Abstract

The ultimate goal of the study is to provide an imaging tool to detect the earliest signs of glaucoma before clinically visible damage occurs to the retinal nerve fiber layer (RNFL). Studies have shown that the optical reflectance of the damaged RNFL at short wavelength (<560nm) is reduced much more than that at long wavelength, which provides spectral contrast for imaging the earliest damage to the RNFL. To image the spectral contrast we built a dual-band spectral-domain optical coherence tomography (SD-OCT) centered at 808nm (NIR) and 415nm (VIS). The light at the two bands was provided by the fundamental and frequency-doubled outputs of a broadband Ti:Sapphire laser. The depth resolution of the NIR and VIS OCT systems are 4.7µm and 12.2µm in the air, respectively. The system was applied to imaging the rat retina in vivo. Significantly different appearances between the OCT cross sectional images at the two bands were observed. The ratio of the light reflected from the RNFL over that reflected from the entire retina at the two bands were quantitatively compared. The experimental results showed that the dual-band OCT system is feasible for imaging the spectral contrasts of the RNFL.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Quigley, “Glaucoma,” Lancet 377(9774), 1367–1377 (2011).
    [CrossRef] [PubMed]
  2. L. A. Kerrigan-Baumrind, H. A. Quigley, M. E. Pease, D. F. Kerrigan, and R. S. Mitchell, “Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons,” Invest. Ophthalmol. Vis. Sci. 41(3), 741–748 (2000).
    [PubMed]
  3. M. L. Gabriele, G. Wollstein, H. Ishikawa, L. Kagemann, J. Xu, L. S. Folio, and J. S. Schuman, “Optical coherence tomography: history, current status, and laboratory work,” Invest. Ophthalmol. Vis. Sci. 52(5), 2425–2436 (2011).
    [CrossRef] [PubMed]
  4. H. G. Lemij and N. J. Reus, “New developments in scanning laser polarimetry for glaucoma,” Curr. Opin. Ophthalmol. 19(2), 136–140 (2008).
    [CrossRef] [PubMed]
  5. R. W. Knighton, X. Huang, and Q. Zhou, “Microtubule contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 39(1), 189–193 (1998).
    [PubMed]
  6. X.-R. Huang and R. W. Knighton, “Microtubules contribute to the birefringence of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 46(12), 4588–4593 (2005).
    [CrossRef] [PubMed]
  7. B. Fortune, L. Wang, G. Cull, and G. A. Cioffi, “Intravitreal colchicine causes decreased RNFL birefringence without altering RNFL thickness,” Invest. Ophthalmol. Vis. Sci. 49(1), 255–261 (2008).
    [CrossRef] [PubMed]
  8. G. M. Pocock, R. G. Aranibar, N. J. Kemp, C. S. Specht, M. K. Markey, and H. G. Rylander, “The relationship between retinal ganglion cell axon constituents and retinal nerve fiber layer birefringence in the primate,” Invest. Ophthalmol. Vis. Sci. 50(11), 5238–5246 (2009).
    [CrossRef] [PubMed]
  9. X.-R. Huang and R. W. Knighton, “Altered F-actin distribution in retinal nerve fiber layer of a rat model of glaucoma,” Exp. Eye Res. 88(6), 1107–1114 (2009).
    [CrossRef] [PubMed]
  10. X.-R. Huang, W. Kong, Y. Zhou, and G. Gregori, “Distortion of axonal cytoskeleton: an early sign of glaucomatous damage,” Invest. Ophthalmol. Vis. Sci. 52(6), 2879–2888 (2011).
    [CrossRef] [PubMed]
  11. X.-R. Huang, Y. Zhou, W. Kong, and R. W. Knighton, “Reflectance decrease prior to thickness change of the retinal nerve fiber layer in glaucomatous retinas”, Invest. Ophthalmol. Vis. Sci., published ahead of print July 5, 2011.
  12. R. W. Knighton and X.-R. Huang, “Directional and spectral reflectance of the rat retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 40(3), 639–647 (1999).
    [PubMed]
  13. X.-R. Huang, Y. Zhou, W. Kong, and R. W. Knighton, “Change of retinal nerve fiber layer reflectance correlated with cytostructural change in glaucoma,” ARVO Meeting Abstracts (Fort Lauderdale, Florida 2011), 52:2442.
  14. M. Ruggeri, G. Tsechpenakis, S. Jiao, M. E. Jockovich, C. Cebulla, E. Hernandez, T. G. Murray, and C. A. Puliafito, “Retinal tumor imaging and volume quantification in mouse model using spectral-domain optical coherence tomography,” Opt. Express 17(5), 4074–4083 (2009).
    [CrossRef] [PubMed]
  15. X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt. 16(8), 080504 (2011).
    [CrossRef] [PubMed]
  16. R. W. Knighton and X.-R. Huang, “Visible and near-infrared imaging of the nerve fiber layer of the isolated rat retina,” J. Glaucoma 8(1), 31–37 (1999).
    [CrossRef] [PubMed]
  17. Scott Prahl, “Optical Absorption of Hemoglobin,” http://omlc.ogi.edu/spectra/hemoglobin/summary.html .

