carbon,” Nature 354(6348), 56–58 (1991).
[CrossRef]

1980 (1)

R. A. Bergh, G. Kotler, and H. J. Shaw, “Single-mode fiber optic directional coupler,” Electron. Lett. 16(7), 260–261 (1980).
[CrossRef]

1975 (1)

H. A. Haus, “Theory of modelocking with a fast saturable absorber,” J. Appl. Phys. 46(7), 3049–3058 (1975).
[CrossRef]

1952 (1)

L. V. Radushkevich and V. M. Lukyanovich, “O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte,” Z. Fis. Chim. 26, 88–95 (1952) (“About the structure of carbon formed by thermal decomposition of carbon monoxide on iron substrate,” Journal of Physical Chemistry of Russia).

Agnesi, A.

Aitchison, B.

Ajayan, P. M.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[CrossRef]

P. M. Ajayan, “Nanotubes from Carbon,” Chem. Rev. 99(7), 1787–1800 (1999).
[CrossRef] [PubMed]

Avouris, P.

P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2(6), 341–350 (2008).
[CrossRef]

Baek, I. H.

Baughman, R. H.

R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon nanotubes--the route toward applications,” Science 297(5582), 787–792 (2002).
[CrossRef] [PubMed]

Bergh, R. A.

R. A. Bergh, G. Kotler, and H. J. Shaw, “Single-mode fiber optic directional coupler,” Electron. Lett. 16(7), 260–261 (1980).
[CrossRef]

Blau, W. J.

J. Wang, Y. Chen, and W. J. Blau, “Carbon nanotubes and nanotube composites for nonlinear optical devices,” J. Mater. Chem. 19(40), 7425–7443 (2009).
[CrossRef]

Brown, D. P.

Chen, P.

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, and K. L. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82(12), 2548–2551 (1999).
[CrossRef]

Chen, Y.

J. Wang, Y. Chen, and W. J. Blau, “Carbon nanotubes and nanotube composites for nonlinear optical devices,” J. Mater. Chem. 19(40), 7425–7443 (2009).
[CrossRef]

Chen, Y.-C.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[CrossRef]

Cho, W. B.

Choi, K.-M.

H.-K. Lee, J.-H. Moon, S.-G. Mun, K.-M. Choi, and C.-H. Lee, “Decision Threshold Control Method for the Optical Receiver of a WDM-PON,” J. Opt. Commun. Netw 2(6), 381–388 (2010).
[CrossRef]

Choi, S. Y.

de Heer, W. A.

R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon nanotubes--the route toward applications,” Science 297(5582), 787–792 (2002).
[CrossRef] [PubMed]

Freitag, M.

P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2(6), 341–350 (2008).
[CrossRef]

Fu, S.

K. Jiang, S. Fu, P. Shum, and C. Lin, “A Wavelength-Switchable Passively Harmonically Mode-Locked Fiber Laser With Low Pumping Threshold Using Single-Walled Carbon Nanotubes,” IEEE Photon. Technol. Lett. 22, 11 (2010).

Goh, C. S.

Griebner, U.

Grudinin, A. B.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic mode locking of a fiber soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
[CrossRef]

Hakulinen, T.

Härkönen, A.

Haus, H. A.

H. A. Haus, “Theory of modelocking with a fast saturable absorber,” J. Appl. Phys. 46(7), 3049–3058 (1975).
[CrossRef]

Iijima, S.

S. Iijima, “Helical microtubules of graphite carbon,” Nature 354(6348), 56–58 (1991).
[CrossRef]

Im, J. H.

Ji, W.

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, and K. L. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82(12), 2548–2551 (1999).
[CrossRef]

Jiang, K.

K. Jiang, S. Fu, P. Shum, and C. Lin, “A Wavelength-Switchable Passively Harmonically Mode-Locked Fiber Laser With Low Pumping Threshold Using Single-Walled Carbon Nanotubes,” IEEE Photon. Technol. Lett. 22, 11 (2010).

