Abstract

We report a method of transferring 150 nm thick Al0.35Ga0.65As photonic crystal slabs to a transparent gel, without compromising their optical properties. We demonstrate successful transfer for membranes as large as ∼ 425 × 425 μm2. The transfer results in a 2.5% frequency red shift and increases the visibility of the resonances in reflection spectra. The avoided crossings between the modes show a subradiant mode with quality factors up to ∼300. This suggests that the quality factor is only limited by the finite size of the crystal.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73, 096501 (2010).
    [CrossRef]
  2. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 9–12 (2004).
    [CrossRef]
  3. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system.” Nature 445, 896–899 (2007).
    [CrossRef] [PubMed]
  4. J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency with high extraction efficiency,” Nat. Photonics 3, 163–169 (2009).
    [CrossRef]
  5. J. P. Mondia, H. M. van Driel, W. Jiang, A. R. Cowan, and J. F. Young, “Enhanced second-harmonic generation from planar photonic crystals,” Opt. Lett. 28, 2500–2502 (2003).
    [CrossRef] [PubMed]
  6. Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Mériadec, and A. Levenson, “Phase-matched frequency doubling at photonic band edges: efficiency scaling as the fifth power of the length,” Phys. Rev. Lett. 89, 043901 (2002).
    [CrossRef] [PubMed]
  7. A. D. Bristow, J. P. Mondia, and H. M. van Driel, “Sum and difference frequency generation as diagnostics for leaky eigenmodes in two-dimensional photonic crystal waveguides,” J. Appl. Phys. 99, 023105 (2006).
    [CrossRef]
  8. P. Kopperschmidt, S. Senz, G. Kästner, D. Hesse, and U. M. Gösele, “Materials integration of gallium arsenide and silicon by wafer bonding,” Appl. Phys. Lett. 72, 3181–3183 (1998).
    [CrossRef]
  9. Z. Hatzopoulos, D. Cenghera, G. Deligeorgisa, M. Androulidakia, E. Aperathitisa, and G. H. A. Georgakilas, “Molecular beam epitaxy of GaAs/AlGaAs epitaxial structures for integrated optoelectronic devices on Si using GaAs-Si wafer bonding,” J. Cryst. Growth 227–228, 193–196 (2001).
    [CrossRef]
  10. P. Kopperschmidt, G. Kästner, S. Senz, D. Hesse, and U. Gösele, “Wafer bonding of gallium arsenide on sapphire,” Appl. Phys. A 64, 533–537 (1997).
    [CrossRef]
  11. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photoniccrystal microcavity,” Opt. Lett. 29, 1093–1095 (2004).
    [CrossRef] [PubMed]
  12. T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. de Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94, 173104 (2009).
    [CrossRef]
  13. D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučkovič, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
    [CrossRef] [PubMed]
  14. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
    [CrossRef] [PubMed]
  15. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a photonic band gap in two dimensions,” Appl. Phys. Lett. 61, 495–497 (1992).
    [CrossRef]
  16. C. T. Chan, S. Datta, K. M. Ho, and C. M. Soukoulis, “A7 structure: a family of photonic crystals,” Phys. Rev. B 50, 1988–1991 (1994).
    [CrossRef]
  17. T. Maeda, J. Lee, R. Shul, J. Han, J. Hong, E. Lambers, S. Pearton, C. Abernathy, and W. Hobson, “Inductively coupled plasma etching of III–V semiconductors in BCl3-based chemistries. I. GaAs, GaN, GaP, GaSb and AlGaAs,” Appl. Surf. Sci. 143, 174–182 (1999).
    [CrossRef]
  18. E. F. C. Driessen, D. Stolwijk, and M. J. A. de Dood, “Asymmetry reversal in the reflection from a two-dimensional photonic crystal,” Opt. Lett. 32, 3137–3139 (2007).
    [CrossRef] [PubMed]
  19. L. Babić and M. J. A. de Dood, “Interpretation of the fano lineshape reversal in the reflectivity spectra of photonic crystal slabs,” Opt. Express 18, 26569–26582 (2011).
    [CrossRef]
  20. Detailed information and technical datasheets are available via the manufacturers website: http://www.gelpak.com
  21. http://www.ioffe.ru/SVA/NSM/Semicond/AlGaAs/index.html .
  22. The force Fs to peel off the membrane breaking all gel-membrane bonds on the surface is proportional to L × (1 – π(r/a)2)). The force needed to break the membrane free Fb is given by the work needed to peel free the membranes along the sides and gives Fb ∝ d × (a – 2r). The ratio between the two forces Fs/Fb is then proportional to Ld×1−π(r/a)2a−2r, where the second term is a geometrical factor that accounts for the square lattice of air holes in the membrane.
  23. M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
    [CrossRef]
  24. V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B 60, R16255–R16258 (1999).
    [CrossRef]
  25. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569–572 (2003).
    [CrossRef]
  26. T. Ochiai and K. Sakoda, “Nearly free-photon approximation for two-dimensional photonic crystal slabs,” Phys. Rev. B 64, 045108 (2001).
    [CrossRef]
  27. K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
    [CrossRef]
  28. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
    [CrossRef]
  29. C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94, 113901 (2005).
    [CrossRef] [PubMed]
  30. M. J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77, 115437 (2008).
    [CrossRef]
  31. J. Wiersig, “Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities,” Phys. Rev. Lett. 97, 253901 (2006).
    [CrossRef]
  32. Q. H. Song and H. Cao, “Improving optical confinement in nanostructures via external mode coupling,” Phys. Rev. Lett. 105, 053902 (2010).
    [CrossRef] [PubMed]
  33. P. Paddon and J. Young, “Two-dimensional vector-coupled-mode theory for textured planar waveguides,” Phys. Rev. B 61, 2090–2101 (2000).
    [CrossRef]
  34. A. R. Cowan and Jeff F. Young, “Mode matching for second-harmonic generation in photonic crystal waveguides,” Phys. Rev. B 65, 085106 (2002).
    [CrossRef]
  35. J. Torres, D. Coquillat, R. Legros, J. P. Lascaray, F. Teppe, D. Scalbert, D. Peyrade, Y. Chen, O. Briot, M. Le Vassor d’Yerville, E. Centeno, D. Cassagne, and J. P. Albert, “Giant second-harmonic generation in a one-dimensional gan photonic crystal,” Phys. Rev. B 69, 085105 (2004).
    [CrossRef]
  36. F. Jelezko, A. Volkmer, I. Popa, K. K. Rebane, and J. Wrachtrup, “Coherence length of photons from a single quantum system,” Phys. Rev. A 67, 041802 (2003).
    [CrossRef]

