Abstract

We develop a novel nL-sized microdroplet laser based on the capillary optofluidic ring resonator (OFRR). The microdroplet is generated in a microfluidic channel using two immiscible fluids and is subsequently delivered to the capillary OFRR downstream. Despite the presence of the high refractive index (RI) carrier fluid, the lasing emission can still be achieved for the droplet formed by low RI solution. The lasing threshold of 1.54 µJ/mm2 is achieved, >6 times lower than the state-of-the-art, thanks to the high Q-factor of the OFRR. Furthermore, the lasing emission can be conveniently coupled into an optical fiber. Finally, tuning of the lasing wavelength is achieved via highly efficient fluorescence resonance energy transfer processes by merging two different dye droplets in the microfluidic channel. Versatility combined with improved lasing characteristics makes our OFRR droplet laser an attractive platform for high performance optofluidic lasers and bio/chemical sensing with small sample volumes.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [CrossRef] [PubMed]
  2. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1(2), 106–114 (2007).
    [CrossRef]
  3. Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4(1-2), 145–158 (2008).
    [CrossRef]
  4. B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
    [CrossRef]
  5. Q. Kou, I. Yesilyurt, and Y. Chen, “Collinear dual-color laser emission from a microfluidic dye laser,” Appl. Phys. Lett. 88(9), 091101 (2006).
    [CrossRef]
  6. Z. Y. Li, Z. Y. Zhang, T. Emery, A. Scherer, and D. Psaltis, “Single mode optofluidic distributed feedback dye laser,” Opt. Express 14(2), 696–701 (2006).
    [CrossRef] [PubMed]
  7. W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Low-order distributed feedback optofluidic dye laser with reduced threshold,” Appl. Phys. Lett. 94(5), 051117 (2009).
    [CrossRef]
  8. C. Vannahme, M. B. Christiansen, T. Mappes, and A. Kristensen, “Optofluidic dye laser in a foil,” Opt. Express 18(9), 9280–9285 (2010).
    [CrossRef] [PubMed]
  9. areS. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
    [CrossRef]
  10. S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, and X. Fan, “Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Opt. Express 15(23), 15523–15530 (2007).
    [CrossRef] [PubMed]
  11. D. T. Chiu and R. M. Lorenz, “Chemistry and biology in femtoliter and picoliter volume droplets,” Acc. Chem. Res. 42(5), 649–658 (2009).
    [CrossRef] [PubMed]
  12. S.-Y. Teh, R. Lin, L.-H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8(2), 198–220 (2008).
    [CrossRef] [PubMed]
  13. V. Trivedi, A. Doshi, G. K. Kurup, E. Ereifej, P. J. Vandevord, and A. S. Basu, “A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening,” Lab Chip 10(18), 2433–2442 (2010).
    [CrossRef] [PubMed]
  14. R. K. Chang and A. J. Campillo, Optical Processes in Microcavities (World Scientific, 1996).
  15. M. Tanyeri, R. Perron, and I. M. Kennedy, “Lasing droplets in a microfabricated channel,” Opt. Lett. 32(17), 2529–2531 (2007).
    [CrossRef] [PubMed]
  16. S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
    [CrossRef] [PubMed]
  17. G. Aubry, Q. Kou, J. Soto-Velasco, C. Wang, S. Meance, J. J. He, and A. M. Haghiri-Gosnet, “A multicolor microfluidic droplet dye laser with single mode emission,” Appl. Phys. Lett. 98(11), 111111 (2011).
    [CrossRef]
  18. I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, “Versatile waveguide-coupled opto-fluidic devices based on liquid core optical ring resonators,” Appl. Phys. Lett. 91(24), 241104 (2007).
    [CrossRef]
  19. J. D. Suter, Y. Sun, D. J. Howard, J. A. Viator, and X. Fan, “PDMS embedded opto-fluidic microring resonator lasers,” Opt. Express 16(14), 10248–10253 (2008).
    [CrossRef] [PubMed]
  20. Y. Sun, S. I. Shopova, C.-S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16039–16042 (2010).
    [CrossRef] [PubMed]
  21. I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31(9), 1319–1321 (2006).
    [CrossRef] [PubMed]
  22. S. I. Shopova, J. M. Cupps, P. Zhang, E. P. Henderson, S. Lacey, and X. Fan, “Opto-fluidic ring resonator lasers based on highly efficient resonant energy transfer,” Opt. Express 15(20), 12735–12742 (2007).
    [CrossRef] [PubMed]
  23. H. Song, M. R. Bringer, J. D. Tice, C. J. Gerdts, and R. F. Ismagilov, “Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels,” Appl. Phys. Lett. 83(22), 4664–4666 (2003).
    [CrossRef] [PubMed]
  24. Y. Sun and X. Fan, “Highly Selective Single-Nucleotide Polymorphism Detection with Optofluidic Ring Resonator Lasers,” in CLEO/QELS(Optical Society of America, Baltimore, MD, 2011), p. CWL6.

