Abstract

We report on the development of optomechanical “trampoline” resonators composed of a tiny SiO2/Ta2O5 dielectric mirror on a silicon nitride micro-resonator. We observe optical finesses of up to 4 × 104 and mechanical quality factors as high as 9 × 105 in relatively massive (∼100 ng) and low frequency (10–200 kHz) devices. This results in a photon-phonon coupling efficiency considerably higher than previous Fabry-Perot-type optomechanical systems. These devices are well suited to ultra-sensitive force detection, ground-state optical cooling experiments, and demonstrations of quantum dynamics for such systems.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009).
    [CrossRef]
  2. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
    [CrossRef] [PubMed]
  3. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express 17, 3802–3817 (2009).
    [CrossRef] [PubMed]
  4. L. Diósi, “Models for universal reduction of macroscopic quantum fluctuations,” Phys. Rev. A 40, 1165–1174 (1989).
    [CrossRef] [PubMed]
  5. R. Penrose, “On Gravity’s role in Quantum State Reduction,” Gen. Relativ. Gravit. 28, 581–600 (1996).
    [CrossRef]
  6. D. Kleckner, I. Pikovski, E. Jeffrey, L. Ament, E. Eliel, J. van den Brink, and D. Bouwmeester, “Creating and verifying a quantum superposition in a micro-optomechanical system,” New J. Phys. 10, 095020 (2008).
    [CrossRef]
  7. I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of Ground State Cooling of a Mechanical Oscillator Using Dynamical Backaction,” Phys. Rev. Lett. 99, 093901 (2007).
    [CrossRef] [PubMed]
  8. F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum Theory of Cavity-Assisted Sideband Cooling of Mechanical Motion,” Phys. Rev. Lett. 99, 093902 (2007).
    [CrossRef] [PubMed]
  9. J. D. Teufel, T. Donner, D. Li, J. H. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband Cooling Micromechanical Motion to the Quantum Ground State,” ArXiv e-prints (2011).
  10. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groeblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” ArXiv e-prints (2011).
  11. D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical Entanglement between a Movable Mirror and a Cavity Field,” Phys. Rev. Lett. 98, 030405 (2007).
    [CrossRef] [PubMed]
  12. U. Akram, N. Kiesel, M. Aspelmeyer, and G. J. Milburn, “Single-photon opto-mechanics in the strong coupling regime,” New J. Phys. 12, 083030 (2010).
    [CrossRef]
  13. S. Bose, K. Jacobs, and P. L. Knight, “Scheme to probe the decoherence of a macroscopic object,” Phys. Rev. A 59, 3204–3210 (1999).
    [CrossRef]
  14. W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards Quantum Superpositions of a Mirror,” Phys. Rev. Lett. 91, 130401 (2003).
    [CrossRef] [PubMed]
  15. D. Kleckner, W. Marshall, M. J. A. de Dood, K. N. Dinyari, B.-J. Pors, W. T. M. Irvine, and D. Bouwmeester, “High Finesse Opto-Mechanical Cavity with a Movable Thirty-Micron-Size Mirror,” Phys. Rev. Lett. 96, 173901 (2006).
    [CrossRef] [PubMed]
  16. S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724 (2009).
    [CrossRef] [PubMed]
  17. J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
    [CrossRef] [PubMed]
  18. S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5, 485–488 (2009).
    [CrossRef]
  19. A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10, 095008 (2008).
    [CrossRef]
  20. A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, “Cooling and squeezing via quadratic optomechanical coupling,” Phys. Rev. A 82, 021806 (2010).
    [CrossRef]
  21. Mirrors were deposited by Coastline Optics, LLC, located in Camarillo, CA, USA.
  22. A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved Sideband Cooling of a Micromechanical Oscillator,” Nat. Phys. 4, 415–419 (2008).
    [CrossRef]
  23. G. Cole, I. Wilson-Rae, M. Vanner, S. Gröblacher, J. Pohl, M. Zorn, M. Weyers, A. Peters, and M. Aspelmeyer, “Megahertz monocrystalline optomechanical resonators with minimal dissipation,” in “Proc. IEEE Micr. Elect.,” (2010), pp. 847–850.
  24. D. Brodoceanu, G. D. Cole, N. Kiesel, M. Aspelmeyer, and D. Bauerle, “Femtosecond laser fabrication of high reflectivity micromirrors,” Appl. Phys. Lett. 97, 041104 (2010).
    [CrossRef]
  25. M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive Cavity Optical Force on Microdisk-Coupled Nanomechanical Beam Waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
    [CrossRef]
  26. D. Kleckner, W. T. M. Irvine, S. S. R. Oemrawsingh, and D. Bouwmeester, “Diffraction-limited high-finesse optical cavities,” Phys. Rev. A 81 (2010).
    [CrossRef]
  27. M. Yamamoto, “Sub-nm figure error correction of an extreme ultraviolet multilayer mirror by its surface milling,” Nucl. Instrum. Methods Phys. Res., A 467–468, 1282–1285 (2001).
    [CrossRef]
  28. K. Kamijo, R. Uozumi, K. Moriziri, S. A. Pahlovy, and I. Miyamoto, “Two stage ion beam figuring and smoothening method for shape error correction of ULE substrates of extreme ultraviolet lithography projection optics: Evaluation of high-spatial frequency roughness,” J. Vac. Sci. Technol. B 27, 2900 (2009)
    [CrossRef]
  29. S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead, “High quality factor resonance at room temperature with nanostrings under high tensile stress,” J. Appl. Phys. 99, 124304 (2006).
    [CrossRef]
  30. S. S. Verbridge, D. F. Shapiro, H. G. Craighead, and J. M. Parpia, “Macroscopic tuning of nanomechanics: substrate bending for reversible control of frequency and quality factor of nanostring resonators,” Nano Lett. 7, 1728–1735 (2007).
    [CrossRef] [PubMed]
  31. B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. B. Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett. 92, 103125 (2008).
    [CrossRef]
  32. M. Roseman and P. Grutter, “Cryogenic magnetic force microscope,” Rev. Sci. Instrum. 71, 3782–3787 (2000).
    [CrossRef]
  33. C. K. Law, “Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation,” Phys. Rev. A 51, 2537–2541 (1995).
    [CrossRef] [PubMed]
  34. Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfeld, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
    [CrossRef]
  35. A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Quantum measurement of phonon shot noise,” Phys. Rev. Lett. 104, 213603 (2010).
    [CrossRef] [PubMed]
  36. H. J. Mamin and D. Rugar, “Sub-attonewton force detection at millikelvin temperatures,” Appl. Phys. Lett. 79, 3358–3360 (2001).
    [CrossRef]
  37. C. L. Degen, M. Poggio, H. J. Mamin, C. T. Rettner, and D. Rugar, “Nanoscale magnetic resonance imaging,” Proc. Natl. Acad. Sci. USA 106, 1313–1317 (2009).
    [CrossRef] [PubMed]

