Abstract

We report on the existence of nondiffracting Bessel surface plasmon polaritons (SPPs), advancing at either superluminal or subluminal phase velocities. These wave fields feature deep subwavelength FWHM, but are supported by high-order homogeneous SPPs of a metal/dielectric (MD) superlattice. The beam axis can be relocated to any MD interface, by interfering multiple converging SPPs with controlled phase matching. Dissipative effects in metals lead to a diffraction-free regime that is limited by the energy attenuation length. However, the ultra-localization of the diffracted wave field might still be maintained by more than one order of magnitude.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).
    [CrossRef]
  2. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
    [CrossRef] [PubMed]
  3. V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
    [CrossRef] [PubMed]
  4. J. Jezek, T. Cizmar, V. Nedela, and P. Zemanek, “Formation of long and thin polymer fiber using nondiffracting beam,” Opt. Express 14(19), 8506–8515 (2006).
    [CrossRef] [PubMed]
  5. M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, L. Furfaro, M. J. Withford, and J. M. Dudley, “High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams,” Opt. Express 18(2), 566–574 (2010).
    [CrossRef] [PubMed]
  6. B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E 55(3, Part B), 3539–3545 (1997).
    [CrossRef]
  7. Y. Kartashov, V. Vysloukh, and L. Torner, “Rotary solitons in Bessel optical lattices,” Phys. Rev. Lett. 93(9), 093904 (2004).
    [CrossRef] [PubMed]
  8. M. A. Porras, G. Valiulis, and P. D. Trapani, “Unified description of Bessel X waves with cone dispersion and tilted pulses,” Phys. Rev. E 68, 016613 (2003).
    [CrossRef]
  9. C. J. Zapata-Rodríguez and M. A. Porras, “X-wave bullets with negative group velocity in vacuum,” Opt. Lett. 31(23), 3532–3534 (2006).
    [CrossRef] [PubMed]
  10. T. Wulle and S. Herminghaus, “Nonlinear optics of Bessel beams,” Phys. Rev. Lett. 70, 1401–1404 (1993).
    [CrossRef] [PubMed]
  11. L. Van Dao, K. B. Dinh, and P. Hannaford, “Generation of extreme ultraviolet radiation with a Bessel–Gaussian beam,” Appl. Phys. Lett. 95(13) (2009).
    [CrossRef]
  12. J. Fan, E. Parra, and H. Milchberg, “Resonant self-trapping and absorption of intense Bessel beams,” Phys. Rev. Lett. 84(14), 3085–3088 (2000).
    [CrossRef] [PubMed]
  13. P. Polesana, A. Couairon, D. Faccio, A. Parola, M. A. Porras, A. Dubietis, A. Piskarskas, and P. Di Trapani, “Observation of conical waves in focusing, dispersive, and dissipative Kerr media,” Phys. Rev. Lett. 99(22), 223902 (2007).
    [CrossRef]
  14. D. Faccio and P. Di Trapani, “Conical-wave nonlinear optics: From Raman conversion to extreme UV generation,” Laser Phys. 18(3), 253–262 (2008).
    [CrossRef]
  15. H. Kano, D. Nomura, and H. Shibuya, “Excitation of surface-plasmon polaritons by use of a zeroth-order Bessel beam,” Appl. Opt. 43(12), 2409–2411 (2004).
    [CrossRef] [PubMed]
  16. K. J. Moh, X. C. Yuan, J. Bu, S. W. Zhu, and B. Z. Gao, “Radial polarization induced surface plasmon virtual probe for two-photon fluorescence microscopy,” Opt. Lett. 34(7), 971–973 (2009).
    [CrossRef] [PubMed]
  17. Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett. 31(11), 1726–1728 (2006).
    [CrossRef] [PubMed]
  18. A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. C. d. Francs, J.-C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32(17), 2535–2537 (2007).