2011

2010

Q. H. Song and H. Cao, “Improving optical confinement in nanostructures via external mode coupling,” Phys. Rev. Lett. 105, 053902 (2010).
[CrossRef] [PubMed]

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73, 096501 (2010).
[CrossRef]

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučkovič, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef] [PubMed]

2009

T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. de Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94, 173104 (2009).
[CrossRef]

J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency with high extraction efficiency,” Nat. Photonics 3, 163–169 (2009).
[CrossRef]

2008

M. J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77, 115437 (2008).
[CrossRef]

2007

E. F. C. Driessen, D. Stolwijk, and M. J. A. de Dood, “Asymmetry reversal in the reflection from a two-dimensional photonic crystal,” Opt. Lett. 32, 3137–3139 (2007).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system.” Nature 445, 896–899 (2007).
[CrossRef] [PubMed]

2006

A. D. Bristow, J. P. Mondia, and H. M. van Driel, “Sum and difference frequency generation as diagnostics for leaky eigenmodes in two-dimensional photonic crystal waveguides,” J. Appl. Phys. 99, 023105 (2006).
[CrossRef]

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
[CrossRef]

J. Wiersig, “Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities,” Phys. Rev. Lett. 97, 253901 (2006).
[CrossRef]

2005

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

2004

J. Torres, D. Coquillat, R. Legros, J. P. Lascaray, F. Teppe, D. Scalbert, D. Peyrade, Y. Chen, O. Briot, M. Le Vassor d’Yerville, E. Centeno, D. Cassagne, and J. P. Albert, “Giant second-harmonic generation in a one-dimensional gan photonic crystal,” Phys. Rev. B 69, 085105 (2004).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 9–12 (2004).
[CrossRef]

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photoniccrystal microcavity,” Opt. Lett. 29, 1093–1095 (2004).
[CrossRef] [PubMed]

2003

2002

A. R. Cowan and Jeff F. Young, “Mode matching for second-harmonic generation in photonic crystal waveguides,” Phys. Rev. B 65, 085106 (2002).
[CrossRef]

Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Mériadec, and A. Levenson, “Phase-matched frequency doubling at photonic band edges: efficiency scaling as the fifth power of the length,” Phys. Rev. Lett. 89, 043901 (2002).
[CrossRef] [PubMed]

2001

Z. Hatzopoulos, D. Cenghera, G. Deligeorgisa, M. Androulidakia, E. Aperathitisa, and G. H. A. Georgakilas, “Molecular beam epitaxy of GaAs/AlGaAs epitaxial structures for integrated optoelectronic devices on Si using GaAs-Si wafer bonding,” J. Cryst. Growth 227–228, 193–196 (2001).
[CrossRef]

T. Ochiai and K. Sakoda, “Nearly free-photon approximation for two-dimensional photonic crystal slabs,” Phys. Rev. B 64, 045108 (2001).
[CrossRef]

2000

P. Paddon and J. Young, “Two-dimensional vector-coupled-mode theory for textured planar waveguides,” Phys. Rev. B 61, 2090–2101 (2000).
[CrossRef]

1999

V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B 60, R16255–R16258 (1999).
[CrossRef]

T. Maeda, J. Lee, R. Shul, J. Han, J. Hong, E. Lambers, S. Pearton, C. Abernathy, and W. Hobson, “Inductively coupled plasma etching of III–V semiconductors in BCl3-based chemistries. I. GaAs, GaN, GaP, GaSb and AlGaAs,” Appl. Surf. Sci. 143, 174–182 (1999).
[CrossRef]

1998

P. Kopperschmidt, S. Senz, G. Kästner, D. Hesse, and U. M. Gösele, “Materials integration of gallium arsenide and silicon by wafer bonding,” Appl. Phys. Lett. 72, 3181–3183 (1998).
[CrossRef]

1997

P. Kopperschmidt, G. Kästner, S. Senz, D. Hesse, and U. Gösele, “Wafer bonding of gallium arsenide on sapphire,” Appl. Phys. A 64, 533–537 (1997).
[CrossRef]

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
[CrossRef]

1996

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

1994

C. T. Chan, S. Datta, K. M. Ho, and C. M. Soukoulis, “A7 structure: a family of photonic crystals,” Phys. Rev. B 50, 1988–1991 (1994).
[CrossRef]

1992

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a photonic band gap in two dimensions,” Appl. Phys. Lett. 61, 495–497 (1992).
[CrossRef]

1990

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[CrossRef] [PubMed]

Abernathy, C.