2011 (4)

H. A. Quigley, “Glaucoma,” Lancet 377(9774), 1367–1377 (2011).
[CrossRef] [PubMed]

M. L. Gabriele, G. Wollstein, H. Ishikawa, L. Kagemann, J. Xu, L. S. Folio, and J. S. Schuman, “Optical coherence tomography: history, current status, and laboratory work,” Invest. Ophthalmol. Vis. Sci. 52(5), 2425–2436 (2011).
[CrossRef] [PubMed]

X.-R. Huang, W. Kong, Y. Zhou, and G. Gregori, “Distortion of axonal cytoskeleton: an early sign of glaucomatous damage,” Invest. Ophthalmol. Vis. Sci. 52(6), 2879–2888 (2011).
[CrossRef] [PubMed]

X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt. 16(8), 080504 (2011).
[CrossRef] [PubMed]

2009 (3)

M. Ruggeri, G. Tsechpenakis, S. Jiao, M. E. Jockovich, C. Cebulla, E. Hernandez, T. G. Murray, and C. A. Puliafito, “Retinal tumor imaging and volume quantification in mouse model using spectral-domain optical coherence tomography,” Opt. Express 17(5), 4074–4083 (2009).
[CrossRef] [PubMed]

G. M. Pocock, R. G. Aranibar, N. J. Kemp, C. S. Specht, M. K. Markey, and H. G. Rylander, “The relationship between retinal ganglion cell axon constituents and retinal nerve fiber layer birefringence in the primate,” Invest. Ophthalmol. Vis. Sci. 50(11), 5238–5246 (2009).
[CrossRef] [PubMed]

X.-R. Huang and R. W. Knighton, “Altered F-actin distribution in retinal nerve fiber layer of a rat model of glaucoma,” Exp. Eye Res. 88(6), 1107–1114 (2009).
[CrossRef] [PubMed]

2008 (2)

B. Fortune, L. Wang, G. Cull, and G. A. Cioffi, “Intravitreal colchicine causes decreased RNFL birefringence without altering RNFL thickness,” Invest. Ophthalmol. Vis. Sci. 49(1), 255–261 (2008).
[CrossRef] [PubMed]

H. G. Lemij and N. J. Reus, “New developments in scanning laser polarimetry for glaucoma,” Curr. Opin. Ophthalmol. 19(2), 136–140 (2008).
[CrossRef] [PubMed]

2005 (1)

X.-R. Huang and R. W. Knighton, “Microtubules contribute to the birefringence of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 46(12), 4588–4593 (2005).
[CrossRef] [PubMed]

2000 (1)

L. A. Kerrigan-Baumrind, H. A. Quigley, M. E. Pease, D. F. Kerrigan, and R. S. Mitchell, “Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons,” Invest. Ophthalmol. Vis. Sci. 41(3), 741–748 (2000).
[PubMed]

1999 (2)

R. W. Knighton and X.-R. Huang, “Visible and near-infrared imaging of the nerve fiber layer of the isolated rat retina,” J. Glaucoma 8(1), 31–37 (1999).
[CrossRef] [PubMed]

R. W. Knighton and X.-R. Huang, “Directional and spectral reflectance of the rat retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 40(3), 639–647 (1999).
[PubMed]

1998 (1)

R. W. Knighton, X. Huang, and Q. Zhou, “Microtubule contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 39(1), 189–193 (1998).
[PubMed]

Aranibar, R. G.

G. M. Pocock, R. G. Aranibar, N. J. Kemp, C. S. Specht, M. K. Markey, and H. G. Rylander, “The relationship between retinal ganglion cell axon constituents and retinal nerve fiber layer birefringence in the primate,” Invest. Ophthalmol. Vis. Sci. 50(11), 5238–5246 (2009).
[CrossRef] [PubMed]

Cebulla, C.