    [CrossRef] [PubMed]
  19. W. Chen and Q. Zhan, “Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam,” Opt. Lett. 34(6), 722–724 (2009).
    [CrossRef] [PubMed]
  20. A. Shaarawi, B. Tawfik, and I. Besieris, “Superluminal advanced transmission of X waves undergoing frustrated total internal reflection: the evanescent fields and the Goos–Hanchen effect,” Phys. Rev. E 66(4, Part 2), 046626 (2002).
    [CrossRef]
  21. S. Longhi, K. Janner, and P. Laporta, “Propagating pulsed Bessel beams in periodic media,” J. Opt. B 6, 477–481 (2004).
    [CrossRef]
  22. W. Williams and J. Pendry, “Generating Bessel beams by use of localized modes,” J. Opt. Soc. Am. A 22(5), 992–997 (2005).
    [CrossRef]
  23. C. J. Zapata-Rodríguez, M. T. Caballero, and J. J. Miret, “Angular spectrum of diffracted wave fields with apochromatic correction,” Opt. Lett. 33, 1753–1755 (2008).
    [CrossRef] [PubMed]
  24. A. V. Novitsky and L. M. Barkovsky, “Total internal reflection of vector Bessel beams: Imbert-Fedorov shift and intensity transformation,” J. Opt. A 10(7), 075006 (2008).
    [CrossRef]
  25. V. N. Belyi, N. S. Kazak, S. N. Kurilkina, and N. A. Khilo, “Generation of TE- and TH-polarized Bessel beams using one-dimensional photonic crystal,” Opt. Commun. 282(10), 1998–2008 (2009).
    [CrossRef]
  26. D. Mugnai and P. Spalla, “Electromagnetic propagation of Bessel-like localized waves in the presence of absorbing media,” Opt. Commun. 282, 4668–4671 (2009).
    [CrossRef]
  27. G. Rui, Y. Lu, P. Wang, H. Ming, and Q. Zhan, “Evanescent Bessel beam generation through filtering highly focused cylindrical vector beams with a defect mode one-dimensional photonic crystal,” Opt. Commun. 283(10), 2272–2276 (2010).
    [CrossRef]
  28. C. J. Zapata-Rodríguez and J. J. Miret, “Diffraction-free beams in thin films,” J. Opt. Soc. Am. A 27, 663–670 (2010).
    [CrossRef]
  29. C. Zapata-Rodríguez and J. Miret, “Subwavelength nondiffractting beams in multilayered media,” Appl. Phys. A 103, 699–702 (2011).
    [CrossRef]
  30. S. Longhi and D. Janner, “X-shaped waves in photonic crystals,” Phys. Rev. B 70, 235123 (2004).
    [CrossRef]
  31. O. Manela, M. Segev, and D. N. Christodoulides, “Nondiffracting beams in periodic media,” Opt. Lett. 30, 2611–2613 (2005).
    [CrossRef] [PubMed]
  32. J. J. Miret and C. J. Zapata-Rodríguez, “Diffraction-free beams with elliptic Bessel envelope in periodic media,” J. Opt. Soc. Am. B 25, 1–6 (2008).
    [CrossRef]
  33. J. J. Miret and C. J. Zapata-Rodríguez, “Diffraction-free propagation of subwavelength light beams in layered media,” J. Opt. Soc. Am. B 27(7), 1435–1445 (2010).
    [CrossRef]
  34. J. J. Miret, D. Pastor, and C. J. Zapata-Rodriguez, “Subwavelength surface waves with zero diffraction,” J. Nanophoton. 5, 051801 (2011).
    [CrossRef]
  35. A. Salandrino and D. N. Christodoulides, “Airy plasmon: a nondiffracting surface wave,” Opt. Lett. 35, 2082–2084 (2010).
    [CrossRef] [PubMed]
  36. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  37. S. M. Vukovic, Z. Jaksic, and J. Matovic, “Plasmon modes on laminated nanomembrane-based waveguides,” J. Nanophoton. 4, 041770 (2010).
    [CrossRef]
  38. H. M. Antia, Numerical methods for scientists and engineers (Tata McGraw-Hill Publishing Company Limited, 1991).
  39. J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90(19), 191109 (2007).
    [CrossRef]
  40. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals. Molding the flow of light (Princeton University Press, 2008).