2011 (1)

G. Aubry, Q. Kou, J. Soto-Velasco, C. Wang, S. Meance, J. J. He, and A. M. Haghiri-Gosnet, “A multicolor microfluidic droplet dye laser with single mode emission,” Appl. Phys. Lett. 98(11), 111111 (2011).
[CrossRef]

2010 (3)

V. Trivedi, A. Doshi, G. K. Kurup, E. Ereifej, P. J. Vandevord, and A. S. Basu, “A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening,” Lab Chip 10(18), 2433–2442 (2010).
[CrossRef] [PubMed]

C. Vannahme, M. B. Christiansen, T. Mappes, and A. Kristensen, “Optofluidic dye laser in a foil,” Opt. Express 18(9), 9280–9285 (2010).
[CrossRef] [PubMed]

Y. Sun, S. I. Shopova, C.-S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16039–16042 (2010).
[CrossRef] [PubMed]

2009 (3)

D. T. Chiu and R. M. Lorenz, “Chemistry and biology in femtoliter and picoliter volume droplets,” Acc. Chem. Res. 42(5), 649–658 (2009).
[CrossRef] [PubMed]

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Low-order distributed feedback optofluidic dye laser with reduced threshold,” Appl. Phys. Lett. 94(5), 051117 (2009).
[CrossRef]

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[CrossRef] [PubMed]

2008 (3)

S.-Y. Teh, R. Lin, L.-H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8(2), 198–220 (2008).
[CrossRef] [PubMed]

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4(1-2), 145–158 (2008).
[CrossRef]

J. D. Suter, Y. Sun, D. J. Howard, J. A. Viator, and X. Fan, “PDMS embedded opto-fluidic microring resonator lasers,” Opt. Express 16(14), 10248–10253 (2008).
[CrossRef] [PubMed]

2007 (6)

S. I. Shopova, J. M. Cupps, P. Zhang, E. P. Henderson, S. Lacey, and X. Fan, “Opto-fluidic ring resonator lasers based on highly efficient resonant energy transfer,” Opt. Express 15(20), 12735–12742 (2007).
[CrossRef] [PubMed]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

areS. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[CrossRef]

S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, and X. Fan, “Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Opt. Express 15(23), 15523–15530 (2007).
[CrossRef] [PubMed]

M. Tanyeri, R. Perron, and I. M. Kennedy, “Lasing droplets in a microfabricated channel,” Opt. Lett. 32(17), 2529–2531 (2007).
[CrossRef] [PubMed]

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, “Versatile waveguide-coupled opto-fluidic devices based on liquid core optical ring resonators,” Appl. Phys. Lett. 91(24), 241104 (2007).
[CrossRef]

2006 (4)

Q. Kou, I. Yesilyurt, and Y. Chen, “Collinear dual-color laser emission from a microfluidic dye laser,” Appl. Phys. Lett. 88(9), 091101 (2006).
[CrossRef]

Z. Y. Li, Z. Y. Zhang, T. Emery, A. Scherer, and D. Psaltis, “Single mode optofluidic distributed feedback dye laser,” Opt. Express 14(2), 696–701 (2006).
[CrossRef] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31(9), 1319–1321 (2006).
[CrossRef] [PubMed]

2003 (2)

H. Song, M. R. Bringer, J. D. Tice, C. J. Gerdts, and R. F. Ismagilov, “Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels,” Appl. Phys. Lett. 83(22), 4664–4666 (2003).
[CrossRef] [PubMed]

B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
[CrossRef]

Abate, A. R.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[CrossRef] [PubMed]

Agresti, J. J.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[CrossRef] [PubMed]

Arnold, S.