Jung, H.

Kaskela, A.

Kauppinen, E. I.

Kieu, K.

Kim, K.

Kivistö, S.

Komarov, A.

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
[CrossRef]

Kotler, G.

R. A. Bergh, G. Kotler, and H. J. Shaw, “Single-mode fiber optic directional coupler,” Electron. Lett. 16(7), 260–261 (1980).
[CrossRef]

Kutz, J. N.

Leblond, H.

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
[CrossRef]

Lee, C.-H.

H.-K. Lee, J.-H. Moon, S.-G. Mun, K.-M. Choi, and C.-H. Lee, “Decision Threshold Control Method for the Optical Receiver of a WDM-PON,” J. Opt. Commun. Netw 2(6), 381–388 (2010).
[CrossRef]

Lee, H. W.

Lee, H.-K.

H.-K. Lee, J.-H. Moon, S.-G. Mun, K.-M. Choi, and C.-H. Lee, “Decision Threshold Control Method for the Optical Receiver of a WDM-PON,” J. Opt. Commun. Netw 2(6), 381–388 (2010).
[CrossRef]

Lee, S.

Li, F.

Lin, C.

K. Jiang, S. Fu, P. Shum, and C. Lin, “A Wavelength-Switchable Passively Harmonically Mode-Locked Fiber Laser With Low Pumping Threshold Using Single-Walled Carbon Nanotubes,” IEEE Photon. Technol. Lett. 22, 11 (2010).

Lin, J.

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, and K. L. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82(12), 2548–2551 (1999).
[CrossRef]

Lu, T.-M.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[CrossRef]

Lukyanovich, V. M.

L. V. Radushkevich and V. M. Lukyanovich, “O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte,” Z. Fis. Chim. 26, 88–95 (1952) (“About the structure of carbon formed by thermal decomposition of carbon monoxide on iron substrate,” Journal of Physical Chemistry of Russia).

Mansuripur, M.

K. Kieu and M. Mansuripur, “Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite,” Opt. Lett. 32(15), 2242–2244 (2007).
[CrossRef] [PubMed]

D. Panasenko, P. Polynkin, A. Polynkin, J. V. Moloney, M. Mansuripur, and N. Peyghambarian, “Er-Yb femtosecond ring fiber oscillator with 1.1W average power and GHz repetition rates,” IEEE Photon. Technol. Lett. 18(7), 853–855 (2006).
[CrossRef]

Moloney, J. V.

D. Panasenko, P. Polynkin, A. Polynkin, J. V. Moloney, M. Mansuripur, and N. Peyghambarian, “Er-Yb femtosecond ring fiber oscillator with 1.1W average power and GHz repetition rates,” IEEE Photon. Technol. Lett. 18(7), 853–855 (2006).
[CrossRef]

Moon, J.-H.

H.-K. Lee, J.-H. Moon, S.-G. Mun, K.-M. Choi, and C.-H. Lee, “Decision Threshold Control Method for the Optical Receiver of a WDM-PON,” J. Opt. Commun. Netw 2(6), 381–388 (2010).
[CrossRef]

Mun, S.-G.

H.-K. Lee, J.-H. Moon, S.-G. Mun, K.-M. Choi, and C.-H. Lee, “Decision Threshold Control Method for the Optical Receiver of a WDM-PON,” J. Opt. Commun. Netw 2(6), 381–388 (2010).
[CrossRef]

Nasibulin, A. G.

Oh, K.

Okhotnikov, O. G.

Panasenko, D.

D. Panasenko, P. Polynkin, A. Polynkin, J. V. Moloney, M. Mansuripur, and N. Peyghambarian, “Er-Yb femtosecond ring fiber oscillator with 1.1W average power and GHz repetition rates,” IEEE Photon. Technol. Lett. 18(7), 853–855 (2006).
[CrossRef]

Pasiskevicius, V.

