Abstract

We report the first experimental demonstration of a humidity insensitive polymer optical fiber Bragg grating (FBG), as well as the first FBG recorded in a TOPAS polymer optical fiber in the important low loss 850nm spectral region. For the demonstration we have fabricated FBGs with resonance wavelength around 850 nm and 1550 nm in single-mode microstructured polymer optical fibers made of TOPAS and the conventional poly (methyl methacrylate) (PMMA). Characterization of the FBGs shows that the TOPAS FBG is more than 50 times less sensitive to humidity than the conventional PMMA FBG in both wavelength regimes. This makes the TOPAS FBG very appealing for sensing applications as it appears to solve the humidity sensitivity problem suffered by the PMMA FBG.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Dobb, K. Carroll, D. J. Webb, K. Kalli, M. Komodromos, C. Themistos, G. D. Peng, A. Argyros, M. C. J. Large, M. A. van Eijkelenborg, Q. Fang, and I. W. Boyd, “Grating based devices in polymer optical fibre,” Proc. SPIE618901 (2006).
    [CrossRef]
  2. W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
    [CrossRef]
  3. G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007).
    [CrossRef] [PubMed]
  4. G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with TOPAS microstructured polymer optical fiber: Erratum,” Opt. Lett. 32(9), 1059 (2007).
    [CrossRef]
  5. G. E. Town, W. Yuan, R. McCosker, and O. Bang, “Microstructured optical fiber refractive index sensor,” Opt. Lett. 35(6), 856–858 (2010).
    [CrossRef] [PubMed]
  6. C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011).
    [CrossRef] [PubMed]
  7. W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sens. J. 10(7), 1192–1199 (2010).
    [CrossRef]
  8. F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express 14(9), 4135–4140 (2006).
    [CrossRef] [PubMed]
  9. J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
    [CrossRef] [PubMed]
  10. A. Dupuis, N. Guo, Y. Gao, N. Godbout, S. Lacroix, C. Dubois, and M. Skorobogatiy, “Prospective for biodegradable microstructured optical fibers,” Opt. Lett. 32(2), 109–111 (2007).
    [CrossRef] [PubMed]
  11. B. Hadimioglu and B. T. Khuri-Yakub, “Polymer Films as Acoustic Matching Layers,” Ultrasonics Symposium, Proceedings IEEE, 3, 1337–1340 (1990).
  12. Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibres,” IEEE Photon. Technol. Lett. 11(3), 352–354 (1999).
    [CrossRef]
  13. A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850 nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 23(10), 660–662 (2011).
    [CrossRef]
  14. C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fibre temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
    [CrossRef]
  15. N. G. Harbach, “Fiber Bragg gratings in polymer optical fibers,” PhD Thesis, Lausanne, EPFL (2008).
  16. H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005).
    [CrossRef] [PubMed]
  17. I. P. Johnson, K. Kalli, and D. J. Webb, “827nm Bragg grating sensor in multimode microstructured polymer optical fiber,” Electron. Lett. 46(17), 1217–1218 (2010).
    [CrossRef]
  18. I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
    [CrossRef]
  19. Y. Tsuchida, K. Saitoh, and M. Koshiba, “Design of single-moded holey fibers with large-mode-area and low bending losses: the significance of the ring-core region,” Opt. Express 15(4), 1794–1803 (2007).
    [CrossRef] [PubMed]
  20. D. J. Webb, K. Kalli, K. Carroll, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, and E. Kjaer, “Recent developments of Bragg gratings in PMMA and TOPAS polymer optical fibers,” Advanced Sensor Systems and Applications III, Proc. of SPIE 6830, 683002 (2007).
  21. D. J. Webb, K. Kalli, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, and O. Bang, “E, Kjaer, “Temperature sensitivity of Bragg gratings in PMMA and TOPAS microstructured polymer optical fibres,” Photonic Crystal Fibers II, L9900 (2008).
  22. www.topas.com .
  23. G. Khanarian and H. Celanese, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40(6), 1024–1029 (2001).
    [CrossRef]
  24. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
    [CrossRef] [PubMed]
  25. M. C. J. Large, L. Poladian, G. Barton, and M. A. van Eijkelenborg, “Microstructured polymer optical fibres,” Springer, (2008).
  26. M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fibre,” Opt. Express 9(7), 319–327 (2001).
    [CrossRef] [PubMed]
  27. N. A. Mortensen, “Semianalytical approach to short-wavelength dispersion and modal properties of photonic crystal fibers,” Opt. Lett. 30(12), 1455–1457 (2005).
    [CrossRef] [PubMed]
  28. G. D. Marshall, D. J. Kan, A. A. Asatryan, L. C. Botten, and M. J. Withford, “Transverse coupling to the core of a photonic crystal fiber: the photo-inscription of gratings,” Opt. Express 15(12), 7876–7887 (2007).
    [CrossRef] [PubMed]
  29. L. Rindorf and O. Bang, “Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing,” J. Opt. Soc. Am. B 25(3), 310 (2008).
    [CrossRef]