Y. Sun, S. I. Shopova, C.-S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16039–16042 (2010).
[CrossRef] [PubMed]

Aubry, G.

G. Aubry, Q. Kou, J. Soto-Velasco, C. Wang, S. Meance, J. J. He, and A. M. Haghiri-Gosnet, “A multicolor microfluidic droplet dye laser with single mode emission,” Appl. Phys. Lett. 98(11), 111111 (2011).
[CrossRef]

Basu, A. S.

V. Trivedi, A. Doshi, G. K. Kurup, E. Ereifej, P. J. Vandevord, and A. S. Basu, “A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening,” Lab Chip 10(18), 2433–2442 (2010).
[CrossRef] [PubMed]

Bringer, M. R.

H. Song, M. R. Bringer, J. D. Tice, C. J. Gerdts, and R. F. Ismagilov, “Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels,” Appl. Phys. Lett. 83(22), 4664–4666 (2003).
[CrossRef] [PubMed]

Chen, Y.

Q. Kou, I. Yesilyurt, and Y. Chen, “Collinear dual-color laser emission from a microfluidic dye laser,” Appl. Phys. Lett. 88(9), 091101 (2006).
[CrossRef]

Chiu, D. T.

D. T. Chiu and R. M. Lorenz, “Chemistry and biology in femtoliter and picoliter volume droplets,” Acc. Chem. Res. 42(5), 649–658 (2009).
[CrossRef] [PubMed]

Christiansen, M. B.

Cupps, J. M.

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Doshi, A.

V. Trivedi, A. Doshi, G. K. Kurup, E. Ereifej, P. J. Vandevord, and A. S. Basu, “A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening,” Lab Chip 10(18), 2433–2442 (2010).
[CrossRef] [PubMed]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Emery, T.

Ereifej, E.

V. Trivedi, A. Doshi, G. K. Kurup, E. Ereifej, P. J. Vandevord, and A. S. Basu, “A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening,” Lab Chip 10(18), 2433–2442 (2010).
[CrossRef] [PubMed]

Fan, X.

Gerdts, C. J.

H. Song, M. R. Bringer, J. D. Tice, C. J. Gerdts, and R. F. Ismagilov, “Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels,” Appl. Phys. Lett. 83(22), 4664–4666 (2003).
[CrossRef] [PubMed]

Gohring, J.

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, “Versatile waveguide-coupled opto-fluidic devices based on liquid core optical ring resonators,” Appl. Phys. Lett. 91(24), 241104 (2007).
[CrossRef]

Haghiri-Gosnet, A. M.

G. Aubry, Q. Kou, J. Soto-Velasco, C. Wang, S. Meance, J. J. He, and A. M. Haghiri-Gosnet, “A multicolor microfluidic droplet dye laser with single mode emission,” Appl. Phys. Lett. 98(11), 111111 (2011).
[CrossRef]

He, J. J.

G. Aubry, Q. Kou, J. Soto-Velasco, C. Wang, S. Meance, J. J. He, and A. M. Haghiri-Gosnet, “A multicolor microfluidic droplet dye laser with single mode emission,” Appl. Phys. Lett. 98(11), 111111 (2011).
[CrossRef]

Helbo, B.

B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
[CrossRef]

Henderson, E. P.

Howard, D. J.

Hung, L.-H.

S.-Y. Teh, R. Lin, L.-H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8(2), 198–220 (2008).
[CrossRef] [PubMed]

Ismagilov, R. F.