2010 (7)

U. Akram, N. Kiesel, M. Aspelmeyer, and G. J. Milburn, “Single-photon opto-mechanics in the strong coupling regime,” New J. Phys. 12, 083030 (2010).
[CrossRef]

A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, “Cooling and squeezing via quadratic optomechanical coupling,” Phys. Rev. A 82, 021806 (2010).
[CrossRef]

G. Cole, I. Wilson-Rae, M. Vanner, S. Gröblacher, J. Pohl, M. Zorn, M. Weyers, A. Peters, and M. Aspelmeyer, “Megahertz monocrystalline optomechanical resonators with minimal dissipation,” in “Proc. IEEE Micr. Elect.,” (2010), pp. 847–850.

D. Brodoceanu, G. D. Cole, N. Kiesel, M. Aspelmeyer, and D. Bauerle, “Femtosecond laser fabrication of high reflectivity micromirrors,” Appl. Phys. Lett. 97, 041104 (2010).
[CrossRef]

D. Kleckner, W. T. M. Irvine, S. S. R. Oemrawsingh, and D. Bouwmeester, “Diffraction-limited high-finesse optical cavities,” Phys. Rev. A 81 (2010).
[CrossRef]

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfeld, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Quantum measurement of phonon shot noise,” Phys. Rev. Lett. 104, 213603 (2010).
[CrossRef] [PubMed]

2009 (8)

C. L. Degen, M. Poggio, H. J. Mamin, C. T. Rettner, and D. Rugar, “Nanoscale magnetic resonance imaging,” Proc. Natl. Acad. Sci. USA 106, 1313–1317 (2009).
[CrossRef] [PubMed]

A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009).
[CrossRef]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[CrossRef] [PubMed]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express 17, 3802–3817 (2009).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive Cavity Optical Force on Microdisk-Coupled Nanomechanical Beam Waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
[CrossRef]

K. Kamijo, R. Uozumi, K. Moriziri, S. A. Pahlovy, and I. Miyamoto, “Two stage ion beam figuring and smoothening method for shape error correction of ULE substrates of extreme ultraviolet lithography projection optics: Evaluation of high-spatial frequency roughness,” J. Vac. Sci. Technol. B 27, 2900 (2009)
[CrossRef]

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5, 485–488 (2009).
[CrossRef]

S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724 (2009).
[CrossRef] [PubMed]

2008 (5)

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[CrossRef] [PubMed]

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10, 095008 (2008).
[CrossRef]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved Sideband Cooling of a Micromechanical Oscillator,” Nat. Phys. 4, 415–419 (2008).
[CrossRef]

D. Kleckner, I. Pikovski, E. Jeffrey, L. Ament, E. Eliel, J. van den Brink, and D. Bouwmeester, “Creating and verifying a quantum superposition in a micro-optomechanical system,” New J. Phys. 10, 095020 (2008).
[CrossRef]

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. B. Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett. 92, 103125 (2008).
[CrossRef]

2007 (4)

S. S. Verbridge, D. F. Shapiro, H. G. Craighead, and J. M. Parpia, “Macroscopic tuning of nanomechanics: substrate bending for reversible control of frequency and quality factor of nanostring resonators,” Nano Lett. 7, 1728–1735 (2007).
[CrossRef] [PubMed]

I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of Ground State Cooling of a Mechanical Oscillator Using Dynamical Backaction,” Phys. Rev. Lett. 99, 093901 (2007).
[CrossRef] [PubMed]

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum Theory of Cavity-Assisted Sideband Cooling of Mechanical Motion,” Phys. Rev. Lett. 99, 093902 (2007).
[CrossRef] [PubMed]

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical Entanglement between a Movable Mirror and a Cavity Field,” Phys. Rev. Lett. 98, 030405 (2007).
[CrossRef] [PubMed]

2006 (2)

D. Kleckner, W. Marshall, M. J. A. de Dood, K. N. Dinyari, B.-J. Pors, W. T. M. Irvine, and D. Bouwmeester, “High Finesse Opto-Mechanical Cavity with a Movable Thirty-Micron-Size Mirror,” Phys. Rev. Lett. 96, 173901 (2006).
[CrossRef] [PubMed]

S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead, “High quality factor resonance at room temperature with nanostrings under high tensile stress,” J. Appl. Phys. 99, 124304 (2006).
[CrossRef]

2003 (1)

W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards Quantum Superpositions of a Mirror,” Phys. Rev. Lett. 91, 130401 (2003).
[CrossRef] [PubMed]

2001 (2)

M. Yamamoto, “Sub-nm figure error correction of an extreme ultraviolet multilayer mirror by its surface milling,” Nucl. Instrum. Methods Phys. Res., A 467–468, 1282–1285 (2001).
[CrossRef]

H. J. Mamin and D. Rugar, “Sub-attonewton force detection at millikelvin temperatures,” Appl. Phys. Lett. 79, 3358–3360 (2001).
[CrossRef]

2000 (1)

M. Roseman and P. Grutter, “Cryogenic magnetic force microscope,” Rev. Sci. Instrum. 71, 3782–3787 (2000).
[CrossRef]

1999 (1)

S. Bose, K. Jacobs, and P. L. Knight, “Scheme to probe the decoherence of a macroscopic object,” Phys. Rev. A 59, 3204–3210 (1999).
[CrossRef]

1996 (1)

R. Penrose, “On Gravity’s role in Quantum State Reduction,” Gen. Relativ. Gravit. 28, 581–600 (1996).
[CrossRef]

1995 (1)

C. K. Law, “Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation,” Phys. Rev. A 51, 2537–2541 (1995).
[CrossRef] [PubMed]

1989 (1)

L. Diósi, “Models for universal reduction of macroscopic quantum fluctuations,” Phys. Rev. A 40, 1165–1174 (1989).
[CrossRef] [PubMed]

Akram, U.

U. Akram, N. Kiesel, M. Aspelmeyer, and G. J. Milburn, “Single-photon opto-mechanics in the strong coupling regime,” New J. Phys. 12, 083030 (2010).
[CrossRef]

Alegre, T. P. M.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groeblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” ArXiv e-prints (2011).

Allman, M. S.