T. Maeda, J. Lee, R. Shul, J. Han, J. Hong, E. Lambers, S. Pearton, C. Abernathy, and W. Hobson, “Inductively coupled plasma etching of III–V semiconductors in BCl3-based chemistries. I. GaAs, GaN, GaP, GaSb and AlGaAs,” Appl. Surf. Sci. 143, 174–182 (1999).
[CrossRef]

Abram, I.

Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Mériadec, and A. Levenson, “Phase-matched frequency doubling at photonic band edges: efficiency scaling as the fifth power of the length,” Phys. Rev. Lett. 89, 043901 (2002).
[CrossRef] [PubMed]

Albert, J. P.

J. Torres, D. Coquillat, R. Legros, J. P. Lascaray, F. Teppe, D. Scalbert, D. Peyrade, Y. Chen, O. Briot, M. Le Vassor d’Yerville, E. Centeno, D. Cassagne, and J. P. Albert, “Giant second-harmonic generation in a one-dimensional gan photonic crystal,” Phys. Rev. B 69, 085105 (2004).
[CrossRef]

Androulidakia, M.

Z. Hatzopoulos, D. Cenghera, G. Deligeorgisa, M. Androulidakia, E. Aperathitisa, and G. H. A. Georgakilas, “Molecular beam epitaxy of GaAs/AlGaAs epitaxial structures for integrated optoelectronic devices on Si using GaAs-Si wafer bonding,” J. Cryst. Growth 227–228, 193–196 (2001).
[CrossRef]

Aperathitisa, E.

Z. Hatzopoulos, D. Cenghera, G. Deligeorgisa, M. Androulidakia, E. Aperathitisa, and G. H. A. Georgakilas, “Molecular beam epitaxy of GaAs/AlGaAs epitaxial structures for integrated optoelectronic devices on Si using GaAs-Si wafer bonding,” J. Cryst. Growth 227–228, 193–196 (2001).
[CrossRef]

Astratov, V. N.

V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B 60, R16255–R16258 (1999).
[CrossRef]

Atatüre, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system.” Nature 445, 896–899 (2007).
[CrossRef] [PubMed]

Babic, L.

Badolato, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system.” Nature 445, 896–899 (2007).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

Briot, O.

J. Torres, D. Coquillat, R. Legros, J. P. Lascaray, F. Teppe, D. Scalbert, D. Peyrade, Y. Chen, O. Briot, M. Le Vassor d’Yerville, E. Centeno, D. Cassagne, and J. P. Albert, “Giant second-harmonic generation in a one-dimensional gan photonic crystal,” Phys. Rev. B 69, 085105 (2004).
[CrossRef]

Bristow, A. D.

A. D. Bristow, J. P. Mondia, and H. M. van Driel, “Sum and difference frequency generation as diagnostics for leaky eigenmodes in two-dimensional photonic crystal waveguides,” J. Appl. Phys. 99, 023105 (2006).
[CrossRef]

Brommer, K. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a photonic band gap in two dimensions,” Appl. Phys. Lett. 61, 495–497 (1992).
[CrossRef]

Busch, A.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
[CrossRef]

Cao, H.

Q. H. Song and H. Cao, “Improving optical confinement in nanostructures via external mode coupling,” Phys. Rev. Lett. 105, 053902 (2010).
[CrossRef] [PubMed]

Cassagne, D.

J. Torres, D. Coquillat, R. Legros, J. P. Lascaray, F. Teppe, D. Scalbert, D. Peyrade, Y. Chen, O. Briot, M. Le Vassor d’Yerville, E. Centeno, D. Cassagne, and J. P. Albert, “Giant second-harmonic generation in a one-dimensional gan photonic crystal,” Phys. Rev. B 69, 085105 (2004).
[CrossRef]

Cenghera, D.

Z. Hatzopoulos, D. Cenghera, G. Deligeorgisa, M. Androulidakia, E. Aperathitisa, and G. H. A. Georgakilas, “Molecular beam epitaxy of GaAs/AlGaAs epitaxial structures for integrated optoelectronic devices on Si using GaAs-Si wafer bonding,” J. Cryst. Growth 227–228, 193–196 (2001).
[CrossRef]

Centeno, E.

J. Torres, D. Coquillat, R. Legros, J. P. Lascaray, F. Teppe, D. Scalbert, D. Peyrade, Y. Chen, O. Briot, M. Le Vassor d’Yerville, E. Centeno, D. Cassagne, and J. P. Albert, “Giant second-harmonic generation in a one-dimensional gan photonic crystal,” Phys. Rev. B 69, 085105 (2004).
[CrossRef]

Chan, C. T.