H. Song, M. R. Bringer, J. D. Tice, C. J. Gerdts, and R. F. Ismagilov, “Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels,” Appl. Phys. Lett. 83(22), 4664–4666 (2003).
[CrossRef] [PubMed]

Kennedy, I. M.

Kou, Q.

G. Aubry, Q. Kou, J. Soto-Velasco, C. Wang, S. Meance, J. J. He, and A. M. Haghiri-Gosnet, “A multicolor microfluidic droplet dye laser with single mode emission,” Appl. Phys. Lett. 98(11), 111111 (2011).
[CrossRef]

Q. Kou, I. Yesilyurt, and Y. Chen, “Collinear dual-color laser emission from a microfluidic dye laser,” Appl. Phys. Lett. 88(9), 091101 (2006).
[CrossRef]

Kristensen, A.

C. Vannahme, M. B. Christiansen, T. Mappes, and A. Kristensen, “Optofluidic dye laser in a foil,” Opt. Express 18(9), 9280–9285 (2010).
[CrossRef] [PubMed]

B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
[CrossRef]

Kurup, G. K.

V. Trivedi, A. Doshi, G. K. Kurup, E. Ereifej, P. J. Vandevord, and A. S. Basu, “A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening,” Lab Chip 10(18), 2433–2442 (2010).
[CrossRef] [PubMed]

Lacey, S.

Lee, A. P.

S.-Y. Teh, R. Lin, L.-H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8(2), 198–220 (2008).
[CrossRef] [PubMed]

Li, Z.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[CrossRef] [PubMed]

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Low-order distributed feedback optofluidic dye laser with reduced threshold,” Appl. Phys. Lett. 94(5), 051117 (2009).
[CrossRef]

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4(1-2), 145–158 (2008).
[CrossRef]

Li, Z. Y.

Lin, R.

S.-Y. Teh, R. Lin, L.-H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8(2), 198–220 (2008).
[CrossRef] [PubMed]

Lorenz, R. M.

D. T. Chiu and R. M. Lorenz, “Chemistry and biology in femtoliter and picoliter volume droplets,” Acc. Chem. Res. 42(5), 649–658 (2009).
[CrossRef] [PubMed]

Mappes, T.

Meance, S.

G. Aubry, Q. Kou, J. Soto-Velasco, C. Wang, S. Meance, J. J. He, and A. M. Haghiri-Gosnet, “A multicolor microfluidic droplet dye laser with single mode emission,” Appl. Phys. Lett. 98(11), 111111 (2011).
[CrossRef]

Menon, A.

B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
[CrossRef]

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Oveys, H.

Perron, R.

Psaltis, D.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[CrossRef] [PubMed]

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Low-order distributed feedback optofluidic dye laser with reduced threshold,” Appl. Phys. Lett. 94(5), 051117 (2009).
[CrossRef]

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4(1-2), 145–158 (2008).
[CrossRef]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Z. Y. Li, Z. Y. Zhang, T. Emery, A. Scherer, and D. Psaltis, “Single mode optofluidic distributed feedback dye laser,” Opt. Express 14(2), 696–701 (2006).
[CrossRef] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Scherer, A.

Shopova, S. I.

Song, H.

H. Song, M. R. Bringer, J. D. Tice, C. J. Gerdts, and R. F. Ismagilov, “Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels,” Appl. Phys. Lett. 83(22), 4664–4666 (2003).
[CrossRef] [PubMed]

Song, W.

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Low-order distributed feedback optofluidic dye laser with reduced threshold,” Appl. Phys. Lett. 94(5), 051117 (2009).
[CrossRef]

Soto-Velasco, J.

G. Aubry, Q. Kou, J. Soto-Velasco, C. Wang, S. Meance, J. J. He, and A. M. Haghiri-Gosnet, “A multicolor microfluidic droplet dye laser with single mode emission,” Appl. Phys. Lett. 98(11), 111111 (2011).
[CrossRef]

Sun, Y.