J. D. Teufel, T. Donner, D. Li, J. H. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband Cooling Micromechanical Motion to the Quantum Ground State,” ArXiv e-prints (2011).

Ament, L.

D. Kleckner, I. Pikovski, E. Jeffrey, L. Ament, E. Eliel, J. van den Brink, and D. Bouwmeester, “Creating and verifying a quantum superposition in a micro-optomechanical system,” New J. Phys. 10, 095020 (2008).
[CrossRef]

Anetsberger, G.

A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009).
[CrossRef]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved Sideband Cooling of a Micromechanical Oscillator,” Nat. Phys. 4, 415–419 (2008).
[CrossRef]

Arcizet, O.

A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009).
[CrossRef]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved Sideband Cooling of a Micromechanical Oscillator,” Nat. Phys. 4, 415–419 (2008).
[CrossRef]

Aspelmeyer, M.

G. Cole, I. Wilson-Rae, M. Vanner, S. Gröblacher, J. Pohl, M. Zorn, M. Weyers, A. Peters, and M. Aspelmeyer, “Megahertz monocrystalline optomechanical resonators with minimal dissipation,” in “Proc. IEEE Micr. Elect.,” (2010), pp. 847–850.

D. Brodoceanu, G. D. Cole, N. Kiesel, M. Aspelmeyer, and D. Bauerle, “Femtosecond laser fabrication of high reflectivity micromirrors,” Appl. Phys. Lett. 97, 041104 (2010).
[CrossRef]

U. Akram, N. Kiesel, M. Aspelmeyer, and G. J. Milburn, “Single-photon opto-mechanics in the strong coupling regime,” New J. Phys. 12, 083030 (2010).
[CrossRef]

S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724 (2009).
[CrossRef] [PubMed]

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5, 485–488 (2009).
[CrossRef]

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical Entanglement between a Movable Mirror and a Cavity Field,” Phys. Rev. Lett. 98, 030405 (2007).
[CrossRef] [PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groeblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” ArXiv e-prints (2011).

Bauerle, D.

D. Brodoceanu, G. D. Cole, N. Kiesel, M. Aspelmeyer, and D. Bauerle, “Femtosecond laser fabrication of high reflectivity micromirrors,” Appl. Phys. Lett. 97, 041104 (2010).
[CrossRef]

Bellan, L. M.

S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead, “High quality factor resonance at room temperature with nanostrings under high tensile stress,” J. Appl. Phys. 99, 124304 (2006).
[CrossRef]

Böhm, H. R.

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical Entanglement between a Movable Mirror and a Cavity Field,” Phys. Rev. Lett. 98, 030405 (2007).
[CrossRef] [PubMed]

Børkje, K.

A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, “Cooling and squeezing via quadratic optomechanical coupling,” Phys. Rev. A 82, 021806 (2010).
[CrossRef]

Bose, S.

S. Bose, K. Jacobs, and P. L. Knight, “Scheme to probe the decoherence of a macroscopic object,” Phys. Rev. A 59, 3204–3210 (1999).
[CrossRef]

Bouwmeester, D.

D. Kleckner, W. T. M. Irvine, S. S. R. Oemrawsingh, and D. Bouwmeester, “Diffraction-limited high-finesse optical cavities,” Phys. Rev. A 81 (2010).
[CrossRef]

D. Kleckner, I. Pikovski, E. Jeffrey, L. Ament, E. Eliel, J. van den Brink, and D. Bouwmeester, “Creating and verifying a quantum superposition in a micro-optomechanical system,” New J. Phys. 10, 095020 (2008).
[CrossRef]

D. Kleckner, W. Marshall, M. J. A. de Dood, K. N. Dinyari, B.-J. Pors, W. T. M. Irvine, and D. Bouwmeester, “High Finesse Opto-Mechanical Cavity with a Movable Thirty-Micron-Size Mirror,” Phys. Rev. Lett. 96, 173901 (2006).
[CrossRef] [PubMed]

W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards Quantum Superpositions of a Mirror,” Phys. Rev. Lett. 91, 130401 (2003).
[CrossRef] [PubMed]

Brodoceanu, D.

D. Brodoceanu, G. D. Cole, N. Kiesel, M. Aspelmeyer, and D. Bauerle, “Femtosecond laser fabrication of high reflectivity micromirrors,” Appl. Phys. Lett. 97, 041104 (2010).
[CrossRef]

Camacho, R.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfeld, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express 17, 3802–3817 (2009).
[CrossRef] [PubMed]

Camacho, R. M.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[CrossRef] [PubMed]

Chan, J.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[CrossRef] [PubMed]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express 17, 3802–3817 (2009).
[CrossRef] [PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groeblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” ArXiv e-prints (2011).

Chang, D.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfeld, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

Chen, J. P.

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum Theory of Cavity-Assisted Sideband Cooling of Mechanical Motion,” Phys. Rev. Lett. 99, 093902 (2007).
[CrossRef] [PubMed]

Cicak, K.

J. D. Teufel, T. Donner, D. Li, J. H. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband Cooling Micromechanical Motion to the Quantum Ground State,” ArXiv e-prints (2011).

Clerk, A. A.

A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Quantum measurement of phonon shot noise,” Phys. Rev. Lett. 104, 213603 (2010).
[CrossRef] [PubMed]

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10, 095008 (2008).
[CrossRef]

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum Theory of Cavity-Assisted Sideband Cooling of Mechanical Motion,” Phys. Rev. Lett. 99, 093902 (2007).
[CrossRef] [PubMed]

Cole, G.

G. Cole, I. Wilson-Rae, M. Vanner, S. Gröblacher, J. Pohl, M. Zorn, M. Weyers, A. Peters, and M. Aspelmeyer, “Megahertz monocrystalline optomechanical resonators with minimal dissipation,” in “Proc. IEEE Micr. Elect.,” (2010), pp. 847–850.

Cole, G. D.

D. Brodoceanu, G. D. Cole, N. Kiesel, M. Aspelmeyer, and D. Bauerle, “Femtosecond laser fabrication of high reflectivity micromirrors,” Appl. Phys. Lett. 97, 041104 (2010).
[CrossRef]

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5, 485–488 (2009).
[CrossRef]

Craighead, H. G.

S. S. Verbridge, D. F. Shapiro, H. G. Craighead, and J. M. Parpia, “Macroscopic tuning of nanomechanics: substrate bending for reversible control of frequency and quality factor of nanostring resonators,” Nano Lett. 7, 1728–1735 (2007).
[CrossRef] [PubMed]

S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead, “High quality factor resonance at room temperature with nanostrings under high tensile stress,” J. Appl. Phys. 99, 124304 (2006).
[CrossRef]

de Dood, M. J. A.