C. T. Chan, S. Datta, K. M. Ho, and C. M. Soukoulis, “A7 structure: a family of photonic crystals,” Phys. Rev. B 50, 1988–1991 (1994).
[CrossRef]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[CrossRef] [PubMed]

Chen, Y.

J. Torres, D. Coquillat, R. Legros, J. P. Lascaray, F. Teppe, D. Scalbert, D. Peyrade, Y. Chen, O. Briot, M. Le Vassor d’Yerville, E. Centeno, D. Cassagne, and J. P. Albert, “Giant second-harmonic generation in a one-dimensional gan photonic crystal,” Phys. Rev. B 69, 085105 (2004).
[CrossRef]

Chow, E.

Coquillat, D.

J. Torres, D. Coquillat, R. Legros, J. P. Lascaray, F. Teppe, D. Scalbert, D. Peyrade, Y. Chen, O. Briot, M. Le Vassor d’Yerville, E. Centeno, D. Cassagne, and J. P. Albert, “Giant second-harmonic generation in a one-dimensional gan photonic crystal,” Phys. Rev. B 69, 085105 (2004).
[CrossRef]

Cowan, A. R.

J. P. Mondia, H. M. van Driel, W. Jiang, A. R. Cowan, and J. F. Young, “Enhanced second-harmonic generation from planar photonic crystals,” Opt. Lett. 28, 2500–2502 (2003).
[CrossRef] [PubMed]

A. R. Cowan and Jeff F. Young, “Mode matching for second-harmonic generation in photonic crystal waveguides,” Phys. Rev. B 65, 085106 (2002).
[CrossRef]

Crozier, K. B.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
[CrossRef]

Culshaw, I. S.

V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B 60, R16255–R16258 (1999).
[CrossRef]

Datta, S.

C. T. Chan, S. Datta, K. M. Ho, and C. M. Soukoulis, “A7 structure: a family of photonic crystals,” Phys. Rev. B 50, 1988–1991 (1994).
[CrossRef]

David, A.

J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency with high extraction efficiency,” Nat. Photonics 3, 163–169 (2009).
[CrossRef]

de Dood, M. J. A.

De La Rue, R. M.

V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B 60, R16255–R16258 (1999).
[CrossRef]

de Lange, G.

T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. de Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94, 173104 (2009).
[CrossRef]

Deligeorgisa, G.

Z. Hatzopoulos, D. Cenghera, G. Deligeorgisa, M. Androulidakia, E. Aperathitisa, and G. H. A. Georgakilas, “Molecular beam epitaxy of GaAs/AlGaAs epitaxial structures for integrated optoelectronic devices on Si using GaAs-Si wafer bonding,” J. Cryst. Growth 227–228, 193–196 (2001).
[CrossRef]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 9–12 (2004).
[CrossRef]

Dmochowski, G. M.

T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. de Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94, 173104 (2009).
[CrossRef]

Driessen, E. F. C.

M. J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77, 115437 (2008).
[CrossRef]

E. F. C. Driessen, D. Stolwijk, and M. J. A. de Dood, “Asymmetry reversal in the reflection from a two-dimensional photonic crystal,” Opt. Lett. 32, 3137–3139 (2007).
[CrossRef] [PubMed]

Dumeige, Y.

Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Mériadec, and A. Levenson, “Phase-matched frequency doubling at photonic band edges: efficiency scaling as the fifth power of the length,” Phys. Rev. Lett. 89, 043901 (2002).
[CrossRef] [PubMed]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 9–12 (2004).
[CrossRef]

Englund, D.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučkovič, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef] [PubMed]

Fält, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system.” Nature 445, 896–899 (2007).
[CrossRef] [PubMed]

Fan, S.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
[CrossRef]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569–572 (2003).
[CrossRef]

Georgakilas, G. H. A.

Z. Hatzopoulos, D. Cenghera, G. Deligeorgisa, M. Androulidakia, E. Aperathitisa, and G. H. A. Georgakilas, “Molecular beam epitaxy of GaAs/AlGaAs epitaxial structures for integrated optoelectronic devices on Si using GaAs-Si wafer bonding,” J. Cryst. Growth 227–228, 193–196 (2001).
[CrossRef]

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system.” Nature 445, 896–899 (2007).
[CrossRef] [PubMed]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 9–12 (2004).
[CrossRef]

Girolami, G.

Gösele, U.

P. Kopperschmidt, G. Kästner, S. Senz, D. Hesse, and U. Gösele, “Wafer bonding of gallium arsenide on sapphire,” Appl. Phys. A 64, 533–537 (1997).
[CrossRef]

Gösele, U. M.

P. Kopperschmidt, S. Senz, G. Kästner, D. Hesse, and U. M. Gösele, “Materials integration of gallium arsenide and silicon by wafer bonding,” Appl. Phys. Lett. 72, 3181–3183 (1998).
[CrossRef]

Grot, A.

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system.” Nature 445, 896–899 (2007).
[CrossRef] [PubMed]

Han, J.