Cioffi, G. A.

B. Fortune, L. Wang, G. Cull, and G. A. Cioffi, “Intravitreal colchicine causes decreased RNFL birefringence without altering RNFL thickness,” Invest. Ophthalmol. Vis. Sci. 49(1), 255–261 (2008).
[CrossRef] [PubMed]

Cull, G.

B. Fortune, L. Wang, G. Cull, and G. A. Cioffi, “Intravitreal colchicine causes decreased RNFL birefringence without altering RNFL thickness,” Invest. Ophthalmol. Vis. Sci. 49(1), 255–261 (2008).
[CrossRef] [PubMed]

Folio, L. S.

M. L. Gabriele, G. Wollstein, H. Ishikawa, L. Kagemann, J. Xu, L. S. Folio, and J. S. Schuman, “Optical coherence tomography: history, current status, and laboratory work,” Invest. Ophthalmol. Vis. Sci. 52(5), 2425–2436 (2011).
[CrossRef] [PubMed]

Fortune, B.

B. Fortune, L. Wang, G. Cull, and G. A. Cioffi, “Intravitreal colchicine causes decreased RNFL birefringence without altering RNFL thickness,” Invest. Ophthalmol. Vis. Sci. 49(1), 255–261 (2008).
[CrossRef] [PubMed]

Gabriele, M. L.

M. L. Gabriele, G. Wollstein, H. Ishikawa, L. Kagemann, J. Xu, L. S. Folio, and J. S. Schuman, “Optical coherence tomography: history, current status, and laboratory work,” Invest. Ophthalmol. Vis. Sci. 52(5), 2425–2436 (2011).
[CrossRef] [PubMed]

Gregori, G.

X.-R. Huang, W. Kong, Y. Zhou, and G. Gregori, “Distortion of axonal cytoskeleton: an early sign of glaucomatous damage,” Invest. Ophthalmol. Vis. Sci. 52(6), 2879–2888 (2011).
[CrossRef] [PubMed]

Hernandez, E.

Huang, X.

R. W. Knighton, X. Huang, and Q. Zhou, “Microtubule contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 39(1), 189–193 (1998).
[PubMed]

Huang, X.-R.

X.-R. Huang, W. Kong, Y. Zhou, and G. Gregori, “Distortion of axonal cytoskeleton: an early sign of glaucomatous damage,” Invest. Ophthalmol. Vis. Sci. 52(6), 2879–2888 (2011).
[CrossRef] [PubMed]

X.-R. Huang and R. W. Knighton, “Altered F-actin distribution in retinal nerve fiber layer of a rat model of glaucoma,” Exp. Eye Res. 88(6), 1107–1114 (2009).
[CrossRef] [PubMed]

X.-R. Huang and R. W. Knighton, “Microtubules contribute to the birefringence of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 46(12), 4588–4593 (2005).
[CrossRef] [PubMed]

R. W. Knighton and X.-R. Huang, “Directional and spectral reflectance of the rat retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 40(3), 639–647 (1999).
[PubMed]

R. W. Knighton and X.-R. Huang, “Visible and near-infrared imaging of the nerve fiber layer of the isolated rat retina,” J. Glaucoma 8(1), 31–37 (1999).
[CrossRef] [PubMed]

Ishikawa, H.

M. L. Gabriele, G. Wollstein, H. Ishikawa, L. Kagemann, J. Xu, L. S. Folio, and J. S. Schuman, “Optical coherence tomography: history, current status, and laboratory work,” Invest. Ophthalmol. Vis. Sci. 52(5), 2425–2436 (2011).
[CrossRef] [PubMed]

Jiao, S.

X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt. 16(8), 080504 (2011).
[CrossRef] [PubMed]

M. Ruggeri, G. Tsechpenakis, S. Jiao, M. E. Jockovich, C. Cebulla, E. Hernandez, T. G. Murray, and C. A. Puliafito, “Retinal tumor imaging and volume quantification in mouse model using spectral-domain optical coherence tomography,” Opt. Express 17(5), 4074–4083 (2009).
[CrossRef] [PubMed]

Jockovich, M. E.

Kagemann, L.

M. L. Gabriele, G. Wollstein, H. Ishikawa, L. Kagemann, J. Xu, L. S. Folio, and J. S. Schuman, “Optical coherence tomography: history, current status, and laboratory work,” Invest. Ophthalmol. Vis. Sci. 52(5), 2425–2436 (2011).
[CrossRef] [PubMed]

Kemp, N. J.