2011 (4)

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011).
[CrossRef] [PubMed]

A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850 nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 23(10), 660–662 (2011).
[CrossRef]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[CrossRef]

2010 (4)

C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fibre temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
[CrossRef]

W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sens. J. 10(7), 1192–1199 (2010).
[CrossRef]

G. E. Town, W. Yuan, R. McCosker, and O. Bang, “Microstructured optical fiber refractive index sensor,” Opt. Lett. 35(6), 856–858 (2010).
[CrossRef] [PubMed]

I. P. Johnson, K. Kalli, and D. J. Webb, “827nm Bragg grating sensor in multimode microstructured polymer optical fiber,” Electron. Lett. 46(17), 1217–1218 (2010).
[CrossRef]

2009 (1)

2008 (2)

L. Rindorf and O. Bang, “Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing,” J. Opt. Soc. Am. B 25(3), 310 (2008).
[CrossRef]

D. J. Webb, K. Kalli, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, and O. Bang, “E, Kjaer, “Temperature sensitivity of Bragg gratings in PMMA and TOPAS microstructured polymer optical fibres,” Photonic Crystal Fibers II, L9900 (2008).

2007 (6)

2006 (2)

H. Dobb, K. Carroll, D. J. Webb, K. Kalli, M. Komodromos, C. Themistos, G. D. Peng, A. Argyros, M. C. J. Large, M. A. van Eijkelenborg, Q. Fang, and I. W. Boyd, “Grating based devices in polymer optical fibre,” Proc. SPIE618901 (2006).
[CrossRef]

F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express 14(9), 4135–4140 (2006).
[CrossRef] [PubMed]

2005 (3)

2001 (2)

1999 (1)

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibres,” IEEE Photon. Technol. Lett. 11(3), 352–354 (1999).
[CrossRef]

Adam, A. J. L.

Andresen, S.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Argyros, A.

D. J. Webb, K. Kalli, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, and O. Bang, “E, Kjaer, “Temperature sensitivity of Bragg gratings in PMMA and TOPAS microstructured polymer optical fibres,” Photonic Crystal Fibers II, L9900 (2008).

D. J. Webb, K. Kalli, K. Carroll, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, and E. Kjaer, “Recent developments of Bragg gratings in PMMA and TOPAS polymer optical fibers,” Advanced Sensor Systems and Applications III, Proc. of SPIE 6830, 683002 (2007).

H. Dobb, K. Carroll, D. J. Webb, K. Kalli, M. Komodromos, C. Themistos, G. D. Peng, A. Argyros, M. C. J. Large, M. A. van Eijkelenborg, Q. Fang, and I. W. Boyd, “Grating based devices in polymer optical fibre,” Proc. SPIE618901 (2006).
[CrossRef]

F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express 14(9), 4135–4140 (2006).
[CrossRef] [PubMed]

H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005).
[CrossRef] [PubMed]

M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fibre,” Opt. Express 9(7), 319–327 (2001).
[CrossRef] [PubMed]

Asatryan, A. A.

Bache, M.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Bang, O.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011).
[CrossRef] [PubMed]

A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850 nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 23(10), 660–662 (2011).
[CrossRef]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[CrossRef]

G. E. Town, W. Yuan, R. McCosker, and O. Bang, “Microstructured optical fiber refractive index sensor,” Opt. Lett. 35(6), 856–858 (2010).
[CrossRef] [PubMed]

W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sens. J. 10(7), 1192–1199 (2010).
[CrossRef]

K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[CrossRef] [PubMed]

D. J. Webb, K. Kalli, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, and O. Bang, “E, Kjaer, “Temperature sensitivity of Bragg gratings in PMMA and TOPAS microstructured polymer optical fibres,” Photonic Crystal Fibers II, L9900 (2008).