T. Maeda, J. Lee, R. Shul, J. Han, J. Hong, E. Lambers, S. Pearton, C. Abernathy, and W. Hobson, “Inductively coupled plasma etching of III–V semiconductors in BCl3-based chemistries. I. GaAs, GaN, GaP, GaSb and AlGaAs,” Appl. Surf. Sci. 143, 174–182 (1999).
[CrossRef]

Hanson, R.

T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. de Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94, 173104 (2009).
[CrossRef]

Hatami, F.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučkovič, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef] [PubMed]

Hatzopoulos, Z.

Z. Hatzopoulos, D. Cenghera, G. Deligeorgisa, M. Androulidakia, E. Aperathitisa, and G. H. A. Georgakilas, “Molecular beam epitaxy of GaAs/AlGaAs epitaxial structures for integrated optoelectronic devices on Si using GaAs-Si wafer bonding,” J. Cryst. Growth 227–228, 193–196 (2001).
[CrossRef]

Heeres, E. C.

T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. de Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94, 173104 (2009).
[CrossRef]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 9–12 (2004).
[CrossRef]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system.” Nature 445, 896–899 (2007).
[CrossRef] [PubMed]

Hesse, D.

P. Kopperschmidt, S. Senz, G. Kästner, D. Hesse, and U. M. Gösele, “Materials integration of gallium arsenide and silicon by wafer bonding,” Appl. Phys. Lett. 72, 3181–3183 (1998).
[CrossRef]

P. Kopperschmidt, G. Kästner, S. Senz, D. Hesse, and U. Gösele, “Wafer bonding of gallium arsenide on sapphire,” Appl. Phys. A 64, 533–537 (1997).
[CrossRef]

Ho, K. M.

C. T. Chan, S. Datta, K. M. Ho, and C. M. Soukoulis, “A7 structure: a family of photonic crystals,” Phys. Rev. B 50, 1988–1991 (1994).
[CrossRef]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[CrossRef] [PubMed]

Hobson, W.

T. Maeda, J. Lee, R. Shul, J. Han, J. Hong, E. Lambers, S. Pearton, C. Abernathy, and W. Hobson, “Inductively coupled plasma etching of III–V semiconductors in BCl3-based chemistries. I. GaAs, GaN, GaP, GaSb and AlGaAs,” Appl. Surf. Sci. 143, 174–182 (1999).
[CrossRef]

Hong, J.

T. Maeda, J. Lee, R. Shul, J. Han, J. Hong, E. Lambers, S. Pearton, C. Abernathy, and W. Hobson, “Inductively coupled plasma etching of III–V semiconductors in BCl3-based chemistries. I. GaAs, GaN, GaP, GaSb and AlGaAs,” Appl. Surf. Sci. 143, 174–182 (1999).
[CrossRef]

Hu, E. L.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system.” Nature 445, 896–899 (2007).
[CrossRef] [PubMed]

Imamoglu, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system.” Nature 445, 896–899 (2007).
[CrossRef] [PubMed]

Jelezko, F.

F. Jelezko, A. Volkmer, I. Popa, K. K. Rebane, and J. Wrachtrup, “Coherence length of photons from a single quantum system,” Phys. Rev. A 67, 041802 (2003).
[CrossRef]

Jiang, W.

Joannopoulos, J. D.

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569–572 (2003).
[CrossRef]

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a photonic band gap in two dimensions,” Appl. Phys. Lett. 61, 495–497 (1992).
[CrossRef]

Johnson, S. R.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
[CrossRef]

Kanskar, M.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
[CrossRef]

Kästner, G.

P. Kopperschmidt, S. Senz, G. Kästner, D. Hesse, and U. M. Gösele, “Materials integration of gallium arsenide and silicon by wafer bonding,” Appl. Phys. Lett. 72, 3181–3183 (1998).
[CrossRef]

P. Kopperschmidt, G. Kästner, S. Senz, D. Hesse, and U. Gösele, “Wafer bonding of gallium arsenide on sapphire,” Appl. Phys. A 64, 533–537 (1997).
[CrossRef]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 9–12 (2004).
[CrossRef]

Kilic, O.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
[CrossRef]

Kim, D. S.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

Kim, J.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

Kim, S.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
[CrossRef]

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

Kopperschmidt, P.

P. Kopperschmidt, S. Senz, G. Kästner, D. Hesse, and U. M. Gösele, “Materials integration of gallium arsenide and silicon by wafer bonding,” Appl. Phys. Lett. 72, 3181–3183 (1998).
[CrossRef]

P. Kopperschmidt, G. Kästner, S. Senz, D. Hesse, and U. Gösele, “Wafer bonding of gallium arsenide on sapphire,” Appl. Phys. A 64, 533–537 (1997).
[CrossRef]

Krauss, T. F.

V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B 60, R16255–R16258 (1999).
[CrossRef]

Lambers, E.

T. Maeda, J. Lee, R. Shul, J. Han, J. Hong, E. Lambers, S. Pearton, C. Abernathy, and W. Hobson, “Inductively coupled plasma etching of III–V semiconductors in BCl3-based chemistries. I. GaAs, GaN, GaP, GaSb and AlGaAs,” Appl. Surf. Sci. 143, 174–182 (1999).
[CrossRef]

Lascaray, J. P.