D. Kleckner, W. Marshall, M. J. A. de Dood, K. N. Dinyari, B.-J. Pors, W. T. M. Irvine, and D. Bouwmeester, “High Finesse Opto-Mechanical Cavity with a Movable Thirty-Micron-Size Mirror,” Phys. Rev. Lett. 96, 173901 (2006).
[CrossRef] [PubMed]

Degen, C. L.

C. L. Degen, M. Poggio, H. J. Mamin, C. T. Rettner, and D. Rugar, “Nanoscale magnetic resonance imaging,” Proc. Natl. Acad. Sci. USA 106, 1313–1317 (2009).
[CrossRef] [PubMed]

Dinyari, K. N.

D. Kleckner, W. Marshall, M. J. A. de Dood, K. N. Dinyari, B.-J. Pors, W. T. M. Irvine, and D. Bouwmeester, “High Finesse Opto-Mechanical Cavity with a Movable Thirty-Micron-Size Mirror,” Phys. Rev. Lett. 96, 173901 (2006).
[CrossRef] [PubMed]

Diósi, L.

L. Diósi, “Models for universal reduction of macroscopic quantum fluctuations,” Phys. Rev. A 40, 1165–1174 (1989).
[CrossRef] [PubMed]

Donner, T.

J. D. Teufel, T. Donner, D. Li, J. H. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband Cooling Micromechanical Motion to the Quantum Ground State,” ArXiv e-prints (2011).

Eichenfeld, M.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfeld, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

Eichenfield, M.

Eliel, E.

D. Kleckner, I. Pikovski, E. Jeffrey, L. Ament, E. Eliel, J. van den Brink, and D. Bouwmeester, “Creating and verifying a quantum superposition in a micro-optomechanical system,” New J. Phys. 10, 095020 (2008).
[CrossRef]

Ferreira, A.

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical Entanglement between a Movable Mirror and a Cavity Field,” Phys. Rev. Lett. 98, 030405 (2007).
[CrossRef] [PubMed]

Gigan, S.

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5, 485–488 (2009).
[CrossRef]

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical Entanglement between a Movable Mirror and a Cavity Field,” Phys. Rev. Lett. 98, 030405 (2007).
[CrossRef] [PubMed]

Girvin, S. M.

A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, “Cooling and squeezing via quadratic optomechanical coupling,” Phys. Rev. A 82, 021806 (2010).
[CrossRef]

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10, 095008 (2008).
[CrossRef]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[CrossRef] [PubMed]

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum Theory of Cavity-Assisted Sideband Cooling of Mechanical Motion,” Phys. Rev. Lett. 99, 093902 (2007).
[CrossRef] [PubMed]

Gröblacher, S.

G. Cole, I. Wilson-Rae, M. Vanner, S. Gröblacher, J. Pohl, M. Zorn, M. Weyers, A. Peters, and M. Aspelmeyer, “Megahertz monocrystalline optomechanical resonators with minimal dissipation,” in “Proc. IEEE Micr. Elect.,” (2010), pp. 847–850.

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5, 485–488 (2009).
[CrossRef]

S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724 (2009).
[CrossRef] [PubMed]

Groeblacher, S.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groeblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” ArXiv e-prints (2011).

Grutter, P.

M. Roseman and P. Grutter, “Cryogenic magnetic force microscope,” Rev. Sci. Instrum. 71, 3782–3787 (2000).
[CrossRef]

Guerreiro, A.

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical Entanglement between a Movable Mirror and a Cavity Field,” Phys. Rev. Lett. 98, 030405 (2007).
[CrossRef] [PubMed]

Hammerer, K.

S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724 (2009).
[CrossRef] [PubMed]

Harlow, J. H.

J. D. Teufel, T. Donner, D. Li, J. H. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband Cooling Micromechanical Motion to the Quantum Ground State,” ArXiv e-prints (2011).

Harris, J. G. E.

A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, “Cooling and squeezing via quadratic optomechanical coupling,” Phys. Rev. A 82, 021806 (2010).
[CrossRef]

A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Quantum measurement of phonon shot noise,” Phys. Rev. Lett. 104, 213603 (2010).
[CrossRef] [PubMed]

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. B. Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett. 92, 103125 (2008).
[CrossRef]

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10, 095008 (2008).
[CrossRef]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[CrossRef] [PubMed]

Hertzberg, J. B.

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5, 485–488 (2009).
[CrossRef]

Hill, J. T.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groeblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” ArXiv e-prints (2011).

Irvine, W. T. M.

D. Kleckner, W. T. M. Irvine, S. S. R. Oemrawsingh, and D. Bouwmeester, “Diffraction-limited high-finesse optical cavities,” Phys. Rev. A 81 (2010).
[CrossRef]

D. Kleckner, W. Marshall, M. J. A. de Dood, K. N. Dinyari, B.-J. Pors, W. T. M. Irvine, and D. Bouwmeester, “High Finesse Opto-Mechanical Cavity with a Movable Thirty-Micron-Size Mirror,” Phys. Rev. Lett. 96, 173901 (2006).
[CrossRef] [PubMed]

Jacobs, K.

S. Bose, K. Jacobs, and P. L. Knight, “Scheme to probe the decoherence of a macroscopic object,” Phys. Rev. A 59, 3204–3210 (1999).
[CrossRef]

Jayich, A. C. B.

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. B. Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett. 92, 103125 (2008).
[CrossRef]

Jayich, A. M.

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. B. Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett. 92, 103125 (2008).
[CrossRef]

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10, 095008 (2008).
[CrossRef]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[CrossRef] [PubMed]

Jeffrey, E.

D. Kleckner, I. Pikovski, E. Jeffrey, L. Ament, E. Eliel, J. van den Brink, and D. Bouwmeester, “Creating and verifying a quantum superposition in a micro-optomechanical system,” New J. Phys. 10, 095020 (2008).
[CrossRef]

Kamijo, K.

K. Kamijo, R. Uozumi, K. Moriziri, S. A. Pahlovy, and I. Miyamoto, “Two stage ion beam figuring and smoothening method for shape error correction of ULE substrates of extreme ultraviolet lithography projection optics: Evaluation of high-spatial frequency roughness,” J. Vac. Sci. Technol. B 27, 2900 (2009)
[CrossRef]

Kiesel, N.