Y. Sun, S. I. Shopova, C.-S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16039–16042 (2010).
[CrossRef] [PubMed]

J. D. Suter, Y. Sun, D. J. Howard, J. A. Viator, and X. Fan, “PDMS embedded opto-fluidic microring resonator lasers,” Opt. Express 16(14), 10248–10253 (2008).
[CrossRef] [PubMed]

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, “Versatile waveguide-coupled opto-fluidic devices based on liquid core optical ring resonators,” Appl. Phys. Lett. 91(24), 241104 (2007).
[CrossRef]

S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, and X. Fan, “Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Opt. Express 15(23), 15523–15530 (2007).
[CrossRef] [PubMed]

Suter, J. D.

Tang, S. K. Y.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[CrossRef] [PubMed]

Tanyeri, M.

Teh, S.-Y.

S.-Y. Teh, R. Lin, L.-H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8(2), 198–220 (2008).
[CrossRef] [PubMed]

Tice, J. D.

H. Song, M. R. Bringer, J. D. Tice, C. J. Gerdts, and R. F. Ismagilov, “Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels,” Appl. Phys. Lett. 83(22), 4664–4666 (2003).
[CrossRef] [PubMed]

Trivedi, V.

V. Trivedi, A. Doshi, G. K. Kurup, E. Ereifej, P. J. Vandevord, and A. S. Basu, “A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening,” Lab Chip 10(18), 2433–2442 (2010).
[CrossRef] [PubMed]

Vandevord, P. J.

V. Trivedi, A. Doshi, G. K. Kurup, E. Ereifej, P. J. Vandevord, and A. S. Basu, “A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening,” Lab Chip 10(18), 2433–2442 (2010).
[CrossRef] [PubMed]

Vannahme, C.

Vasdekis, A. E.

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Low-order distributed feedback optofluidic dye laser with reduced threshold,” Appl. Phys. Lett. 94(5), 051117 (2009).
[CrossRef]

Viator, J. A.

Wang, C.

G. Aubry, Q. Kou, J. Soto-Velasco, C. Wang, S. Meance, J. J. He, and A. M. Haghiri-Gosnet, “A multicolor microfluidic droplet dye laser with single mode emission,” Appl. Phys. Lett. 98(11), 111111 (2011).
[CrossRef]

Weitz, D. A.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[CrossRef] [PubMed]

White, I. M.

Whitesides, G. M.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[CrossRef] [PubMed]

Wu, C.-S.

Y. Sun, S. I. Shopova, C.-S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16039–16042 (2010).
[CrossRef] [PubMed]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Yang, G.

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, “Versatile waveguide-coupled opto-fluidic devices based on liquid core optical ring resonators,” Appl. Phys. Lett. 91(24), 241104 (2007).
[CrossRef]

Yesilyurt, I.

Q. Kou, I. Yesilyurt, and Y. Chen, “Collinear dual-color laser emission from a microfluidic dye laser,” Appl. Phys. Lett. 88(9), 091101 (2006).
[CrossRef]

Zhang, P.

Zhang, Z. Y.

Zhou, H.

areS. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[CrossRef]

Acc. Chem. Res. (1)

D. T. Chiu and R. M. Lorenz, “Chemistry and biology in femtoliter and picoliter volume droplets,” Acc. Chem. Res. 42(5), 649–658 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (6)

areS. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[CrossRef]

Q. Kou, I. Yesilyurt, and Y. Chen, “Collinear dual-color laser emission from a microfluidic dye laser,” Appl. Phys. Lett. 88(9), 091101 (2006).
[CrossRef]

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Low-order distributed feedback optofluidic dye laser with reduced threshold,” Appl. Phys. Lett. 94(5), 051117 (2009).
[CrossRef]

G. Aubry, Q. Kou, J. Soto-Velasco, C. Wang, S. Meance, J. J. He, and A. M. Haghiri-Gosnet, “A multicolor microfluidic droplet dye laser with single mode emission,” Appl. Phys. Lett. 98(11), 111111 (2011).
[CrossRef]