2011 (2)

C. Zapata-Rodríguez and J. Miret, “Subwavelength nondiffractting beams in multilayered media,” Appl. Phys. A 103, 699–702 (2011).
[CrossRef]

J. J. Miret, D. Pastor, and C. J. Zapata-Rodriguez, “Subwavelength surface waves with zero diffraction,” J. Nanophoton. 5, 051801 (2011).
[CrossRef]

2010 (6)

2009 (5)

V. N. Belyi, N. S. Kazak, S. N. Kurilkina, and N. A. Khilo, “Generation of TE- and TH-polarized Bessel beams using one-dimensional photonic crystal,” Opt. Commun. 282(10), 1998–2008 (2009).
[CrossRef]

D. Mugnai and P. Spalla, “Electromagnetic propagation of Bessel-like localized waves in the presence of absorbing media,” Opt. Commun. 282, 4668–4671 (2009).
[CrossRef]

L. Van Dao, K. B. Dinh, and P. Hannaford, “Generation of extreme ultraviolet radiation with a Bessel–Gaussian beam,” Appl. Phys. Lett. 95(13) (2009).
[CrossRef]

W. Chen and Q. Zhan, “Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam,” Opt. Lett. 34(6), 722–724 (2009).
[CrossRef] [PubMed]

K. J. Moh, X. C. Yuan, J. Bu, S. W. Zhu, and B. Z. Gao, “Radial polarization induced surface plasmon virtual probe for two-photon fluorescence microscopy,” Opt. Lett. 34(7), 971–973 (2009).
[CrossRef] [PubMed]

2008 (4)

D. Faccio and P. Di Trapani, “Conical-wave nonlinear optics: From Raman conversion to extreme UV generation,” Laser Phys. 18(3), 253–262 (2008).
[CrossRef]

A. V. Novitsky and L. M. Barkovsky, “Total internal reflection of vector Bessel beams: Imbert-Fedorov shift and intensity transformation,” J. Opt. A 10(7), 075006 (2008).
[CrossRef]

J. J. Miret and C. J. Zapata-Rodríguez, “Diffraction-free beams with elliptic Bessel envelope in periodic media,” J. Opt. Soc. Am. B 25, 1–6 (2008).
[CrossRef]

C. J. Zapata-Rodríguez, M. T. Caballero, and J. J. Miret, “Angular spectrum of diffracted wave fields with apochromatic correction,” Opt. Lett. 33, 1753–1755 (2008).
[CrossRef] [PubMed]

2007 (3)

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90(19), 191109 (2007).
[CrossRef]

P. Polesana, A. Couairon, D. Faccio, A. Parola, M. A. Porras, A. Dubietis, A. Piskarskas, and P. Di Trapani, “Observation of conical waves in focusing, dispersive, and dissipative Kerr media,” Phys. Rev. Lett. 99(22), 223902 (2007).
[CrossRef]

A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. C. d. Francs, J.-C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32(17), 2535–2537 (2007).
[CrossRef] [PubMed]

2006 (3)

2005 (2)

2004 (4)

H. Kano, D. Nomura, and H. Shibuya, “Excitation of surface-plasmon polaritons by use of a zeroth-order Bessel beam,” Appl. Opt. 43(12), 2409–2411 (2004).
[CrossRef] [PubMed]

Y. Kartashov, V. Vysloukh, and L. Torner, “Rotary solitons in Bessel optical lattices,” Phys. Rev. Lett. 93(9), 093904 (2004).
[CrossRef] [PubMed]

S. Longhi, K. Janner, and P. Laporta, “Propagating pulsed Bessel beams in periodic media,” J. Opt. B 6, 477–481 (2004).
[CrossRef]

S. Longhi and D. Janner, “X-shaped waves in photonic crystals,” Phys. Rev. B 70, 235123 (2004).
[CrossRef]

2003 (1)

M. A. Porras, G. Valiulis, and P. D. Trapani, “Unified description of Bessel X waves with cone dispersion and tilted pulses,” Phys. Rev. E 68, 016613 (2003).
[CrossRef]

2002 (2)

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

A. Shaarawi, B. Tawfik, and I. Besieris, “Superluminal advanced transmission of X waves undergoing frustrated total internal reflection: the evanescent fields and the Goos–Hanchen effect,” Phys. Rev. E 66(4, Part 2), 046626 (2002).
[CrossRef]

2000 (1)

J. Fan, E. Parra, and H. Milchberg, “Resonant self-trapping and absorption of intense Bessel beams,” Phys. Rev. Lett. 84(14), 3085–3088 (2000).
[CrossRef] [PubMed]

1997 (1)

B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E 55(3, Part B), 3539–3545 (1997).
[CrossRef]

1993 (1)

T. Wulle and S. Herminghaus, “Nonlinear optics of Bessel beams,” Phys. Rev. Lett. 70, 1401–1404 (1993).
[CrossRef] [PubMed]

1987 (2)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef] [PubMed]

J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).
[CrossRef]

Antia, H. M.

H. M. Antia, Numerical methods for scientists and engineers (Tata McGraw-Hill Publishing Company Limited, 1991).

Avrutsky, I.

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90(19), 191109 (2007).
[CrossRef]

Barkovsky, L. M.

A. V. Novitsky and L. M. Barkovsky, “Total internal reflection of vector Bessel beams: Imbert-Fedorov shift and intensity transformation,” J. Opt. A 10(7), 075006 (2008).
[CrossRef]

Belyi, V. N.

V. N. Belyi, N. S. Kazak, S. N. Kurilkina, and N. A. Khilo, “Generation of TE- and TH-polarized Bessel beams using one-dimensional photonic crystal,” Opt. Commun. 282(10), 1998–2008 (2009).
[CrossRef]

Besieris, I.

A. Shaarawi, B. Tawfik, and I. Besieris, “Superluminal advanced transmission of X waves undergoing frustrated total internal reflection: the evanescent fields and the Goos–Hanchen effect,” Phys. Rev. E 66(4, Part 2), 046626 (2002).
[CrossRef]

Bhuyan, M. K.