L. Rindorf and O. Bang, “Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing,” J. Opt. Soc. Am. B 25(3), 310 (2008).
[CrossRef]

D. J. Webb, K. Kalli, K. Carroll, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, and E. Kjaer, “Recent developments of Bragg gratings in PMMA and TOPAS polymer optical fibers,” Advanced Sensor Systems and Applications III, Proc. of SPIE 6830, 683002 (2007).

G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007).
[CrossRef] [PubMed]

G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with TOPAS microstructured polymer optical fiber: Erratum,” Opt. Lett. 32(9), 1059 (2007).
[CrossRef]

J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
[CrossRef] [PubMed]

Bassett, I.

Bjarklev, A.

Botten, L. C.

Boyd, I. W.

H. Dobb, K. Carroll, D. J. Webb, K. Kalli, M. Komodromos, C. Themistos, G. D. Peng, A. Argyros, M. C. J. Large, M. A. van Eijkelenborg, Q. Fang, and I. W. Boyd, “Grating based devices in polymer optical fibre,” Proc. SPIE618901 (2006).
[CrossRef]

Carroll, K.

D. J. Webb, K. Kalli, K. Carroll, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, and E. Kjaer, “Recent developments of Bragg gratings in PMMA and TOPAS polymer optical fibers,” Advanced Sensor Systems and Applications III, Proc. of SPIE 6830, 683002 (2007).

H. Dobb, K. Carroll, D. J. Webb, K. Kalli, M. Komodromos, C. Themistos, G. D. Peng, A. Argyros, M. C. J. Large, M. A. van Eijkelenborg, Q. Fang, and I. W. Boyd, “Grating based devices in polymer optical fibre,” Proc. SPIE618901 (2006).
[CrossRef]

Celanese, H.

G. Khanarian and H. Celanese, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40(6), 1024–1029 (2001).
[CrossRef]

Chu, P. L.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibres,” IEEE Photon. Technol. Lett. 11(3), 352–354 (1999).
[CrossRef]

Cox, F. M.

de Sterke, C. M.

Dobb, H.

H. Dobb, K. Carroll, D. J. Webb, K. Kalli, M. Komodromos, C. Themistos, G. D. Peng, A. Argyros, M. C. J. Large, M. A. van Eijkelenborg, Q. Fang, and I. W. Boyd, “Grating based devices in polymer optical fibre,” Proc. SPIE618901 (2006).
[CrossRef]

H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005).
[CrossRef] [PubMed]

Dubois, C.

Dupuis, A.

Emiliyanov, G.

D. J. Webb, K. Kalli, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, and O. Bang, “E, Kjaer, “Temperature sensitivity of Bragg gratings in PMMA and TOPAS microstructured polymer optical fibres,” Photonic Crystal Fibers II, L9900 (2008).

D. J. Webb, K. Kalli, K. Carroll, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, and E. Kjaer, “Recent developments of Bragg gratings in PMMA and TOPAS polymer optical fibers,” Advanced Sensor Systems and Applications III, Proc. of SPIE 6830, 683002 (2007).

G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with TOPAS microstructured polymer optical fiber: Erratum,” Opt. Lett. 32(9), 1059 (2007).
[CrossRef]

G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007).
[CrossRef] [PubMed]

J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
[CrossRef] [PubMed]

Fang, Q.

H. Dobb, K. Carroll, D. J. Webb, K. Kalli, M. Komodromos, C. Themistos, G. D. Peng, A. Argyros, M. C. J. Large, M. A. van Eijkelenborg, Q. Fang, and I. W. Boyd, “Grating based devices in polymer optical fibre,” Proc. SPIE618901 (2006).
[CrossRef]

Fleming, S.

Gao, Y.

Godbout, N.

Guo, N.

Hansen, K. S.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Herholdt-Rasmussen, N.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Hoiby, P.

Hoiby, P. E.