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, “Versatile waveguide-coupled opto-fluidic devices based on liquid core optical ring resonators,” Appl. Phys. Lett. 91(24), 241104 (2007).
[CrossRef]

H. Song, M. R. Bringer, J. D. Tice, C. J. Gerdts, and R. F. Ismagilov, “Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels,” Appl. Phys. Lett. 83(22), 4664–4666 (2003).
[CrossRef] [PubMed]

J. Micromech. Microeng. (1)

B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
[CrossRef]

Lab Chip (3)

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9(19), 2767–2771 (2009).
[CrossRef] [PubMed]

S.-Y. Teh, R. Lin, L.-H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8(2), 198–220 (2008).
[CrossRef] [PubMed]

V. Trivedi, A. Doshi, G. K. Kurup, E. Ereifej, P. J. Vandevord, and A. S. Basu, “A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening,” Lab Chip 10(18), 2433–2442 (2010).
[CrossRef] [PubMed]

Microfluid. Nanofluid. (1)

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4(1-2), 145–158 (2008).
[CrossRef]

Nat. Photonics (1)

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Nature (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Proc. Natl. Acad. Sci. U.S.A. (1)

Y. Sun, S. I. Shopova, C.-S. Wu, S. Arnold, and X. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. U.S.A. 107(37), 16039–16042 (2010).
[CrossRef] [PubMed]

Other (2)

Y. Sun and X. Fan, “Highly Selective Single-Nucleotide Polymorphism Detection with Optofluidic Ring Resonator Lasers,” in CLEO/QELS(Optical Society of America, Baltimore, MD, 2011), p. CWL6.

R. K. Chang and A. J. Campillo, Optical Processes in Microcavities (World Scientific, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the droplet generating system consisting of a T-junction. The carrier fluid is silicone oil. The dye is dissolved in methanol. The plastic tubing and the OFRR have an ID of 150 µm and 75 µm, respectively. (b) Schematic of the droplet mixing system consisting of a second T-junction. (c) Picture of R6G droplet series stored inside a plastic tubing. (d) Cross-sectional view of the OFRR, the laser excitation, and out-coupling. A tapered optical fiber is placed in contact with the OFRR to couple the lasing emission into a spectrometer. Note that in the illustration, the dye solution fills the entire cross section of the OFRR. The oil that may be present between the dye solution and the wall is not shown.

Fig. 2
Fig. 2

(a) Lasing intensity from a microdroplet flowing through the OFRR as a function of pump energy density. The droplet is formed by 1 mM R6G dye dissolved in methanol immersed in silicone oil. The lasing threshold is approximately 1.54 µJ/mm2. Inset shows the lasing spectrum at the pump energy density of 6.5 µJ/mm2. (b) Lasing intensity from a conventional continuous flow OFRR laser in the absence of carrier fluid. The dye solution is the same as in (a). The threshold is approximately 1.25 µJ/mm2. Inset shows the lasing spectrum at the pump energy density of 6.2 µJ/mm2.

Fig. 3
Fig. 3

Lasing spectra from the microdroplet laser as a function of time. As the R6G/methanol droplet flows through the capillary OFRR, the laser shows pulsed lasing signal at a frequency of approximately 0.4 Hz (red curves). Note that the signals from the carrier fluid gap between different droplets are zero (blue curves) and that the variations in the laser emission are due mainly to the power variations of the pump laser and the imperfect synchronization between the pump laser and the droplet generation.

Fig. 4
Fig. 4

FRET lasing spectra from merged droplets with various donor/acceptor concentrations. R6G and LDS722 are used as the donor and the acceptor, respectively. The concentration of the donor is fixed at 1 mM and the concentration of the acceptor varies from 0 to 2 mM as indicated. Curves are vertically shifted for clarity. The pump energy density is 14.6 µJ/mm2 for all curves. As the concentration of the acceptor increases, the donor lasing signal around 570 nm diminishes. Meanwhile, the acceptor lasing signal ranging from 700 nm to 740 nm arises.

Metrics