D. Brodoceanu, G. D. Cole, N. Kiesel, M. Aspelmeyer, and D. Bauerle, “Femtosecond laser fabrication of high reflectivity micromirrors,” Appl. Phys. Lett. 97, 041104 (2010).
[CrossRef]

U. Akram, N. Kiesel, M. Aspelmeyer, and G. J. Milburn, “Single-photon opto-mechanics in the strong coupling regime,” New J. Phys. 12, 083030 (2010).
[CrossRef]

Kippenberg, T. J.

A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009).
[CrossRef]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved Sideband Cooling of a Micromechanical Oscillator,” Nat. Phys. 4, 415–419 (2008).
[CrossRef]

I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of Ground State Cooling of a Mechanical Oscillator Using Dynamical Backaction,” Phys. Rev. Lett. 99, 093901 (2007).
[CrossRef] [PubMed]

Kleckner, D.

D. Kleckner, W. T. M. Irvine, S. S. R. Oemrawsingh, and D. Bouwmeester, “Diffraction-limited high-finesse optical cavities,” Phys. Rev. A 81 (2010).
[CrossRef]

D. Kleckner, I. Pikovski, E. Jeffrey, L. Ament, E. Eliel, J. van den Brink, and D. Bouwmeester, “Creating and verifying a quantum superposition in a micro-optomechanical system,” New J. Phys. 10, 095020 (2008).
[CrossRef]

D. Kleckner, W. Marshall, M. J. A. de Dood, K. N. Dinyari, B.-J. Pors, W. T. M. Irvine, and D. Bouwmeester, “High Finesse Opto-Mechanical Cavity with a Movable Thirty-Micron-Size Mirror,” Phys. Rev. Lett. 96, 173901 (2006).
[CrossRef] [PubMed]

Knight, P. L.

S. Bose, K. Jacobs, and P. L. Knight, “Scheme to probe the decoherence of a macroscopic object,” Phys. Rev. A 59, 3204–3210 (1999).
[CrossRef]

Krause, A.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groeblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” ArXiv e-prints (2011).

Law, C. K.

C. K. Law, “Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation,” Phys. Rev. A 51, 2537–2541 (1995).
[CrossRef] [PubMed]

Lehnert, K. W.

J. D. Teufel, T. Donner, D. Li, J. H. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband Cooling Micromechanical Motion to the Quantum Ground State,” ArXiv e-prints (2011).

Li, D.

J. D. Teufel, T. Donner, D. Li, J. H. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband Cooling Micromechanical Motion to the Quantum Ground State,” ArXiv e-prints (2011).

Li, M.

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive Cavity Optical Force on Microdisk-Coupled Nanomechanical Beam Waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
[CrossRef]

Lin, Q.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfeld, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

Mamin, H. J.

C. L. Degen, M. Poggio, H. J. Mamin, C. T. Rettner, and D. Rugar, “Nanoscale magnetic resonance imaging,” Proc. Natl. Acad. Sci. USA 106, 1313–1317 (2009).
[CrossRef] [PubMed]

H. J. Mamin and D. Rugar, “Sub-attonewton force detection at millikelvin temperatures,” Appl. Phys. Lett. 79, 3358–3360 (2001).
[CrossRef]

Marquardt, F.

A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Quantum measurement of phonon shot noise,” Phys. Rev. Lett. 104, 213603 (2010).
[CrossRef] [PubMed]

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10, 095008 (2008).
[CrossRef]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[CrossRef] [PubMed]

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum Theory of Cavity-Assisted Sideband Cooling of Mechanical Motion,” Phys. Rev. Lett. 99, 093902 (2007).
[CrossRef] [PubMed]

Marshall, W.

D. Kleckner, W. Marshall, M. J. A. de Dood, K. N. Dinyari, B.-J. Pors, W. T. M. Irvine, and D. Bouwmeester, “High Finesse Opto-Mechanical Cavity with a Movable Thirty-Micron-Size Mirror,” Phys. Rev. Lett. 96, 173901 (2006).
[CrossRef] [PubMed]

W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards Quantum Superpositions of a Mirror,” Phys. Rev. Lett. 91, 130401 (2003).
[CrossRef] [PubMed]

Milburn, G. J.

U. Akram, N. Kiesel, M. Aspelmeyer, and G. J. Milburn, “Single-photon opto-mechanics in the strong coupling regime,” New J. Phys. 12, 083030 (2010).
[CrossRef]

Miyamoto, I.

K. Kamijo, R. Uozumi, K. Moriziri, S. A. Pahlovy, and I. Miyamoto, “Two stage ion beam figuring and smoothening method for shape error correction of ULE substrates of extreme ultraviolet lithography projection optics: Evaluation of high-spatial frequency roughness,” J. Vac. Sci. Technol. B 27, 2900 (2009)
[CrossRef]

Moriziri, K.

K. Kamijo, R. Uozumi, K. Moriziri, S. A. Pahlovy, and I. Miyamoto, “Two stage ion beam figuring and smoothening method for shape error correction of ULE substrates of extreme ultraviolet lithography projection optics: Evaluation of high-spatial frequency roughness,” J. Vac. Sci. Technol. B 27, 2900 (2009)
[CrossRef]

Nooshi, N.

I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of Ground State Cooling of a Mechanical Oscillator Using Dynamical Backaction,” Phys. Rev. Lett. 99, 093901 (2007).
[CrossRef] [PubMed]

Nunnenkamp, A.

A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, “Cooling and squeezing via quadratic optomechanical coupling,” Phys. Rev. A 82, 021806 (2010).
[CrossRef]

Oemrawsingh, S. S. R.

D. Kleckner, W. T. M. Irvine, S. S. R. Oemrawsingh, and D. Bouwmeester, “Diffraction-limited high-finesse optical cavities,” Phys. Rev. A 81 (2010).
[CrossRef]

Pahlovy, S. A.

K. Kamijo, R. Uozumi, K. Moriziri, S. A. Pahlovy, and I. Miyamoto, “Two stage ion beam figuring and smoothening method for shape error correction of ULE substrates of extreme ultraviolet lithography projection optics: Evaluation of high-spatial frequency roughness,” J. Vac. Sci. Technol. B 27, 2900 (2009)
[CrossRef]

Painter, O.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfeld, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[CrossRef] [PubMed]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express 17, 3802–3817 (2009).
[CrossRef] [PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groeblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” ArXiv e-prints (2011).

Parpia, J. M.

S. S. Verbridge, D. F. Shapiro, H. G. Craighead, and J. M. Parpia, “Macroscopic tuning of nanomechanics: substrate bending for reversible control of frequency and quality factor of nanostring resonators,” Nano Lett. 7, 1728–1735 (2007).
[CrossRef] [PubMed]

S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead, “High quality factor resonance at room temperature with nanostrings under high tensile stress,” J. Appl. Phys. 99, 124304 (2006).
[CrossRef]

Penrose, R.

