Abstract

We demonstrate a new fiber based concept to filter azimuthally or radially polarized light. This concept is based on the lifting of the modal degeneracy that takes place in high numerical aperture fibers. In such fibers, the radially and azimuthally polarized modes can be spectrally separated using a fiber Bragg grating. As a proof of principle, we filter azimuthally polarized light in a commercially available fiber in which a fiber Bragg grating has been written by a femtosecond pulsed laser.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999).
    [CrossRef]
  2. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
    [CrossRef] [PubMed]
  3. Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett. 31(11), 1726–1728 (2006).
    [CrossRef] [PubMed]
  4. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
    [CrossRef] [PubMed]
  5. W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
    [CrossRef] [PubMed]
  6. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21(23), 1948–1950 (1996).
    [CrossRef] [PubMed]
  7. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [CrossRef] [PubMed]
  8. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29(15), 2234–2239 (1990).
    [CrossRef] [PubMed]
  9. T. G. Euser, M. A. Schmidt, N. Y. Joly, C. Gabriel, C. Marquardt, L. Y. Zang, M. Förtsch, P. Banzer, A. Brenn, D. Elser, M. Scharrer, G. Leuchs, and P. St. J. Russell, “Birefringence and dispersion of cylindrically polarized modes in nanobore photonic crystal fiber,” J. Opt. Soc. Am. B 28(1), 193–198 (2011).
    [CrossRef]
  10. S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009).
    [CrossRef] [PubMed]
  11. F. Stutzki, C. Jauregui, C. Voigtländer, J. U. Thomas, J. Limpert, S. Nolte, and A. Tünnermann, “Passively stabilized 215 W monolithic CW LMA-fiber laser with innovative transversal mode filter,” Proc. SPIE 7580, 75801K, 75801K-10 (2010).
    [CrossRef]
  12. F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “Real-time characterisation of modal content in monolithic few-mode fiber lasers,” Electron. Lett. 47(4), 274–275 (2011).
    [CrossRef]
  13. J. M. O. Daniel, J. S. P. Chan, J. W. Kim, J. K. Sahu, M. Ibsen, and W. A. Clarkson, “Novel technique for mode selection in a multimode fiber laser,” Opt. Express 19(13), 12434–12439 (2011).
    [CrossRef] [PubMed]
  14. A. W. Snyder, “Asymptotic expressions for eigenfunctions and eigenvalues of a dielectric or optical waveguide,” IEEE Trans. Microw. Theory Tech. 17(12), 1130–1138 (1969).
    [CrossRef]
  15. D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10(10), 2252–2258 (1971).
    [CrossRef] [PubMed]
  16. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer Academic, 1983).
  17. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [CrossRef]
  18. J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fibre Bragg grating,” Proc. SPIE 7589, 75890J, 75890J-9 (2010).
    [CrossRef]
  19. J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006).
    [CrossRef]

2011 (3)

2010 (2)

J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fibre Bragg grating,” Proc. SPIE 7589, 75890J, 75890J-9 (2010).
[CrossRef]

F. Stutzki, C. Jauregui, C. Voigtländer, J. U. Thomas, J. Limpert, S. Nolte, and A. Tünnermann, “Passively stabilized 215 W monolithic CW LMA-fiber laser with innovative transversal mode filter,” Proc. SPIE 7580, 75801K, 75801K-10 (2010).
[CrossRef]

2009 (1)

2006 (2)

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006).
[CrossRef]

Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett. 31(11), 1726–1728 (2006).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

2001 (1)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

1999 (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999).
[CrossRef]

1997 (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

1996 (1)

1995 (1)

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
[CrossRef] [PubMed]

1990 (1)

1971 (1)

1969 (1)

A. W. Snyder, “Asymptotic expressions for eigenfunctions and eigenvalues of a dielectric or optical waveguide,” IEEE Trans. Microw. Theory Tech. 17(12), 1130–1138 (1969).
[CrossRef]

Banzer, P.

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Brenn, A.

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Chan, J. S. P.

Clarkson, W. A.

Clausnitzer, T.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006).
[CrossRef]

Daniel, J. M. O.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

Elser, D.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

Euser, T. G.

Fernow, R. C.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
[CrossRef] [PubMed]

Ford, D. H.

Förtsch, M.

Fuchs, U.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006).
[CrossRef]

Gabriel, C.

Gloge, D.

Ibsen, M.

Jauregui, C.