G. M. Pocock, R. G. Aranibar, N. J. Kemp, C. S. Specht, M. K. Markey, and H. G. Rylander, “The relationship between retinal ganglion cell axon constituents and retinal nerve fiber layer birefringence in the primate,” Invest. Ophthalmol. Vis. Sci. 50(11), 5238–5246 (2009).
[CrossRef] [PubMed]

Kerrigan, D. F.

L. A. Kerrigan-Baumrind, H. A. Quigley, M. E. Pease, D. F. Kerrigan, and R. S. Mitchell, “Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons,” Invest. Ophthalmol. Vis. Sci. 41(3), 741–748 (2000).
[PubMed]

Kerrigan-Baumrind, L. A.

L. A. Kerrigan-Baumrind, H. A. Quigley, M. E. Pease, D. F. Kerrigan, and R. S. Mitchell, “Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons,” Invest. Ophthalmol. Vis. Sci. 41(3), 741–748 (2000).
[PubMed]

Knighton, R. W.

X.-R. Huang and R. W. Knighton, “Altered F-actin distribution in retinal nerve fiber layer of a rat model of glaucoma,” Exp. Eye Res. 88(6), 1107–1114 (2009).
[CrossRef] [PubMed]

X.-R. Huang and R. W. Knighton, “Microtubules contribute to the birefringence of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 46(12), 4588–4593 (2005).
[CrossRef] [PubMed]

R. W. Knighton and X.-R. Huang, “Visible and near-infrared imaging of the nerve fiber layer of the isolated rat retina,” J. Glaucoma 8(1), 31–37 (1999).
[CrossRef] [PubMed]

R. W. Knighton and X.-R. Huang, “Directional and spectral reflectance of the rat retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 40(3), 639–647 (1999).
[PubMed]

R. W. Knighton, X. Huang, and Q. Zhou, “Microtubule contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 39(1), 189–193 (1998).
[PubMed]

Kong, W.

X.-R. Huang, W. Kong, Y. Zhou, and G. Gregori, “Distortion of axonal cytoskeleton: an early sign of glaucomatous damage,” Invest. Ophthalmol. Vis. Sci. 52(6), 2879–2888 (2011).
[CrossRef] [PubMed]

Lemij, H. G.

H. G. Lemij and N. J. Reus, “New developments in scanning laser polarimetry for glaucoma,” Curr. Opin. Ophthalmol. 19(2), 136–140 (2008).
[CrossRef] [PubMed]

Markey, M. K.

G. M. Pocock, R. G. Aranibar, N. J. Kemp, C. S. Specht, M. K. Markey, and H. G. Rylander, “The relationship between retinal ganglion cell axon constituents and retinal nerve fiber layer birefringence in the primate,” Invest. Ophthalmol. Vis. Sci. 50(11), 5238–5246 (2009).
[CrossRef] [PubMed]

Mitchell, R. S.

L. A. Kerrigan-Baumrind, H. A. Quigley, M. E. Pease, D. F. Kerrigan, and R. S. Mitchell, “Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons,” Invest. Ophthalmol. Vis. Sci. 41(3), 741–748 (2000).
[PubMed]

Murray, T. G.

Pease, M. E.

L. A. Kerrigan-Baumrind, H. A. Quigley, M. E. Pease, D. F. Kerrigan, and R. S. Mitchell, “Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons,” Invest. Ophthalmol. Vis. Sci. 41(3), 741–748 (2000).
[PubMed]

Pocock, G. M.

G. M. Pocock, R. G. Aranibar, N. J. Kemp, C. S. Specht, M. K. Markey, and H. G. Rylander, “The relationship between retinal ganglion cell axon constituents and retinal nerve fiber layer birefringence in the primate,” Invest. Ophthalmol. Vis. Sci. 50(11), 5238–5246 (2009).
[CrossRef] [PubMed]

Puliafito, C. A.

X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt. 16(8), 080504 (2011).
[CrossRef] [PubMed]

M. Ruggeri, G. Tsechpenakis, S. Jiao, M. E. Jockovich, C. Cebulla, E. Hernandez, T. G. Murray, and C. A. Puliafito, “Retinal tumor imaging and volume quantification in mouse model using spectral-domain optical coherence tomography,” Opt. Express 17(5), 4074–4083 (2009).
[CrossRef] [PubMed]

Quigley, H. A.