Issa, N. A.

Jacobsen, T.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Jensen, J.

Jensen, J. B.

Jepsen, P. U.

Johnson, I. P.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[CrossRef]

I. P. Johnson, K. Kalli, and D. J. Webb, “827nm Bragg grating sensor in multimode microstructured polymer optical fiber,” Electron. Lett. 46(17), 1217–1218 (2010).
[CrossRef]

Kalli, K.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[CrossRef]

I. P. Johnson, K. Kalli, and D. J. Webb, “827nm Bragg grating sensor in multimode microstructured polymer optical fiber,” Electron. Lett. 46(17), 1217–1218 (2010).
[CrossRef]

D. J. Webb, K. Kalli, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, and O. Bang, “E, Kjaer, “Temperature sensitivity of Bragg gratings in PMMA and TOPAS microstructured polymer optical fibres,” Photonic Crystal Fibers II, L9900 (2008).

D. J. Webb, K. Kalli, K. Carroll, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, and E. Kjaer, “Recent developments of Bragg gratings in PMMA and TOPAS polymer optical fibers,” Advanced Sensor Systems and Applications III, Proc. of SPIE 6830, 683002 (2007).

H. Dobb, K. Carroll, D. J. Webb, K. Kalli, M. Komodromos, C. Themistos, G. D. Peng, A. Argyros, M. C. J. Large, M. A. van Eijkelenborg, Q. Fang, and I. W. Boyd, “Grating based devices in polymer optical fibre,” Proc. SPIE618901 (2006).
[CrossRef]

H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005).
[CrossRef] [PubMed]

Kan, D. J.

Khan, L.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[CrossRef]

Khanarian, G.

G. Khanarian and H. Celanese, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40(6), 1024–1029 (2001).
[CrossRef]

Kjaer, E.

D. J. Webb, K. Kalli, K. Carroll, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, and E. Kjaer, “Recent developments of Bragg gratings in PMMA and TOPAS polymer optical fibers,” Advanced Sensor Systems and Applications III, Proc. of SPIE 6830, 683002 (2007).

Kjaer, E. M.

Komodromos, M.

D. J. Webb, K. Kalli, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, and O. Bang, “E, Kjaer, “Temperature sensitivity of Bragg gratings in PMMA and TOPAS microstructured polymer optical fibres,” Photonic Crystal Fibers II, L9900 (2008).

D. J. Webb, K. Kalli, K. Carroll, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, and E. Kjaer, “Recent developments of Bragg gratings in PMMA and TOPAS polymer optical fibers,” Advanced Sensor Systems and Applications III, Proc. of SPIE 6830, 683002 (2007).

H. Dobb, K. Carroll, D. J. Webb, K. Kalli, M. Komodromos, C. Themistos, G. D. Peng, A. Argyros, M. C. J. Large, M. A. van Eijkelenborg, Q. Fang, and I. W. Boyd, “Grating based devices in polymer optical fibre,” Proc. SPIE618901 (2006).
[CrossRef]

Koshiba, M.

Lacroix, S.

Large, M.

D. J. Webb, K. Kalli, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, and O. Bang, “E, Kjaer, “Temperature sensitivity of Bragg gratings in PMMA and TOPAS microstructured polymer optical fibres,” Photonic Crystal Fibers II, L9900 (2008).

D. J. Webb, K. Kalli, K. Carroll, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, and E. Kjaer, “Recent developments of Bragg gratings in PMMA and TOPAS polymer optical fibers,” Advanced Sensor Systems and Applications III, Proc. of SPIE 6830, 683002 (2007).

Large, M. C. J.

Lindvold, L.

Manos, S.

Markos, C.

C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011).
[CrossRef] [PubMed]

A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850 nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 23(10), 660–662 (2011).
[CrossRef]

Marshall, G. D.

McCosker, R.

McPhedran, R. C.

Mortensen, N. A.

Nicorovici, N. A. P.

Nielsen, F. K.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Nielsen, K.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[CrossRef]

K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[CrossRef] [PubMed]

Pedersen, L.

Pedersen, L. H.

Peng, G. D.