Bouhelier, A.

Bruyant, A.

Bu, J.

Caballero, M. T.

Chen, W.

Christodoulides, D. N.

Cizmar, T.

Couairon, A.

P. Polesana, A. Couairon, D. Faccio, A. Parola, M. A. Porras, A. Dubietis, A. Piskarskas, and P. Di Trapani, “Observation of conical waves in focusing, dispersive, and dissipative Kerr media,” Phys. Rev. Lett. 99(22), 223902 (2007).
[CrossRef]

Courvoisier, F.

Dereux, A.

Dholakia, K.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Di Trapani, P.

D. Faccio and P. Di Trapani, “Conical-wave nonlinear optics: From Raman conversion to extreme UV generation,” Laser Phys. 18(3), 253–262 (2008).
[CrossRef]

P. Polesana, A. Couairon, D. Faccio, A. Parola, M. A. Porras, A. Dubietis, A. Piskarskas, and P. Di Trapani, “Observation of conical waves in focusing, dispersive, and dissipative Kerr media,” Phys. Rev. Lett. 99(22), 223902 (2007).
[CrossRef]

Dinh, K. B.

L. Van Dao, K. B. Dinh, and P. Hannaford, “Generation of extreme ultraviolet radiation with a Bessel–Gaussian beam,” Appl. Phys. Lett. 95(13) (2009).
[CrossRef]

Dubietis, A.

P. Polesana, A. Couairon, D. Faccio, A. Parola, M. A. Porras, A. Dubietis, A. Piskarskas, and P. Di Trapani, “Observation of conical waves in focusing, dispersive, and dissipative Kerr media,” Phys. Rev. Lett. 99(22), 223902 (2007).
[CrossRef]

Dudley, J. M.

Durnin, J.

J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).
[CrossRef]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef] [PubMed]

Eberly, J. H.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef] [PubMed]

Elser, J.

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90(19), 191109 (2007).
[CrossRef]

Esarey, E.

B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E 55(3, Part B), 3539–3545 (1997).
[CrossRef]

Faccio, D.

D. Faccio and P. Di Trapani, “Conical-wave nonlinear optics: From Raman conversion to extreme UV generation,” Laser Phys. 18(3), 253–262 (2008).
[CrossRef]

P. Polesana, A. Couairon, D. Faccio, A. Parola, M. A. Porras, A. Dubietis, A. Piskarskas, and P. Di Trapani, “Observation of conical waves in focusing, dispersive, and dissipative Kerr media,” Phys. Rev. Lett. 99(22), 223902 (2007).
[CrossRef]

Fan, J.

J. Fan, E. Parra, and H. Milchberg, “Resonant self-trapping and absorption of intense Bessel beams,” Phys. Rev. Lett. 84(14), 3085–3088 (2000).
[CrossRef] [PubMed]

Francs, G. C. d.

Furfaro, L.

Gao, B. Z.

Garces-Chavez, V.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Hafizi, B.

B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E 55(3, Part B), 3539–3545 (1997).
[CrossRef]

Hannaford, P.

L. Van Dao, K. B. Dinh, and P. Hannaford, “Generation of extreme ultraviolet radiation with a Bessel–Gaussian beam,” Appl. Phys. Lett. 95(13) (2009).
[CrossRef]

Herminghaus, S.

T. Wulle and S. Herminghaus, “Nonlinear optics of Bessel beams,” Phys. Rev. Lett. 70, 1401–1404 (1993).
[CrossRef] [PubMed]

Huang, C.

Ignatovich, F.

Jacquot, M.

Jaksic, Z.

S. M. Vukovic, Z. Jaksic, and J. Matovic, “Plasmon modes on laminated nanomembrane-based waveguides,” J. Nanophoton. 4, 041770 (2010).
[CrossRef]

Janner, D.

S. Longhi and D. Janner, “X-shaped waves in photonic crystals,” Phys. Rev. B 70, 235123 (2004).
[CrossRef]

Janner, K.

S. Longhi, K. Janner, and P. Laporta, “Propagating pulsed Bessel beams in periodic media,” J. Opt. B 6, 477–481 (2004).
[CrossRef]

Jezek, J.

Joannopoulos, J. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals. Molding the flow of light (Princeton University Press, 2008).

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals. Molding the flow of light (Princeton University Press, 2008).

Kano, H.

Kartashov, Y.

Y. Kartashov, V. Vysloukh, and L. Torner, “Rotary solitons in Bessel optical lattices,” Phys. Rev. Lett. 93(9), 093904 (2004).
[CrossRef] [PubMed]

Kazak, N. S.