F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “Real-time characterisation of modal content in monolithic few-mode fiber lasers,” Electron. Lett. 47(4), 274–275 (2011).
[CrossRef]

F. Stutzki, C. Jauregui, C. Voigtländer, J. U. Thomas, J. Limpert, S. Nolte, and A. Tünnermann, “Passively stabilized 215 W monolithic CW LMA-fiber laser with innovative transversal mode filter,” Proc. SPIE 7580, 75801K, 75801K-10 (2010).
[CrossRef]

Joly, N. Y.

Jovanovic, N.

J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fibre Bragg grating,” Proc. SPIE 7589, 75890J, 75890J-9 (2010).
[CrossRef]

Kim, G. H.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
[CrossRef] [PubMed]

Kim, J. W.

Kimura, W. D.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
[CrossRef] [PubMed]

S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29(15), 2234–2239 (1990).
[CrossRef] [PubMed]

Kristensen, P.

Kusche, K. P.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
[CrossRef] [PubMed]

Leuchs, G.

Limpert, J.

F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “Real-time characterisation of modal content in monolithic few-mode fiber lasers,” Electron. Lett. 47(4), 274–275 (2011).
[CrossRef]

F. Stutzki, C. Jauregui, C. Voigtländer, J. U. Thomas, J. Limpert, S. Nolte, and A. Tünnermann, “Passively stabilized 215 W monolithic CW LMA-fiber laser with innovative transversal mode filter,” Proc. SPIE 7580, 75801K, 75801K-10 (2010).
[CrossRef]

Liu, Y.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
[CrossRef] [PubMed]

Marquardt, C.

Marshall, G. D.

J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fibre Bragg grating,” Proc. SPIE 7589, 75890J, 75890J-9 (2010).
[CrossRef]

Nesterov, A. V.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999).
[CrossRef]

Niziev, V. G.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999).
[CrossRef]

Nolte, S.

F. Stutzki, C. Jauregui, C. Voigtländer, J. U. Thomas, J. Limpert, S. Nolte, and A. Tünnermann, “Passively stabilized 215 W monolithic CW LMA-fiber laser with innovative transversal mode filter,” Proc. SPIE 7580, 75801K, 75801K-10 (2010).
[CrossRef]

J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fibre Bragg grating,” Proc. SPIE 7589, 75890J, 75890J-9 (2010).
[CrossRef]

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006).
[CrossRef]

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Pogorelsky, I. V.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
[CrossRef] [PubMed]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

Ramachandran, S.

Romea, R. D.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
[CrossRef] [PubMed]

Russell, P. St. J.

Sahu, J. K.

Schadt, M.

Scharrer, M.

Schmidt, M. A.

Snyder, A. W.

A. W. Snyder, “Asymptotic expressions for eigenfunctions and eigenvalues of a dielectric or optical waveguide,” IEEE Trans. Microw. Theory Tech. 17(12), 1130–1138 (1969).
[CrossRef]

Stalder, M.

Steel, M.

J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fibre Bragg grating,” Proc. SPIE 7589, 75890J, 75890J-9 (2010).
[CrossRef]

Steinhauer, L. C.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
[CrossRef] [PubMed]

Stutzki, F.

F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “Real-time characterisation of modal content in monolithic few-mode fiber lasers,” Electron. Lett. 47(4), 274–275 (2011).
[CrossRef]

F. Stutzki, C. Jauregui, C. Voigtländer, J. U. Thomas, J. Limpert, S. Nolte, and A. Tünnermann, “Passively stabilized 215 W monolithic CW LMA-fiber laser with innovative transversal mode filter,” Proc. SPIE 7580, 75801K, 75801K-10 (2010).
[CrossRef]

Thomas, J.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006).
[CrossRef]

Thomas, J. U.

F. Stutzki, C. Jauregui, C. Voigtländer, J. U. Thomas, J. Limpert, S. Nolte, and A. Tünnermann, “Passively stabilized 215 W monolithic CW LMA-fiber laser with innovative transversal mode filter,” Proc. SPIE 7580, 75801K, 75801K-10 (2010).
[CrossRef]

J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fibre Bragg grating,” Proc. SPIE 7589, 75890J, 75890J-9 (2010).
[CrossRef]

Tidwell, S. C.

Tünnermann, A.