H. A. Quigley, “Glaucoma,” Lancet 377(9774), 1367–1377 (2011).
[CrossRef] [PubMed]

L. A. Kerrigan-Baumrind, H. A. Quigley, M. E. Pease, D. F. Kerrigan, and R. S. Mitchell, “Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons,” Invest. Ophthalmol. Vis. Sci. 41(3), 741–748 (2000).
[PubMed]

Reus, N. J.

H. G. Lemij and N. J. Reus, “New developments in scanning laser polarimetry for glaucoma,” Curr. Opin. Ophthalmol. 19(2), 136–140 (2008).
[CrossRef] [PubMed]

Ruggeri, M.

Rylander, H. G.

G. M. Pocock, R. G. Aranibar, N. J. Kemp, C. S. Specht, M. K. Markey, and H. G. Rylander, “The relationship between retinal ganglion cell axon constituents and retinal nerve fiber layer birefringence in the primate,” Invest. Ophthalmol. Vis. Sci. 50(11), 5238–5246 (2009).
[CrossRef] [PubMed]

Schuman, J. S.

M. L. Gabriele, G. Wollstein, H. Ishikawa, L. Kagemann, J. Xu, L. S. Folio, and J. S. Schuman, “Optical coherence tomography: history, current status, and laboratory work,” Invest. Ophthalmol. Vis. Sci. 52(5), 2425–2436 (2011).
[CrossRef] [PubMed]

Specht, C. S.

G. M. Pocock, R. G. Aranibar, N. J. Kemp, C. S. Specht, M. K. Markey, and H. G. Rylander, “The relationship between retinal ganglion cell axon constituents and retinal nerve fiber layer birefringence in the primate,” Invest. Ophthalmol. Vis. Sci. 50(11), 5238–5246 (2009).
[CrossRef] [PubMed]

Tsechpenakis, G.

Wang, L.

B. Fortune, L. Wang, G. Cull, and G. A. Cioffi, “Intravitreal colchicine causes decreased RNFL birefringence without altering RNFL thickness,” Invest. Ophthalmol. Vis. Sci. 49(1), 255–261 (2008).
[CrossRef] [PubMed]

Wollstein, G.

M. L. Gabriele, G. Wollstein, H. Ishikawa, L. Kagemann, J. Xu, L. S. Folio, and J. S. Schuman, “Optical coherence tomography: history, current status, and laboratory work,” Invest. Ophthalmol. Vis. Sci. 52(5), 2425–2436 (2011).
[CrossRef] [PubMed]

Xu, J.

M. L. Gabriele, G. Wollstein, H. Ishikawa, L. Kagemann, J. Xu, L. S. Folio, and J. S. Schuman, “Optical coherence tomography: history, current status, and laboratory work,” Invest. Ophthalmol. Vis. Sci. 52(5), 2425–2436 (2011).
[CrossRef] [PubMed]

Zhang, H. F.

X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt. 16(8), 080504 (2011).
[CrossRef] [PubMed]

Zhang, X.

X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt. 16(8), 080504 (2011).
[CrossRef] [PubMed]

Zhou, Q.

R. W. Knighton, X. Huang, and Q. Zhou, “Microtubule contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 39(1), 189–193 (1998).
[PubMed]

Zhou, Y.

X.-R. Huang, W. Kong, Y. Zhou, and G. Gregori, “Distortion of axonal cytoskeleton: an early sign of glaucomatous damage,” Invest. Ophthalmol. Vis. Sci. 52(6), 2879–2888 (2011).
[CrossRef] [PubMed]

Curr. Opin. Ophthalmol. (1)

H. G. Lemij and N. J. Reus, “New developments in scanning laser polarimetry for glaucoma,” Curr. Opin. Ophthalmol. 19(2), 136–140 (2008).
[CrossRef] [PubMed]

Exp. Eye Res. (1)

X.-R. Huang and R. W. Knighton, “Altered F-actin distribution in retinal nerve fiber layer of a rat model of glaucoma,” Exp. Eye Res. 88(6), 1107–1114 (2009).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (8)

X.-R. Huang, W. Kong, Y. Zhou, and G. Gregori, “Distortion of axonal cytoskeleton: an early sign of glaucomatous damage,” Invest. Ophthalmol. Vis. Sci. 52(6), 2879–2888 (2011).
[CrossRef] [PubMed]