Payne, D. N.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic mode locking of a fiber soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
[CrossRef]

Perebeinos, V.

P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2(6), 341–350 (2008).
[CrossRef]

Petrov, V.

Peyghambarian, N.

D. Panasenko, P. Polynkin, A. Polynkin, J. V. Moloney, M. Mansuripur, and N. Peyghambarian, “Er-Yb femtosecond ring fiber oscillator with 1.1W average power and GHz repetition rates,” IEEE Photon. Technol. Lett. 18(7), 853–855 (2006).
[CrossRef]

Polynkin, A.

D. Panasenko, P. Polynkin, A. Polynkin, J. V. Moloney, M. Mansuripur, and N. Peyghambarian, “Er-Yb femtosecond ring fiber oscillator with 1.1W average power and GHz repetition rates,” IEEE Photon. Technol. Lett. 18(7), 853–855 (2006).
[CrossRef]

Polynkin, P.

D. Panasenko, P. Polynkin, A. Polynkin, J. V. Moloney, M. Mansuripur, and N. Peyghambarian, “Er-Yb femtosecond ring fiber oscillator with 1.1W average power and GHz repetition rates,” IEEE Photon. Technol. Lett. 18(7), 853–855 (2006).
[CrossRef]

Radushkevich, L. V.

L. V. Radushkevich and V. M. Lukyanovich, “O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte,” Z. Fis. Chim. 26, 88–95 (1952) (“About the structure of carbon formed by thermal decomposition of carbon monoxide on iron substrate,” Journal of Physical Chemistry of Russia).

Raravikar, N. R.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[CrossRef]

Richardson, D. J.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic mode locking of a fiber soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
[CrossRef]

Rotermund, F.

Sanchez, F.

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
[CrossRef]

Schadler, L. S.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[CrossRef]

Set, S. Y.

Shaw, H. J.

R. A. Bergh, G. Kotler, and H. J. Shaw, “Single-mode fiber optic directional coupler,” Electron. Lett. 16(7), 260–261 (1980).
[CrossRef]

Shum, P.

K. Jiang, S. Fu, P. Shum, and C. Lin, “A Wavelength-Switchable Passively Harmonically Mode-Locked Fiber Laser With Low Pumping Threshold Using Single-Walled Carbon Nanotubes,” IEEE Photon. Technol. Lett. 22, 11 (2010).

Song, Y. W.

Sun, X.

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, and K. L. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82(12), 2548–2551 (1999).
[CrossRef]

Tan, K. L.

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, and K. L. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82(12), 2548–2551 (1999).
[CrossRef]

Wai, P. K. A.

Wang, G.-C.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[CrossRef]

Wang, J.

J. Wang, Y. Chen, and W. J. Blau, “Carbon nanotubes and nanotube composites for nonlinear optical devices,” J. Mater. Chem. 19(40), 7425–7443 (2009).
[CrossRef]

Wu, X.

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, and K. L. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82(12), 2548–2551 (1999).
[CrossRef]

Yamashita, S.

Yeom, D.-I.

Yim, J. H.

Zakhidov, A. A.

R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon nanotubes--the route toward applications,” Science 297(5582), 787–792 (2002).
[CrossRef] [PubMed]

Zhang, X.-C.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[CrossRef]

Zhao, Y.-P.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975–977 (2002).
[CrossRef]

Chem. Rev. (1)

P. M. Ajayan, “Nanotubes from Carbon,” Chem. Rev. 99(7), 1787–1800 (1999).
[CrossRef] [PubMed]

Electron. Lett. (2)

R. A. Bergh, G. Kotler, and H. J. Shaw, “Single-mode fiber optic directional coupler,” Electron. Lett. 16(7), 260–261 (1980).
[CrossRef]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic mode locking of a fiber soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

D. Panasenko, P. Polynkin, A. Polynkin, J. V. Moloney, M. Mansuripur, and N. Peyghambarian, “Er-Yb femtosecond ring fiber oscillator with 1.1W average power and GHz repetition rates,” IEEE Photon. Technol. Lett. 18(7), 853–855 (2006).
[CrossRef]

K. Jiang, S. Fu, P. Shum, and C. Lin, “A Wavelength-Switchable Passively Harmonically Mode-Locked Fiber Laser With Low Pumping Threshold Using Single-Walled Carbon Nanotubes,” IEEE Photon. Technol. Lett. 22, 11 (2010).