W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards Quantum Superpositions of a Mirror,” Phys. Rev. Lett. 91, 130401 (2003).
[CrossRef] [PubMed]

R. Penrose, “On Gravity’s role in Quantum State Reduction,” Gen. Relativ. Gravit. 28, 581–600 (1996).
[CrossRef]

Pernice, W. H. P.

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive Cavity Optical Force on Microdisk-Coupled Nanomechanical Beam Waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
[CrossRef]

Peters, A.

G. Cole, I. Wilson-Rae, M. Vanner, S. Gröblacher, J. Pohl, M. Zorn, M. Weyers, A. Peters, and M. Aspelmeyer, “Megahertz monocrystalline optomechanical resonators with minimal dissipation,” in “Proc. IEEE Micr. Elect.,” (2010), pp. 847–850.

Pikovski, I.

D. Kleckner, I. Pikovski, E. Jeffrey, L. Ament, E. Eliel, J. van den Brink, and D. Bouwmeester, “Creating and verifying a quantum superposition in a micro-optomechanical system,” New J. Phys. 10, 095020 (2008).
[CrossRef]

Poggio, M.

C. L. Degen, M. Poggio, H. J. Mamin, C. T. Rettner, and D. Rugar, “Nanoscale magnetic resonance imaging,” Proc. Natl. Acad. Sci. USA 106, 1313–1317 (2009).
[CrossRef] [PubMed]

Pohl, J.

G. Cole, I. Wilson-Rae, M. Vanner, S. Gröblacher, J. Pohl, M. Zorn, M. Weyers, A. Peters, and M. Aspelmeyer, “Megahertz monocrystalline optomechanical resonators with minimal dissipation,” in “Proc. IEEE Micr. Elect.,” (2010), pp. 847–850.

Pors, B.-J.

D. Kleckner, W. Marshall, M. J. A. de Dood, K. N. Dinyari, B.-J. Pors, W. T. M. Irvine, and D. Bouwmeester, “High Finesse Opto-Mechanical Cavity with a Movable Thirty-Micron-Size Mirror,” Phys. Rev. Lett. 96, 173901 (2006).
[CrossRef] [PubMed]

Reichenbach, R. B.

S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead, “High quality factor resonance at room temperature with nanostrings under high tensile stress,” J. Appl. Phys. 99, 124304 (2006).
[CrossRef]

Rettner, C. T.

C. L. Degen, M. Poggio, H. J. Mamin, C. T. Rettner, and D. Rugar, “Nanoscale magnetic resonance imaging,” Proc. Natl. Acad. Sci. USA 106, 1313–1317 (2009).
[CrossRef] [PubMed]

Rivière, R.

A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009).
[CrossRef]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved Sideband Cooling of a Micromechanical Oscillator,” Nat. Phys. 4, 415–419 (2008).
[CrossRef]

Roseman, M.

M. Roseman and P. Grutter, “Cryogenic magnetic force microscope,” Rev. Sci. Instrum. 71, 3782–3787 (2000).
[CrossRef]

Rosenberg, J.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfeld, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

Rugar, D.

C. L. Degen, M. Poggio, H. J. Mamin, C. T. Rettner, and D. Rugar, “Nanoscale magnetic resonance imaging,” Proc. Natl. Acad. Sci. USA 106, 1313–1317 (2009).
[CrossRef] [PubMed]

H. J. Mamin and D. Rugar, “Sub-attonewton force detection at millikelvin temperatures,” Appl. Phys. Lett. 79, 3358–3360 (2001).
[CrossRef]

Safavi-Naeini, A. H.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groeblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” ArXiv e-prints (2011).

Sankey, J. C.

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10, 095008 (2008).
[CrossRef]

Schliesser, A.

A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009).
[CrossRef]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved Sideband Cooling of a Micromechanical Oscillator,” Nat. Phys. 4, 415–419 (2008).
[CrossRef]

Schwab, K. C.

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5, 485–488 (2009).
[CrossRef]

Shanks, W. E.

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. B. Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett. 92, 103125 (2008).
[CrossRef]

Shapiro, D. F.

S. S. Verbridge, D. F. Shapiro, H. G. Craighead, and J. M. Parpia, “Macroscopic tuning of nanomechanics: substrate bending for reversible control of frequency and quality factor of nanostring resonators,” Nano Lett. 7, 1728–1735 (2007).
[CrossRef] [PubMed]

Simmonds, R. W.

J. D. Teufel, T. Donner, D. Li, J. H. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband Cooling Micromechanical Motion to the Quantum Ground State,” ArXiv e-prints (2011).

Simon, C.

W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards Quantum Superpositions of a Mirror,” Phys. Rev. Lett. 91, 130401 (2003).
[CrossRef] [PubMed]

Sirois, A. J.

J. D. Teufel, T. Donner, D. Li, J. H. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband Cooling Micromechanical Motion to the Quantum Ground State,” ArXiv e-prints (2011).

Tang, H. X.

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive Cavity Optical Force on Microdisk-Coupled Nanomechanical Beam Waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
[CrossRef]

Teufel, J. D.

J. D. Teufel, T. Donner, D. Li, J. H. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband Cooling Micromechanical Motion to the Quantum Ground State,” ArXiv e-prints (2011).

Thompson, J. D.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[CrossRef] [PubMed]

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. B. Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett. 92, 103125 (2008).
[CrossRef]

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10, 095008 (2008).
[CrossRef]

Tombesi, P.

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical Entanglement between a Movable Mirror and a Cavity Field,” Phys. Rev. Lett. 98, 030405 (2007).
[CrossRef] [PubMed]

Uozumi, R.

K. Kamijo, R. Uozumi, K. Moriziri, S. A. Pahlovy, and I. Miyamoto, “Two stage ion beam figuring and smoothening method for shape error correction of ULE substrates of extreme ultraviolet lithography projection optics: Evaluation of high-spatial frequency roughness,” J. Vac. Sci. Technol. B 27, 2900 (2009)
[CrossRef]

Vahala, K. J.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfeld, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[CrossRef] [PubMed]

van den Brink, J.

D. Kleckner, I. Pikovski, E. Jeffrey, L. Ament, E. Eliel, J. van den Brink, and D. Bouwmeester, “Creating and verifying a quantum superposition in a micro-optomechanical system,” New J. Phys. 10, 095020 (2008).
[CrossRef]

Vanner, M.