L. A. Kerrigan-Baumrind, H. A. Quigley, M. E. Pease, D. F. Kerrigan, and R. S. Mitchell, “Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons,” Invest. Ophthalmol. Vis. Sci. 41(3), 741–748 (2000).
[PubMed]

M. L. Gabriele, G. Wollstein, H. Ishikawa, L. Kagemann, J. Xu, L. S. Folio, and J. S. Schuman, “Optical coherence tomography: history, current status, and laboratory work,” Invest. Ophthalmol. Vis. Sci. 52(5), 2425–2436 (2011).
[CrossRef] [PubMed]

R. W. Knighton, X. Huang, and Q. Zhou, “Microtubule contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 39(1), 189–193 (1998).
[PubMed]

X.-R. Huang and R. W. Knighton, “Microtubules contribute to the birefringence of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 46(12), 4588–4593 (2005).
[CrossRef] [PubMed]

B. Fortune, L. Wang, G. Cull, and G. A. Cioffi, “Intravitreal colchicine causes decreased RNFL birefringence without altering RNFL thickness,” Invest. Ophthalmol. Vis. Sci. 49(1), 255–261 (2008).
[CrossRef] [PubMed]

G. M. Pocock, R. G. Aranibar, N. J. Kemp, C. S. Specht, M. K. Markey, and H. G. Rylander, “The relationship between retinal ganglion cell axon constituents and retinal nerve fiber layer birefringence in the primate,” Invest. Ophthalmol. Vis. Sci. 50(11), 5238–5246 (2009).
[CrossRef] [PubMed]

R. W. Knighton and X.-R. Huang, “Directional and spectral reflectance of the rat retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 40(3), 639–647 (1999).
[PubMed]

J. Biomed. Opt. (1)

X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt. 16(8), 080504 (2011).
[CrossRef] [PubMed]

J. Glaucoma (1)

R. W. Knighton and X.-R. Huang, “Visible and near-infrared imaging of the nerve fiber layer of the isolated rat retina,” J. Glaucoma 8(1), 31–37 (1999).
[CrossRef] [PubMed]

Lancet (1)

H. A. Quigley, “Glaucoma,” Lancet 377(9774), 1367–1377 (2011).
[CrossRef] [PubMed]

Opt. Express (1)

Other (3)

X.-R. Huang, Y. Zhou, W. Kong, and R. W. Knighton, “Change of retinal nerve fiber layer reflectance correlated with cytostructural change in glaucoma,” ARVO Meeting Abstracts (Fort Lauderdale, Florida 2011), 52:2442.

Scott Prahl, “Optical Absorption of Hemoglobin,” http://omlc.ogi.edu/spectra/hemoglobin/summary.html .

X.-R. Huang, Y. Zhou, W. Kong, and R. W. Knighton, “Reflectance decrease prior to thickness change of the retinal nerve fiber layer in glaucomatous retinas”, Invest. Ophthalmol. Vis. Sci., published ahead of print July 5, 2011.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the dual-band OCT system. M1~M5: mirror; L1~L4: lens; BBO: BBO crystal; LPF: long-pass filter. C1~C6: Collimator; PC: Polarization Controller.

Fig. 2
Fig. 2

Measurement of RNFL reflectance. A: typical reflection image of the RNFL; nerve fiber bundles appear as bright stripes; B: calculated spectral reflectance of the RNFL; Bar: 20 µm.

Fig. 3
Fig. 3

Measured parameters of the NIR and VIS OCT systems. (a) and (b): spectra of the NIR and VIS OCT systems; (c) and (d): PSF of the NIR and VIS OCT systems.

Fig. 4
Fig. 4

Sample images of a rat retina acquired with the NIR OCT and VIS OCT. Images consist of 2048 A-lines. Bar: 100 µm.

Fig. 5
Fig. 5

Normalized average of the A-lines of the OCT images in Fig. 4.

Fig. 6
Fig. 6

Retinal images acquired with the NIR and VIS OCT systems. (a): B-scan image of the NIR OCT; (b): B-scan image of the VIS OCT; (c): NIR-OCT fundus image; (d): VIS-OCT fundus image. BV: blood vessel. Bar: 100 µm.

Fig. 7
Fig. 7

Calculation of the ratio of RNFL reflection over the total fundus reflection for NIR (a) and VIS (b) OCT B-scans. Bar: 100 µm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I r ( z 1 ~ z 2 ) ( x ) = z 1 z 2 I O C T ( x , z )
R R N F L = I r ( z 1 ~ z 2 ) ( x ) I r ( t o t a l ) .

Metrics