J. Torres, D. Coquillat, R. Legros, J. P. Lascaray, F. Teppe, D. Scalbert, D. Peyrade, Y. Chen, O. Briot, M. Le Vassor d’Yerville, E. Centeno, D. Cassagne, and J. P. Albert, “Giant second-harmonic generation in a one-dimensional gan photonic crystal,” Phys. Rev. B 69, 085105 (2004).
[CrossRef]

Le Vassor d’Yerville, M.

J. Torres, D. Coquillat, R. Legros, J. P. Lascaray, F. Teppe, D. Scalbert, D. Peyrade, Y. Chen, O. Briot, M. Le Vassor d’Yerville, E. Centeno, D. Cassagne, and J. P. Albert, “Giant second-harmonic generation in a one-dimensional gan photonic crystal,” Phys. Rev. B 69, 085105 (2004).
[CrossRef]

Lee, J.

T. Maeda, J. Lee, R. Shul, J. Han, J. Hong, E. Lambers, S. Pearton, C. Abernathy, and W. Hobson, “Inductively coupled plasma etching of III–V semiconductors in BCl3-based chemistries. I. GaAs, GaN, GaP, GaSb and AlGaAs,” Appl. Surf. Sci. 143, 174–182 (1999).
[CrossRef]

Legros, R.

J. Torres, D. Coquillat, R. Legros, J. P. Lascaray, F. Teppe, D. Scalbert, D. Peyrade, Y. Chen, O. Briot, M. Le Vassor d’Yerville, E. Centeno, D. Cassagne, and J. P. Albert, “Giant second-harmonic generation in a one-dimensional gan photonic crystal,” Phys. Rev. B 69, 085105 (2004).
[CrossRef]

Levenson, A.

Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Mériadec, and A. Levenson, “Phase-matched frequency doubling at photonic band edges: efficiency scaling as the fifth power of the length,” Phys. Rev. Lett. 89, 043901 (2002).
[CrossRef] [PubMed]

Lienau, C.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

Lousse, V.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
[CrossRef]

Lukin, M. D.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučkovič, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef] [PubMed]

MacKenzie, J.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
[CrossRef]

Maeda, T.

T. Maeda, J. Lee, R. Shul, J. Han, J. Hong, E. Lambers, S. Pearton, C. Abernathy, and W. Hobson, “Inductively coupled plasma etching of III–V semiconductors in BCl3-based chemistries. I. GaAs, GaN, GaP, GaSb and AlGaAs,” Appl. Surf. Sci. 143, 174–182 (1999).
[CrossRef]

Meade, R. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a photonic band gap in two dimensions,” Appl. Phys. Lett. 61, 495–497 (1992).
[CrossRef]

Megens, M. M.

J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency with high extraction efficiency,” Nat. Photonics 3, 163–169 (2009).
[CrossRef]

Mériadec, C.

Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Mériadec, and A. Levenson, “Phase-matched frequency doubling at photonic band edges: efficiency scaling as the fifth power of the length,” Phys. Rev. Lett. 89, 043901 (2002).
[CrossRef] [PubMed]

Mirkarimi, L. W.

Mondia, J. P.

A. D. Bristow, J. P. Mondia, and H. M. van Driel, “Sum and difference frequency generation as diagnostics for leaky eigenmodes in two-dimensional photonic crystal waveguides,” J. Appl. Phys. 99, 023105 (2006).
[CrossRef]

J. P. Mondia, H. M. van Driel, W. Jiang, A. R. Cowan, and J. F. Young, “Enhanced second-harmonic generation from planar photonic crystals,” Opt. Lett. 28, 2500–2502 (2003).
[CrossRef] [PubMed]

Monnier, P.

Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Mériadec, and A. Levenson, “Phase-matched frequency doubling at photonic band edges: efficiency scaling as the fifth power of the length,” Phys. Rev. Lett. 89, 043901 (2002).
[CrossRef] [PubMed]

Morin, R.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
[CrossRef]

Notomi, M.

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73, 096501 (2010).
[CrossRef]

Ochiai, T.

T. Ochiai and K. Sakoda, “Nearly free-photon approximation for two-dimensional photonic crystal slabs,” Phys. Rev. B 64, 045108 (2001).
[CrossRef]

Oosterkamp, T. H.

T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. de Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94, 173104 (2009).
[CrossRef]

Pacradouni, V.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
[CrossRef]

Paddon, P.

P. Paddon and J. Young, “Two-dimensional vector-coupled-mode theory for textured planar waveguides,” Phys. Rev. B 61, 2090–2101 (2000).
[CrossRef]

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
[CrossRef]

Park, D. J.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

Park, H.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučkovič, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef] [PubMed]

Pearton, S.

T. Maeda, J. Lee, R. Shul, J. Han, J. Hong, E. Lambers, S. Pearton, C. Abernathy, and W. Hobson, “Inductively coupled plasma etching of III–V semiconductors in BCl3-based chemistries. I. GaAs, GaN, GaP, GaSb and AlGaAs,” Appl. Surf. Sci. 143, 174–182 (1999).
[CrossRef]

Peyrade, D.

J. Torres, D. Coquillat, R. Legros, J. P. Lascaray, F. Teppe, D. Scalbert, D. Peyrade, Y. Chen, O. Briot, M. Le Vassor d’Yerville, E. Centeno, D. Cassagne, and J. P. Albert, “Giant second-harmonic generation in a one-dimensional gan photonic crystal,” Phys. Rev. B 69, 085105 (2004).
[CrossRef]

Popa, I.