V. N. Belyi, N. S. Kazak, S. N. Kurilkina, and N. A. Khilo, “Generation of TE- and TH-polarized Bessel beams using one-dimensional photonic crystal,” Opt. Commun. 282(10), 1998–2008 (2009).
[CrossRef]

Khilo, N. A.

V. N. Belyi, N. S. Kazak, S. N. Kurilkina, and N. A. Khilo, “Generation of TE- and TH-polarized Bessel beams using one-dimensional photonic crystal,” Opt. Commun. 282(10), 1998–2008 (2009).
[CrossRef]

Kurilkina, S. N.

V. N. Belyi, N. S. Kazak, S. N. Kurilkina, and N. A. Khilo, “Generation of TE- and TH-polarized Bessel beams using one-dimensional photonic crystal,” Opt. Commun. 282(10), 1998–2008 (2009).
[CrossRef]

Lacourt, P. A.

Laporta, P.

S. Longhi, K. Janner, and P. Laporta, “Propagating pulsed Bessel beams in periodic media,” J. Opt. B 6, 477–481 (2004).
[CrossRef]

Longhi, S.

S. Longhi, K. Janner, and P. Laporta, “Propagating pulsed Bessel beams in periodic media,” J. Opt. B 6, 477–481 (2004).
[CrossRef]

S. Longhi and D. Janner, “X-shaped waves in photonic crystals,” Phys. Rev. B 70, 235123 (2004).
[CrossRef]

Lu, Y.

G. Rui, Y. Lu, P. Wang, H. Ming, and Q. Zhan, “Evanescent Bessel beam generation through filtering highly focused cylindrical vector beams with a defect mode one-dimensional photonic crystal,” Opt. Commun. 283(10), 2272–2276 (2010).
[CrossRef]

Manela, O.

Matovic, J.

S. M. Vukovic, Z. Jaksic, and J. Matovic, “Plasmon modes on laminated nanomembrane-based waveguides,” J. Nanophoton. 4, 041770 (2010).
[CrossRef]

McGloin, D.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals. Molding the flow of light (Princeton University Press, 2008).

Melville, H.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef] [PubMed]

Milchberg, H.

J. Fan, E. Parra, and H. Milchberg, “Resonant self-trapping and absorption of intense Bessel beams,” Phys. Rev. Lett. 84(14), 3085–3088 (2000).
[CrossRef] [PubMed]

Ming, H.

G. Rui, Y. Lu, P. Wang, H. Ming, and Q. Zhan, “Evanescent Bessel beam generation through filtering highly focused cylindrical vector beams with a defect mode one-dimensional photonic crystal,” Opt. Commun. 283(10), 2272–2276 (2010).
[CrossRef]

Miret, J.

C. Zapata-Rodríguez and J. Miret, “Subwavelength nondiffractting beams in multilayered media,” Appl. Phys. A 103, 699–702 (2011).
[CrossRef]

Miret, J. J.

Moh, K. J.

Mugnai, D.

D. Mugnai and P. Spalla, “Electromagnetic propagation of Bessel-like localized waves in the presence of absorbing media,” Opt. Commun. 282, 4668–4671 (2009).
[CrossRef]

Nedela, V.

Nomura, D.

Novitsky, A. V.

A. V. Novitsky and L. M. Barkovsky, “Total internal reflection of vector Bessel beams: Imbert-Fedorov shift and intensity transformation,” J. Opt. A 10(7), 075006 (2008).
[CrossRef]

Novotny, L.

Parola, A.

P. Polesana, A. Couairon, D. Faccio, A. Parola, M. A. Porras, A. Dubietis, A. Piskarskas, and P. Di Trapani, “Observation of conical waves in focusing, dispersive, and dissipative Kerr media,” Phys. Rev. Lett. 99(22), 223902 (2007).
[CrossRef]

Parra, E.

J. Fan, E. Parra, and H. Milchberg, “Resonant self-trapping and absorption of intense Bessel beams,” Phys. Rev. Lett. 84(14), 3085–3088 (2000).
[CrossRef] [PubMed]

Pastor, D.

J. J. Miret, D. Pastor, and C. J. Zapata-Rodriguez, “Subwavelength surface waves with zero diffraction,” J. Nanophoton. 5, 051801 (2011).
[CrossRef]

Pendry, J.

Piskarskas, A.

P. Polesana, A. Couairon, D. Faccio, A. Parola, M. A. Porras, A. Dubietis, A. Piskarskas, and P. Di Trapani, “Observation of conical waves in focusing, dispersive, and dissipative Kerr media,” Phys. Rev. Lett. 99(22), 223902 (2007).
[CrossRef]

Podolskiy, V. A.