C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fibre temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
[CrossRef]

H. Dobb, K. Carroll, D. J. Webb, K. Kalli, M. Komodromos, C. Themistos, G. D. Peng, A. Argyros, M. C. J. Large, M. A. van Eijkelenborg, Q. Fang, and I. W. Boyd, “Grating based devices in polymer optical fibre,” Proc. SPIE618901 (2006).
[CrossRef]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibres,” IEEE Photon. Technol. Lett. 11(3), 352–354 (1999).
[CrossRef]

Planken, P. C. M.

Rasmussen, H. K.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[CrossRef]

K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[CrossRef] [PubMed]

Rindorf, L.

Rose, B.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Saitoh, K.

Skorobogatiy, M.

Sørensen, O. B.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Stefani, A.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850 nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 23(10), 660–662 (2011).
[CrossRef]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[CrossRef]

Themistos, C.

H. Dobb, K. Carroll, D. J. Webb, K. Kalli, M. Komodromos, C. Themistos, G. D. Peng, A. Argyros, M. C. J. Large, M. A. van Eijkelenborg, Q. Fang, and I. W. Boyd, “Grating based devices in polymer optical fibre,” Proc. SPIE618901 (2006).
[CrossRef]

Town, G. E.

Tsuchida, Y.

van Eijkelenborg, M. A.

Vlachos, K.

Webb, D. J.

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[CrossRef]

I. P. Johnson, K. Kalli, and D. J. Webb, “827nm Bragg grating sensor in multimode microstructured polymer optical fiber,” Electron. Lett. 46(17), 1217–1218 (2010).
[CrossRef]

C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fibre temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
[CrossRef]

D. J. Webb, K. Kalli, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, and O. Bang, “E, Kjaer, “Temperature sensitivity of Bragg gratings in PMMA and TOPAS microstructured polymer optical fibres,” Photonic Crystal Fibers II, L9900 (2008).

D. J. Webb, K. Kalli, K. Carroll, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, and E. Kjaer, “Recent developments of Bragg gratings in PMMA and TOPAS polymer optical fibers,” Advanced Sensor Systems and Applications III, Proc. of SPIE 6830, 683002 (2007).

H. Dobb, K. Carroll, D. J. Webb, K. Kalli, M. Komodromos, C. Themistos, G. D. Peng, A. Argyros, M. C. J. Large, M. A. van Eijkelenborg, Q. Fang, and I. W. Boyd, “Grating based devices in polymer optical fibre,” Proc. SPIE618901 (2006).
[CrossRef]

H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers,” Opt. Lett. 30(24), 3296–3298 (2005).
[CrossRef] [PubMed]

Withford, M. J.

Wu, B.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibres,” IEEE Photon. Technol. Lett. 11(3), 352–354 (1999).
[CrossRef]

Xiong, Z.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibres,” IEEE Photon. Technol. Lett. 11(3), 352–354 (1999).
[CrossRef]

Yuan, W.

A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850 nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 23(10), 660–662 (2011).
[CrossRef]

C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011).
[CrossRef] [PubMed]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[CrossRef]

G. E. Town, W. Yuan, R. McCosker, and O. Bang, “Microstructured optical fiber refractive index sensor,” Opt. Lett. 35(6), 856–858 (2010).
[CrossRef] [PubMed]

W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sens. J. 10(7), 1192–1199 (2010).
[CrossRef]

Zagari, J.

Zhang, C.

C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fibre temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
[CrossRef]

D. J. Webb, K. Kalli, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, and O. Bang, “E, Kjaer, “Temperature sensitivity of Bragg gratings in PMMA and TOPAS microstructured polymer optical fibres,” Photonic Crystal Fibers II, L9900 (2008).

D. J. Webb, K. Kalli, K. Carroll, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, and E. Kjaer, “Recent developments of Bragg gratings in PMMA and TOPAS polymer optical fibers,” Advanced Sensor Systems and Applications III, Proc. of SPIE 6830, 683002 (2007).

Zhang, W.

C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fibre temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
[CrossRef]

Advanced Sensor Systems and Applications III, Proc. of SPIE (1)

D. J. Webb, K. Kalli, K. Carroll, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, O. Bang, and E. Kjaer, “Recent developments of Bragg gratings in PMMA and TOPAS polymer optical fibers,” Advanced Sensor Systems and Applications III, Proc. of SPIE 6830, 683002 (2007).