F. Jelezko, A. Volkmer, I. Popa, K. K. Rebane, and J. Wrachtrup, “Coherence length of photons from a single quantum system,” Phys. Rev. A 67, 041802 (2003).
[CrossRef]

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

Rappe, A. M.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a photonic band gap in two dimensions,” Appl. Phys. Lett. 61, 495–497 (1992).
[CrossRef]

Rebane, K. K.

F. Jelezko, A. Volkmer, I. Popa, K. K. Rebane, and J. Wrachtrup, “Coherence length of photons from a single quantum system,” Phys. Rev. A 67, 041802 (2003).
[CrossRef]

Rivoire, K.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučkovič, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef] [PubMed]

Robledo, L.

T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. de Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94, 173104 (2009).
[CrossRef]

Ropers, C.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 9–12 (2004).
[CrossRef]

Sagnes, I.

Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Mériadec, and A. Levenson, “Phase-matched frequency doubling at photonic band edges: efficiency scaling as the fifth power of the length,” Phys. Rev. Lett. 89, 043901 (2002).
[CrossRef] [PubMed]

Sakoda, K.

T. Ochiai and K. Sakoda, “Nearly free-photon approximation for two-dimensional photonic crystal slabs,” Phys. Rev. B 64, 045108 (2001).
[CrossRef]

Sambles, J. R.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

Scalbert, D.

J. Torres, D. Coquillat, R. Legros, J. P. Lascaray, F. Teppe, D. Scalbert, D. Peyrade, Y. Chen, O. Briot, M. Le Vassor d’Yerville, E. Centeno, D. Cassagne, and J. P. Albert, “Giant second-harmonic generation in a one-dimensional gan photonic crystal,” Phys. Rev. B 69, 085105 (2004).
[CrossRef]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 9–12 (2004).
[CrossRef]

Senz, S.

P. Kopperschmidt, S. Senz, G. Kästner, D. Hesse, and U. M. Gösele, “Materials integration of gallium arsenide and silicon by wafer bonding,” Appl. Phys. Lett. 72, 3181–3183 (1998).
[CrossRef]

P. Kopperschmidt, G. Kästner, S. Senz, D. Hesse, and U. Gösele, “Wafer bonding of gallium arsenide on sapphire,” Appl. Phys. A 64, 533–537 (1997).
[CrossRef]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 9–12 (2004).
[CrossRef]

Shields, B.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučkovič, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef] [PubMed]

Shul, R.

T. Maeda, J. Lee, R. Shul, J. Han, J. Hong, E. Lambers, S. Pearton, C. Abernathy, and W. Hobson, “Inductively coupled plasma etching of III–V semiconductors in BCl3-based chemistries. I. GaAs, GaN, GaP, GaSb and AlGaAs,” Appl. Surf. Sci. 143, 174–182 (1999).
[CrossRef]

Sigalas, M.

Skolnick, M. S.

V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B 60, R16255–R16258 (1999).
[CrossRef]

Solgaard, O.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
[CrossRef]

Song, Q. H.

Q. H. Song and H. Cao, “Improving optical confinement in nanostructures via external mode coupling,” Phys. Rev. Lett. 105, 053902 (2010).
[CrossRef] [PubMed]

Soukoulis, C. M.

C. T. Chan, S. Datta, K. M. Ho, and C. M. Soukoulis, “A7 structure: a family of photonic crystals,” Phys. Rev. B 50, 1988–1991 (1994).
[CrossRef]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[CrossRef] [PubMed]

Steinmeyer, G.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

Stevenson, R. M.

V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B 60, R16255–R16258 (1999).
[CrossRef]

Stibenz, G.

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

Stolwijk, D.

M. J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77, 115437 (2008).
[CrossRef]

E. F. C. Driessen, D. Stolwijk, and M. J. A. de Dood, “Asymmetry reversal in the reflection from a two-dimensional photonic crystal,” Opt. Lett. 32, 3137–3139 (2007).
[CrossRef] [PubMed]

Suh, W.

Teppe, F.

J. Torres, D. Coquillat, R. Legros, J. P. Lascaray, F. Teppe, D. Scalbert, D. Peyrade, Y. Chen, O. Briot, M. Le Vassor d’Yerville, E. Centeno, D. Cassagne, and J. P. Albert, “Giant second-harmonic generation in a one-dimensional gan photonic crystal,” Phys. Rev. B 69, 085105 (2004).
[CrossRef]

Tiedje, T.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
[CrossRef]

Torres, J.

J. Torres, D. Coquillat, R. Legros, J. P. Lascaray, F. Teppe, D. Scalbert, D. Peyrade, Y. Chen, O. Briot, M. Le Vassor d’Yerville, E. Centeno, D. Cassagne, and J. P. Albert, “Giant second-harmonic generation in a one-dimensional gan photonic crystal,” Phys. Rev. B 69, 085105 (2004).
[CrossRef]

van der Sar, T.

T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. de Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94, 173104 (2009).
[CrossRef]

van Driel, H. M.