J. Appl. Phys. (1)

H. A. Haus, “Theory of modelocking with a fast saturable absorber,” J. Appl. Phys. 46(7), 3049–3058 (1975).
[CrossRef]

J. Mater. Chem. (1)

J. Wang, Y. Chen, and W. J. Blau, “Carbon nanotubes and nanotube composites for nonlinear optical devices,” J. Mater. Chem. 19(40), 7425–7443 (2009).
[CrossRef]

J. Opt. Commun. Netw (1)

H.-K. Lee, J.-H. Moon, S.-G. Mun, K.-M. Choi, and C.-H. Lee, “Decision Threshold Control Method for the Optical Receiver of a WDM-PON,” J. Opt. Commun. Netw 2(6), 381–388 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2(6), 341–350 (2008).
[CrossRef]

Nature (1)

S. Iijima, “Helical microtubules of graphite carbon,” Nature 354(6348), 56–58 (1991).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. A (1)

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, and K. L. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82(12), 2548–2551 (1999).
[CrossRef]

Science (1)

R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon nanotubes--the route toward applications,” Science 297(5582), 787–792 (2002).
[CrossRef] [PubMed]

SIAM Rev. (1)

J. N. Kutz, “Mode-locked soliton lasers,” SIAM Rev. 48(4), 629–678 (2006).
[CrossRef]

Z. Fis. Chim. (1)

L. V. Radushkevich and V. M. Lukyanovich, “O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte,” Z. Fis. Chim. 26, 88–95 (1952) (“About the structure of carbon formed by thermal decomposition of carbon monoxide on iron substrate,” Journal of Physical Chemistry of Russia).

Other (3)

S. Y. Set, H. Yaguchi, M. Jablonski, Y. Tanaka, Y. Sakakibara, A. Rozhin, M. Tokumoto, H. Kataura, Y. chiba, and K. Kikuchi, in Proc. Optical Fiber Communication Conf. ’03, Atlanta, GA, p. FL2 (2003).

M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, eds., “Carbon Nanotubes: Synthesis, Structure, Properties, and Applications,” Series: Topics in Applied Physics Vol. 80, Springer (2001).

D. Derickson, ed., “Fiber Optic Test and Measurement,” pp.601–604, Prentice Hall (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of (a) mode-locked fiber laser with CNT SA and (b) CNT SA coated onto the half of a tunable directional coupler for evanescent wave interaction.

Fig. 2
Fig. 2

Output characteristics of the mode-locked pulses. (a) RF spectrum of fundamental mode-locking pulse of 27.74 MHz (b) RF spectrum of 34th harmonic mode-locking of 943.16 MHz and its extended view with 1 MHz span (inset) (c) Oscilloscope (500 MHz bandwidth) signal of two kinds of pulse states at 34th harmonic mode-locking. Bunched pulse state (top), equi-distant state (middle) and its extended view in time scale (bottom). (d) Optical spectrum of the 34th, 943 MHz mode-locked pulse.

Fig. 3
Fig. 3

Hysteresis of the harmonic orders (red line: pump increment, blue dash: pump decrement) and output power (black square dot) as a function of applied pump power.

Fig. 4
Fig. 4

Relative intensity noise of (a) 34th, 943.16 MHz mode-locked pulse (compared with ASE source) in 1.5 GHz span and 10 MHz span (inset) (b) 61st, 1.692 MHz one in 3 GHz span after the change of PC condition.

Metrics