Electron. Lett. (3)

C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fibre temperature and humidity sensor,” Electron. Lett. 46(9), 643–644 (2010).
[CrossRef]

I. P. Johnson, K. Kalli, and D. J. Webb, “827nm Bragg grating sensor in multimode microstructured polymer optical fiber,” Electron. Lett. 46(17), 1217–1218 (2010).
[CrossRef]

I. P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H. K. Rasmussen, L. Khan, D. J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer,” Electron. Lett. 47(4), 271–272 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibres,” IEEE Photon. Technol. Lett. 11(3), 352–354 (1999).
[CrossRef]

A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850 nm fiber Bragg gratings in few-mode polymer optical fibers,” IEEE Photon. Technol. Lett. 23(10), 660–662 (2011).
[CrossRef]

IEEE Sens. J. (1)

W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sens. J. 10(7), 1192–1199 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[CrossRef]

Opt. Eng. (1)

G. Khanarian and H. Celanese, “Optical properties of cyclic olefin copolymers,” Opt. Eng. 40(6), 1024–1029 (2001).
[CrossRef]

Opt. Express (7)

K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
[CrossRef] [PubMed]

M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fibre,” Opt. Express 9(7), 319–327 (2001).
[CrossRef] [PubMed]

G. D. Marshall, D. J. Kan, A. A. Asatryan, L. C. Botten, and M. J. Withford, “Transverse coupling to the core of a photonic crystal fiber: the photo-inscription of gratings,” Opt. Express 15(12), 7876–7887 (2007).
[CrossRef] [PubMed]

F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express 14(9), 4135–4140 (2006).
[CrossRef] [PubMed]

J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
[CrossRef] [PubMed]

C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011).
[CrossRef] [PubMed]

Y. Tsuchida, K. Saitoh, and M. Koshiba, “Design of single-moded holey fibers with large-mode-area and low bending losses: the significance of the ring-core region,” Opt. Express 15(4), 1794–1803 (2007).
[CrossRef] [PubMed]

Opt. Lett. (6)

Photonic Crystal Fibers (1)

D. J. Webb, K. Kalli, C. Zhang, M. Komodromos, A. Argyros, M. Large, G. Emiliyanov, and O. Bang, “E, Kjaer, “Temperature sensitivity of Bragg gratings in PMMA and TOPAS microstructured polymer optical fibres,” Photonic Crystal Fibers II, L9900 (2008).

Proc. SPIE (1)

H. Dobb, K. Carroll, D. J. Webb, K. Kalli, M. Komodromos, C. Themistos, G. D. Peng, A. Argyros, M. C. J. Large, M. A. van Eijkelenborg, Q. Fang, and I. W. Boyd, “Grating based devices in polymer optical fibre,” Proc. SPIE618901 (2006).
[CrossRef]

Other (4)

N. G. Harbach, “Fiber Bragg gratings in polymer optical fibers,” PhD Thesis, Lausanne, EPFL (2008).

B. Hadimioglu and B. T. Khuri-Yakub, “Polymer Films as Acoustic Matching Layers,” Ultrasonics Symposium, Proceedings IEEE, 3, 1337–1340 (1990).

www.topas.com .

M. C. J. Large, L. Poladian, G. Barton, and M. A. van Eijkelenborg, “Microstructured polymer optical fibres,” Springer, (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The microscope image of the end facet of our TOPAS mPOF.

Fig. 2
Fig. 2

(a) Reflection spectra (spectral resolution 0.01 nm) of the 10 mm FBG in a TOPAS mPOF at different writing times. (b) Growth dynamic of the peak intensity and bandwidth of the 10 mm FBG during writing.

Fig. 3
Fig. 3

Strain (a) and temperature (b) response of the 10mm TOPAS mPOF FBG, giving sensitivities of 0.64±0.04 pm/μstrain and −78±1 pm/°C, respectively.

Fig. 4
Fig. 4

, Humidity response of an 849 nm TOPAS mPOF FBG. The humidity was continuously decreased from 90% to 50% over a 4 hour time period.

Fig. 5
Fig. 5

Variation of the Bragg wavelength of a 1568 nm TOPAS FBG with humidity from 30% to 90%.

Metrics