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90(19), 191109 (2007).
[CrossRef]

Polesana, P.

P. Polesana, A. Couairon, D. Faccio, A. Parola, M. A. Porras, A. Dubietis, A. Piskarskas, and P. Di Trapani, “Observation of conical waves in focusing, dispersive, and dissipative Kerr media,” Phys. Rev. Lett. 99(22), 223902 (2007).
[CrossRef]

Porras, M. A.

P. Polesana, A. Couairon, D. Faccio, A. Parola, M. A. Porras, A. Dubietis, A. Piskarskas, and P. Di Trapani, “Observation of conical waves in focusing, dispersive, and dissipative Kerr media,” Phys. Rev. Lett. 99(22), 223902 (2007).
[CrossRef]

C. J. Zapata-Rodríguez and M. A. Porras, “X-wave bullets with negative group velocity in vacuum,” Opt. Lett. 31(23), 3532–3534 (2006).
[CrossRef] [PubMed]

M. A. Porras, G. Valiulis, and P. D. Trapani, “Unified description of Bessel X waves with cone dispersion and tilted pulses,” Phys. Rev. E 68, 016613 (2003).
[CrossRef]

Rui, G.

G. Rui, Y. Lu, P. Wang, H. Ming, and Q. Zhan, “Evanescent Bessel beam generation through filtering highly focused cylindrical vector beams with a defect mode one-dimensional photonic crystal,” Opt. Commun. 283(10), 2272–2276 (2010).
[CrossRef]

Salakhutdinov, I.

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90(19), 191109 (2007).
[CrossRef]

Salandrino, A.

Segev, M.

Shaarawi, A.

A. Shaarawi, B. Tawfik, and I. Besieris, “Superluminal advanced transmission of X waves undergoing frustrated total internal reflection: the evanescent fields and the Goos–Hanchen effect,” Phys. Rev. E 66(4, Part 2), 046626 (2002).
[CrossRef]

Shibuya, H.

Sibbett, W.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Spalla, P.

D. Mugnai and P. Spalla, “Electromagnetic propagation of Bessel-like localized waves in the presence of absorbing media,” Opt. Commun. 282, 4668–4671 (2009).
[CrossRef]

Sprangle, P.

B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E 55(3, Part B), 3539–3545 (1997).
[CrossRef]

Tawfik, B.

A. Shaarawi, B. Tawfik, and I. Besieris, “Superluminal advanced transmission of X waves undergoing frustrated total internal reflection: the evanescent fields and the Goos–Hanchen effect,” Phys. Rev. E 66(4, Part 2), 046626 (2002).
[CrossRef]

Torner, L.

Y. Kartashov, V. Vysloukh, and L. Torner, “Rotary solitons in Bessel optical lattices,” Phys. Rev. Lett. 93(9), 093904 (2004).
[CrossRef] [PubMed]

Trapani, P. D.

M. A. Porras, G. Valiulis, and P. D. Trapani, “Unified description of Bessel X waves with cone dispersion and tilted pulses,” Phys. Rev. E 68, 016613 (2003).
[CrossRef]

Valiulis, G.

M. A. Porras, G. Valiulis, and P. D. Trapani, “Unified description of Bessel X waves with cone dispersion and tilted pulses,” Phys. Rev. E 68, 016613 (2003).
[CrossRef]

Van Dao, L.

L. Van Dao, K. B. Dinh, and P. Hannaford, “Generation of extreme ultraviolet radiation with a Bessel–Gaussian beam,” Appl. Phys. Lett. 95(13) (2009).
[CrossRef]

Vukovic, S. M.

S. M. Vukovic, Z. Jaksic, and J. Matovic, “Plasmon modes on laminated nanomembrane-based waveguides,” J. Nanophoton. 4, 041770 (2010).
[CrossRef]

Vysloukh, V.

Y. Kartashov, V. Vysloukh, and L. Torner, “Rotary solitons in Bessel optical lattices,” Phys. Rev. Lett. 93(9), 093904 (2004).
[CrossRef] [PubMed]

Wang, P.

G. Rui, Y. Lu, P. Wang, H. Ming, and Q. Zhan, “Evanescent Bessel beam generation through filtering highly focused cylindrical vector beams with a defect mode one-dimensional photonic crystal,” Opt. Commun. 283(10), 2272–2276 (2010).
[CrossRef]

Weeber, J.-C.

Wiederrecht, G. P.

Williams, W.

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals. Molding the flow of light (Princeton University Press, 2008).

Withford, M. J.

Wulle, T.

T. Wulle and S. Herminghaus, “Nonlinear optics of Bessel beams,” Phys. Rev. Lett. 70, 1401–1404 (1993).
[CrossRef] [PubMed]

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

Yuan, X. C.