G. Cole, I. Wilson-Rae, M. Vanner, S. Gröblacher, J. Pohl, M. Zorn, M. Weyers, A. Peters, and M. Aspelmeyer, “Megahertz monocrystalline optomechanical resonators with minimal dissipation,” in “Proc. IEEE Micr. Elect.,” (2010), pp. 847–850.

Vanner, M. R.

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5, 485–488 (2009).
[CrossRef]

S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724 (2009).
[CrossRef] [PubMed]

Vedral, V.

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical Entanglement between a Movable Mirror and a Cavity Field,” Phys. Rev. Lett. 98, 030405 (2007).
[CrossRef] [PubMed]

Verbridge, S. S.

S. S. Verbridge, D. F. Shapiro, H. G. Craighead, and J. M. Parpia, “Macroscopic tuning of nanomechanics: substrate bending for reversible control of frequency and quality factor of nanostring resonators,” Nano Lett. 7, 1728–1735 (2007).
[CrossRef] [PubMed]

S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead, “High quality factor resonance at room temperature with nanostrings under high tensile stress,” J. Appl. Phys. 99, 124304 (2006).
[CrossRef]

Vitali, D.

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical Entanglement between a Movable Mirror and a Cavity Field,” Phys. Rev. Lett. 98, 030405 (2007).
[CrossRef] [PubMed]

Weyers, M.

G. Cole, I. Wilson-Rae, M. Vanner, S. Gröblacher, J. Pohl, M. Zorn, M. Weyers, A. Peters, and M. Aspelmeyer, “Megahertz monocrystalline optomechanical resonators with minimal dissipation,” in “Proc. IEEE Micr. Elect.,” (2010), pp. 847–850.

Whittaker, J. D.

J. D. Teufel, T. Donner, D. Li, J. H. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband Cooling Micromechanical Motion to the Quantum Ground State,” ArXiv e-prints (2011).

Wilson-Rae, I.

G. Cole, I. Wilson-Rae, M. Vanner, S. Gröblacher, J. Pohl, M. Zorn, M. Weyers, A. Peters, and M. Aspelmeyer, “Megahertz monocrystalline optomechanical resonators with minimal dissipation,” in “Proc. IEEE Micr. Elect.,” (2010), pp. 847–850.

I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of Ground State Cooling of a Mechanical Oscillator Using Dynamical Backaction,” Phys. Rev. Lett. 99, 093901 (2007).
[CrossRef] [PubMed]

Yamamoto, M.

M. Yamamoto, “Sub-nm figure error correction of an extreme ultraviolet multilayer mirror by its surface milling,” Nucl. Instrum. Methods Phys. Res., A 467–468, 1282–1285 (2001).
[CrossRef]

Yang, C.

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. B. Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett. 92, 103125 (2008).
[CrossRef]

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10, 095008 (2008).
[CrossRef]

Zeilinger, A.

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical Entanglement between a Movable Mirror and a Cavity Field,” Phys. Rev. Lett. 98, 030405 (2007).
[CrossRef] [PubMed]

Zorn, M.

G. Cole, I. Wilson-Rae, M. Vanner, S. Gröblacher, J. Pohl, M. Zorn, M. Weyers, A. Peters, and M. Aspelmeyer, “Megahertz monocrystalline optomechanical resonators with minimal dissipation,” in “Proc. IEEE Micr. Elect.,” (2010), pp. 847–850.

Zwerger, W.

I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of Ground State Cooling of a Mechanical Oscillator Using Dynamical Backaction,” Phys. Rev. Lett. 99, 093901 (2007).
[CrossRef] [PubMed]

Zwickl, B. M.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[CrossRef] [PubMed]

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10, 095008 (2008).
[CrossRef]

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. B. Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett. 92, 103125 (2008).
[CrossRef]

Appl. Phys. Lett. (3)

D. Brodoceanu, G. D. Cole, N. Kiesel, M. Aspelmeyer, and D. Bauerle, “Femtosecond laser fabrication of high reflectivity micromirrors,” Appl. Phys. Lett. 97, 041104 (2010).
[CrossRef]

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. B. Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett. 92, 103125 (2008).
[CrossRef]

H. J. Mamin and D. Rugar, “Sub-attonewton force detection at millikelvin temperatures,” Appl. Phys. Lett. 79, 3358–3360 (2001).
[CrossRef]

Gen. Relativ. Gravit. (1)

R. Penrose, “On Gravity’s role in Quantum State Reduction,” Gen. Relativ. Gravit. 28, 581–600 (1996).
[CrossRef]

J. Appl. Phys. (1)

S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead, “High quality factor resonance at room temperature with nanostrings under high tensile stress,” J. Appl. Phys. 99, 124304 (2006).
[CrossRef]

J. Vac. Sci. Technol. B (1)

K. Kamijo, R. Uozumi, K. Moriziri, S. A. Pahlovy, and I. Miyamoto, “Two stage ion beam figuring and smoothening method for shape error correction of ULE substrates of extreme ultraviolet lithography projection optics: Evaluation of high-spatial frequency roughness,” J. Vac. Sci. Technol. B 27, 2900 (2009)
[CrossRef]

Nano Lett. (1)

S. S. Verbridge, D. F. Shapiro, H. G. Craighead, and J. M. Parpia, “Macroscopic tuning of nanomechanics: substrate bending for reversible control of frequency and quality factor of nanostring resonators,” Nano Lett. 7, 1728–1735 (2007).
[CrossRef] [PubMed]

Nat. Photonics (1)

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfeld, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

Nat. Phys. (3)

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved Sideband Cooling of a Micromechanical Oscillator,” Nat. Phys. 4, 415–419 (2008).
[CrossRef]

S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5, 485–488 (2009).
[CrossRef]

A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009).
[CrossRef]

Nature (3)

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[CrossRef] [PubMed]

S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724 (2009).
[CrossRef] [PubMed]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[CrossRef] [PubMed]

New J. Phys. (3)

A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive optomechanics: a membrane inside a cavity,” New J. Phys. 10, 095008 (2008).
[CrossRef]

D. Kleckner, I. Pikovski, E. Jeffrey, L. Ament, E. Eliel, J. van den Brink, and D. Bouwmeester, “Creating and verifying a quantum superposition in a micro-optomechanical system,” New J. Phys. 10, 095020 (2008).
[CrossRef]

U. Akram, N. Kiesel, M. Aspelmeyer, and G. J. Milburn, “Single-photon opto-mechanics in the strong coupling regime,” New J. Phys. 12, 083030 (2010).
[CrossRef]