F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “Real-time characterisation of modal content in monolithic few-mode fiber lasers,” Electron. Lett. 47(4), 274–275 (2011).
[CrossRef]

F. Stutzki, C. Jauregui, C. Voigtländer, J. U. Thomas, J. Limpert, S. Nolte, and A. Tünnermann, “Passively stabilized 215 W monolithic CW LMA-fiber laser with innovative transversal mode filter,” Proc. SPIE 7580, 75801K, 75801K-10 (2010).
[CrossRef]

J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fibre Bragg grating,” Proc. SPIE 7589, 75890J, 75890J-9 (2010).
[CrossRef]

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006).
[CrossRef]

Voigtländer, C.

J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fibre Bragg grating,” Proc. SPIE 7589, 75890J, 75890J-9 (2010).
[CrossRef]

F. Stutzki, C. Jauregui, C. Voigtländer, J. U. Thomas, J. Limpert, S. Nolte, and A. Tünnermann, “Passively stabilized 215 W monolithic CW LMA-fiber laser with innovative transversal mode filter,” Proc. SPIE 7580, 75801K, 75801K-10 (2010).
[CrossRef]

Wang, X.

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
[CrossRef] [PubMed]

Wikszak, E.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006).
[CrossRef]

Withford, M. J.

J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fibre Bragg grating,” Proc. SPIE 7589, 75890J, 75890J-9 (2010).
[CrossRef]

Yan, M. F.

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Zang, L. Y.

Zeitner, U.

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006).
[CrossRef]

Zhan, Q.

Appl. Opt. (2)

Appl. Phys., A Mater. Sci. Process. (1)

J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, and A. Tünnermann, “Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 153–157 (2006).
[CrossRef]

Electron. Lett. (1)

F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “Real-time characterisation of modal content in monolithic few-mode fiber lasers,” Electron. Lett. 47(4), 274–275 (2011).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

A. W. Snyder, “Asymptotic expressions for eigenfunctions and eigenvalues of a dielectric or optical waveguide,” IEEE Trans. Microw. Theory Tech. 17(12), 1130–1138 (1969).
[CrossRef]

J. Lightwave Technol. (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. Lett. (3)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, “Laser acceleration of relativistic electrons using the inverse Cherenkov effect,” Phys. Rev. Lett. 74(4), 546–549 (1995).
[CrossRef] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef] [PubMed]

Proc. SPIE (2)

F. Stutzki, C. Jauregui, C. Voigtländer, J. U. Thomas, J. Limpert, S. Nolte, and A. Tünnermann, “Passively stabilized 215 W monolithic CW LMA-fiber laser with innovative transversal mode filter,” Proc. SPIE 7580, 75801K, 75801K-10 (2010).
[CrossRef]

J. U. Thomas, C. Voigtländer, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, “Mode selective fibre Bragg grating,” Proc. SPIE 7589, 75890J, 75890J-9 (2010).
[CrossRef]

Other (1)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer Academic, 1983).

Supplementary Material (1)

» Media 1: AVI (3911 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Intensity patterns together with the intrinsic polarization characteristics for the TE01, TM01 and two HE21 modes. In weakly guiding fibers this set of modes is degenerated giving rise to the LP11-modes, which are shown on the right-hand side.

Fig. 2
Fig. 2

Effective index difference (a) between the TE01 and its nearest neighbor mode and (b) between the TM01 and the two HE21 modes in a strongly guiding step index fiber as a function of the core radius and the NA, shown in logarithmic scale. The wavelength is 1030 nm.

Fig. 3
Fig. 3

Effective refractive index differences between the TE01, TM01 and HE21 modes for a step-index fiber with a core diameter of 3 µm and a NA of 0,41 as a function of wavelength.

Fig. 4
Fig. 4

Experimental setup used for the proof-of-principle filtering of an azimuthally polarized beam. PC: polarizing cube, BS: beam splitter.

Fig. 5
Fig. 5

Reflected spectrum of the FBG measured with an optical spectrum analyzer.

Fig. 6
Fig. 6

Theoretical azimuthally polarized beam (above) together with the corresponding measurement (below) at 1045.2 nm. (a) Intensity distribution without PC and half-wave plate. (b-e) Polarization filtered beam with the PC and half-wave plate at different transmission directions as indicated by the arrow. A video showing the rotation of the polarization filtered beam with the half-wave plate is presented in Media 1.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ = 2 n e f f Λ m .
Δ λ = 2 ( n e f f , 1 n e f f , 2 ) Λ m .

Metrics