Zapata-Rodriguez, C. J.

J. J. Miret, D. Pastor, and C. J. Zapata-Rodriguez, “Subwavelength surface waves with zero diffraction,” J. Nanophoton. 5, 051801 (2011).
[CrossRef]

Zapata-Rodríguez, C.

C. Zapata-Rodríguez and J. Miret, “Subwavelength nondiffractting beams in multilayered media,” Appl. Phys. A 103, 699–702 (2011).
[CrossRef]

Zapata-Rodríguez, C. J.

Zemanek, P.

Zhan, Q.

Zhu, S. W.

Appl. Opt. (1)

Appl. Phys. A (1)

C. Zapata-Rodríguez and J. Miret, “Subwavelength nondiffractting beams in multilayered media,” Appl. Phys. A 103, 699–702 (2011).
[CrossRef]

Appl. Phys. Lett. (2)

L. Van Dao, K. B. Dinh, and P. Hannaford, “Generation of extreme ultraviolet radiation with a Bessel–Gaussian beam,” Appl. Phys. Lett. 95(13) (2009).
[CrossRef]

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90(19), 191109 (2007).
[CrossRef]

J. Nanophoton. (2)

J. J. Miret, D. Pastor, and C. J. Zapata-Rodriguez, “Subwavelength surface waves with zero diffraction,” J. Nanophoton. 5, 051801 (2011).
[CrossRef]

S. M. Vukovic, Z. Jaksic, and J. Matovic, “Plasmon modes on laminated nanomembrane-based waveguides,” J. Nanophoton. 4, 041770 (2010).
[CrossRef]

J. Opt. A (1)

A. V. Novitsky and L. M. Barkovsky, “Total internal reflection of vector Bessel beams: Imbert-Fedorov shift and intensity transformation,” J. Opt. A 10(7), 075006 (2008).
[CrossRef]

J. Opt. B (1)

S. Longhi, K. Janner, and P. Laporta, “Propagating pulsed Bessel beams in periodic media,” J. Opt. B 6, 477–481 (2004).
[CrossRef]

J. Opt. Soc. Am. A (3)

J. Opt. Soc. Am. B (2)

Laser Phys. (1)

D. Faccio and P. Di Trapani, “Conical-wave nonlinear optics: From Raman conversion to extreme UV generation,” Laser Phys. 18(3), 253–262 (2008).
[CrossRef]

Nature (1)

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Opt. Commun. (3)

V. N. Belyi, N. S. Kazak, S. N. Kurilkina, and N. A. Khilo, “Generation of TE- and TH-polarized Bessel beams using one-dimensional photonic crystal,” Opt. Commun. 282(10), 1998–2008 (2009).
[CrossRef]

D. Mugnai and P. Spalla, “Electromagnetic propagation of Bessel-like localized waves in the presence of absorbing media,” Opt. Commun. 282, 4668–4671 (2009).
[CrossRef]

G. Rui, Y. Lu, P. Wang, H. Ming, and Q. Zhan, “Evanescent Bessel beam generation through filtering highly focused cylindrical vector beams with a defect mode one-dimensional photonic crystal,” Opt. Commun. 283(10), 2272–2276 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lett. (8)

C. J. Zapata-Rodríguez and M. A. Porras, “X-wave bullets with negative group velocity in vacuum,” Opt. Lett. 31(23), 3532–3534 (2006).
[CrossRef] [PubMed]

K. J. Moh, X. C. Yuan, J. Bu, S. W. Zhu, and B. Z. Gao, “Radial polarization induced surface plasmon virtual probe for two-photon fluorescence microscopy,” Opt. Lett. 34(7), 971–973 (2009).
[CrossRef] [PubMed]

Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett. 31(11), 1726–1728 (2006).
[CrossRef] [PubMed]

A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. C. d. Francs, J.-C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32(17), 2535–2537 (2007).
[CrossRef] [PubMed]

W. Chen and Q. Zhan, “Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam,” Opt. Lett. 34(6), 722–724 (2009).
[CrossRef] [PubMed]

C. J. Zapata-Rodríguez, M. T. Caballero, and J. J. Miret, “Angular spectrum of diffracted wave fields with apochromatic correction,” Opt. Lett. 33, 1753–1755 (2008).
[CrossRef] [PubMed]

O. Manela, M. Segev, and D. N. Christodoulides, “Nondiffracting beams in periodic media,” Opt. Lett. 30, 2611–2613 (2005).
[CrossRef] [PubMed]

A. Salandrino and D. N. Christodoulides, “Airy plasmon: a nondiffracting surface wave,” Opt. Lett. 35, 2082–2084 (2010).
[CrossRef] [PubMed]