Nucl. Instrum. Methods Phys. Res., A (1)

M. Yamamoto, “Sub-nm figure error correction of an extreme ultraviolet multilayer mirror by its surface milling,” Nucl. Instrum. Methods Phys. Res., A 467–468, 1282–1285 (2001).
[CrossRef]

Opt. Express (1)

Phys. Rev. A (5)

D. Kleckner, W. T. M. Irvine, S. S. R. Oemrawsingh, and D. Bouwmeester, “Diffraction-limited high-finesse optical cavities,” Phys. Rev. A 81 (2010).
[CrossRef]

C. K. Law, “Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation,” Phys. Rev. A 51, 2537–2541 (1995).
[CrossRef] [PubMed]

S. Bose, K. Jacobs, and P. L. Knight, “Scheme to probe the decoherence of a macroscopic object,” Phys. Rev. A 59, 3204–3210 (1999).
[CrossRef]

A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, “Cooling and squeezing via quadratic optomechanical coupling,” Phys. Rev. A 82, 021806 (2010).
[CrossRef]

L. Diósi, “Models for universal reduction of macroscopic quantum fluctuations,” Phys. Rev. A 40, 1165–1174 (1989).
[CrossRef] [PubMed]

Phys. Rev. Lett. (7)

D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical Entanglement between a Movable Mirror and a Cavity Field,” Phys. Rev. Lett. 98, 030405 (2007).
[CrossRef] [PubMed]

W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards Quantum Superpositions of a Mirror,” Phys. Rev. Lett. 91, 130401 (2003).
[CrossRef] [PubMed]

D. Kleckner, W. Marshall, M. J. A. de Dood, K. N. Dinyari, B.-J. Pors, W. T. M. Irvine, and D. Bouwmeester, “High Finesse Opto-Mechanical Cavity with a Movable Thirty-Micron-Size Mirror,” Phys. Rev. Lett. 96, 173901 (2006).
[CrossRef] [PubMed]

I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of Ground State Cooling of a Mechanical Oscillator Using Dynamical Backaction,” Phys. Rev. Lett. 99, 093901 (2007).
[CrossRef] [PubMed]

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum Theory of Cavity-Assisted Sideband Cooling of Mechanical Motion,” Phys. Rev. Lett. 99, 093902 (2007).
[CrossRef] [PubMed]

A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Quantum measurement of phonon shot noise,” Phys. Rev. Lett. 104, 213603 (2010).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive Cavity Optical Force on Microdisk-Coupled Nanomechanical Beam Waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
[CrossRef]

Proc. IEEE Micr. Elect. (1)

G. Cole, I. Wilson-Rae, M. Vanner, S. Gröblacher, J. Pohl, M. Zorn, M. Weyers, A. Peters, and M. Aspelmeyer, “Megahertz monocrystalline optomechanical resonators with minimal dissipation,” in “Proc. IEEE Micr. Elect.,” (2010), pp. 847–850.

Proc. Natl. Acad. Sci. USA (1)

C. L. Degen, M. Poggio, H. J. Mamin, C. T. Rettner, and D. Rugar, “Nanoscale magnetic resonance imaging,” Proc. Natl. Acad. Sci. USA 106, 1313–1317 (2009).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

M. Roseman and P. Grutter, “Cryogenic magnetic force microscope,” Rev. Sci. Instrum. 71, 3782–3787 (2000).
[CrossRef]

Other (3)

J. D. Teufel, T. Donner, D. Li, J. H. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband Cooling Micromechanical Motion to the Quantum Ground State,” ArXiv e-prints (2011).

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groeblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” ArXiv e-prints (2011).

Mirrors were deposited by Coastline Optics, LLC, located in Camarillo, CA, USA.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The main steps in the fabrication process, carried out on a silicon wafer (gray). a) The process begins with the deposition of the SiO2 (blue) / Ta2O5 (pink) dielectric mirror, which is then etched into discs of the desired size (only 7 of the 33 dielectric layers are shown). b) Si3N4 (green) is deposited on both sides of the wafer. c) The front side Si3N4 is etched into the resonator geometry and the backside has square holes etched for the Si etch. d) The carrier wafer is etched through with a TMAH anisotropic etch, releasing the resonators. e) A short BHF etch strips the protective SiO2 layer off the front of the mirror, and the sample is then removed from solution with a critical point dry.

Fig. 2
Fig. 2

Three micro-optomechanical resonators, as viewed from the top of the carrier wafer. Left: optical image, diameter d = 80 μm, Si3N4 of thickness t = 500 nm, with resonator arms of diagonal length a = 250 μm and width w = 20 μm. Center: optical image, d = 80 μm, t = 300 nm, a = 2000 μm, w = 2 μm. Right: scanning electron microscope image, d = 40 μm, t = 500 nm, a = 500 μm, w = 10 μm. Note that the anisotropic etch profile of TMAH is clearly visible in the silicon at the top of the image.

Fig. 3
Fig. 3

The signal from the photodiode monitoring the cavity transmission during a typical optical ringdown measurement, showing the exponential decay of the signal after the pump laser is switched off via the AOM (averaged over 16 runs to reduce noise). Fitting the data starting 0.5 μs after the AOM switch results in an exponential decay time of τcav = 2.11 ± 0.02 μs.

Fig. 4
Fig. 4

a) The normalized amplitude of the fundamental mechanical resonance of a low frequency (9.174 kHz) resonator after it is excited by moving by one of the alignment motors by a single step. Data from the first minute after the excitation (not shown) is heavily distorted due to the mechanical amplitude becoming larger than the equivalent width of the optical peak (λ/2F ∼ 5 nm). Fitting the data after t = 80 s results in a power decay time of τ = 15.4 ± 0.3 s, or a mechanical quality factor of Qm = (9.4 ± 0.2) × 105. b) The thermal resonance spectrum of a high frequency (ωm = 2π × 157.7 kHz) trampoline resonator. A fit to a Lorentzian gives a peak width (FWHM) of δωm = 2π × 3.64±0.15 Hz, corresponding to Qm = (4.3 ± 0.2) × 104.

Tables (2)

Tables Icon

Table 1 Dependence of frequency and quality factor on temperature as 157.7 kHz device is cooled to 300 mK with a dilution refrigerator.

Tables Icon

Table 2 A comparison of trampoline resonators with other previously demonstrated opto-mechanical systems.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

g = ω c L x 0 ,
g = g τ cav = 2 F x 0 λ .
Q m 1 exp ( h ¯ ω m k B T ) 1
T Q m h ¯ ω m k B .

Metrics