Phys. Rev. B (1)

S. Longhi and D. Janner, “X-shaped waves in photonic crystals,” Phys. Rev. B 70, 235123 (2004).
[CrossRef]

Phys. Rev. E (3)

A. Shaarawi, B. Tawfik, and I. Besieris, “Superluminal advanced transmission of X waves undergoing frustrated total internal reflection: the evanescent fields and the Goos–Hanchen effect,” Phys. Rev. E 66(4, Part 2), 046626 (2002).
[CrossRef]

M. A. Porras, G. Valiulis, and P. D. Trapani, “Unified description of Bessel X waves with cone dispersion and tilted pulses,” Phys. Rev. E 68, 016613 (2003).
[CrossRef]

B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E 55(3, Part B), 3539–3545 (1997).
[CrossRef]

Phys. Rev. Lett. (5)

Y. Kartashov, V. Vysloukh, and L. Torner, “Rotary solitons in Bessel optical lattices,” Phys. Rev. Lett. 93(9), 093904 (2004).
[CrossRef] [PubMed]

T. Wulle and S. Herminghaus, “Nonlinear optics of Bessel beams,” Phys. Rev. Lett. 70, 1401–1404 (1993).
[CrossRef] [PubMed]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef] [PubMed]

J. Fan, E. Parra, and H. Milchberg, “Resonant self-trapping and absorption of intense Bessel beams,” Phys. Rev. Lett. 84(14), 3085–3088 (2000).
[CrossRef] [PubMed]

P. Polesana, A. Couairon, D. Faccio, A. Parola, M. A. Porras, A. Dubietis, A. Piskarskas, and P. Di Trapani, “Observation of conical waves in focusing, dispersive, and dissipative Kerr media,” Phys. Rev. Lett. 99(22), 223902 (2007).
[CrossRef]

Other (3)

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

H. M. Antia, Numerical methods for scientists and engineers (Tata McGraw-Hill Publishing Company Limited, 1991).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals. Molding the flow of light (Princeton University Press, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Geometry of the multilayered nanostructure; thin silver nanomembranes of wm = 10 nm are impressed into fused silica ɛd = 2.25 at a rate of 3.33 μm−1. (b) Dispersion curves of guided modes for N = 11. Dashed red line is the dispersion of ordinary SPP; green lines represent bandgap edges. (c) Intensity distribution |hxm |2 for several modal solutions at λ 0 = 1.55 μm.

Fig. 2
Fig. 2

Formation of a nondiffracting cos beam mediated by SPPs on a silver-fused silica interface: (a) Sketch of the wavevectors distribution and (b) contours of intensity |Hx |2 in the xz plane at λ 0 = 1.55 μm. Excitation of multiple high-order SPPs is schematically represented in (c) using here every high-order SPP involved. (d) Intensity distribution in the xz plane running with M = 12 modes. The quadrature (6) on the surface y = y 0 is performed for a Bessel function of k = 5.90 μm−1 shown in red. The propagation constant is β = 6.12 μm−1 in (b) and (d).

Fig. 3
Fig. 3

(a) Intensity pattern of the nondiffracting Bessel plasmon in the xy plane for a phase matching at the top surface of the central layer. (b) The same as in (a) for a phase matching at the uppermost MD interface. (a) 3D view of the multilayered device and the surface BB generated in (b).

Fig. 4
Fig. 4

(a) Dispersion contour for λ 0 = 1.55 μm and resultant directions of u⃗ for the excited SPP modes. Thick arrows indicate group-velocity directions, and thin arrows stand for phase-velocity vectors whose origin is shifted to ky = π/L for clarity. (b) The same as Fig. 3(b), including directions of energy flow intersecting at the beam axis.

Fig. 5
Fig. 5

Numerical experiment with γ = 0.08 fs−1 for silver. (a) Surface distribution of the initiated BB in the xz plane. (b) Evolution of the intensity along beam axis. The dashed line represents the asymptotic behavior of the on-axis intensity that is valid when a single long-range SPP contributes effectively in Eq. (6). (c) Transverse intensity distribution normalized at the beam axis for different propagation distances.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ε m ( ω ) = 1 ω p 2 ω ( ω + i γ ) .
H m ( x , y , z ) = h m ( y ) exp [ i k m ( z cos θ m + x sin θ m ) ]
2 cos ( k y m L ) = T 11 + T 22 ,
( T 11 T 22 ) tan ( N k ym L ) + 2 sin ( k ym L ) = 0 .
n eff c v p = β k 0 ,
H x = exp ( i β z ) m = 1 M h xm ( y ) cos ( k xm x ) .
J 0 ( k x ) = 0 k f ( k , k x ) cos ( k x x ) d k x ,

Metrics