A. D. Bristow, J. P. Mondia, and H. M. van Driel, “Sum and difference frequency generation as diagnostics for leaky eigenmodes in two-dimensional photonic crystal waveguides,” J. Appl. Phys. 99, 023105 (2006).
[CrossRef]

J. P. Mondia, H. M. van Driel, W. Jiang, A. R. Cowan, and J. F. Young, “Enhanced second-harmonic generation from planar photonic crystals,” Opt. Lett. 28, 2500–2502 (2003).
[CrossRef] [PubMed]

van Exter, M. P.

M. J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77, 115437 (2008).
[CrossRef]

Vidakovic, P.

Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Mériadec, and A. Levenson, “Phase-matched frequency doubling at photonic band edges: efficiency scaling as the fifth power of the length,” Phys. Rev. Lett. 89, 043901 (2002).
[CrossRef] [PubMed]

Volkmer, A.

F. Jelezko, A. Volkmer, I. Popa, K. K. Rebane, and J. Wrachtrup, “Coherence length of photons from a single quantum system,” Phys. Rev. A 67, 041802 (2003).
[CrossRef]

Vuckovic, J.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučkovič, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef] [PubMed]

Whittaker, D. M.

V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B 60, R16255–R16258 (1999).
[CrossRef]

Wierer, J. J.

J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency with high extraction efficiency,” Nat. Photonics 3, 163–169 (2009).
[CrossRef]

Wiersig, J.

J. Wiersig, “Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities,” Phys. Rev. Lett. 97, 253901 (2006).
[CrossRef]

Winger, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system.” Nature 445, 896–899 (2007).
[CrossRef] [PubMed]

Wrachtrup, J.

F. Jelezko, A. Volkmer, I. Popa, K. K. Rebane, and J. Wrachtrup, “Coherence length of photons from a single quantum system,” Phys. Rev. A 67, 041802 (2003).
[CrossRef]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 9–12 (2004).
[CrossRef]

Young, J.

P. Paddon and J. Young, “Two-dimensional vector-coupled-mode theory for textured planar waveguides,” Phys. Rev. B 61, 2090–2101 (2000).
[CrossRef]

Young, J. F.

J. P. Mondia, H. M. van Driel, W. Jiang, A. R. Cowan, and J. F. Young, “Enhanced second-harmonic generation from planar photonic crystals,” Opt. Lett. 28, 2500–2502 (2003).
[CrossRef] [PubMed]

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
[CrossRef]

Young, Jeff F.

A. R. Cowan and Jeff F. Young, “Mode matching for second-harmonic generation in photonic crystal waveguides,” Phys. Rev. B 65, 085106 (2002).
[CrossRef]

Appl. Phys. A

P. Kopperschmidt, G. Kästner, S. Senz, D. Hesse, and U. Gösele, “Wafer bonding of gallium arsenide on sapphire,” Appl. Phys. A 64, 533–537 (1997).
[CrossRef]

Appl. Phys. Lett.

T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. de Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94, 173104 (2009).
[CrossRef]

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a photonic band gap in two dimensions,” Appl. Phys. Lett. 61, 495–497 (1992).
[CrossRef]

P. Kopperschmidt, S. Senz, G. Kästner, D. Hesse, and U. M. Gösele, “Materials integration of gallium arsenide and silicon by wafer bonding,” Appl. Phys. Lett. 72, 3181–3183 (1998).
[CrossRef]

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
[CrossRef]

Appl. Surf. Sci.

T. Maeda, J. Lee, R. Shul, J. Han, J. Hong, E. Lambers, S. Pearton, C. Abernathy, and W. Hobson, “Inductively coupled plasma etching of III–V semiconductors in BCl3-based chemistries. I. GaAs, GaN, GaP, GaSb and AlGaAs,” Appl. Surf. Sci. 143, 174–182 (1999).
[CrossRef]

J. Appl. Phys.

A. D. Bristow, J. P. Mondia, and H. M. van Driel, “Sum and difference frequency generation as diagnostics for leaky eigenmodes in two-dimensional photonic crystal waveguides,” J. Appl. Phys. 99, 023105 (2006).
[CrossRef]

J. Cryst. Growth

Z. Hatzopoulos, D. Cenghera, G. Deligeorgisa, M. Androulidakia, E. Aperathitisa, and G. H. A. Georgakilas, “Molecular beam epitaxy of GaAs/AlGaAs epitaxial structures for integrated optoelectronic devices on Si using GaAs-Si wafer bonding,” J. Cryst. Growth 227–228, 193–196 (2001).
[CrossRef]

J. Opt. Soc. Am. A

Nano Lett.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučkovič, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010).
[CrossRef] [PubMed]

Nat. Photonics

J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency with high extraction efficiency,” Nat. Photonics 3, 163–169 (2009).
[CrossRef]

Nature

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 9–12 (2004).
[CrossRef]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system.” Nature 445, 896–899 (2007).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. A

F. Jelezko, A. Volkmer, I. Popa, K. K. Rebane, and J. Wrachtrup, “Coherence length of photons from a single quantum system,” Phys. Rev. A 67, 041802 (2003).
[CrossRef]

Phys. Rev. B

P. Paddon and J. Young, “Two-dimensional vector-coupled-mode theory for textured planar waveguides,” Phys. Rev. B 61, 2090–2101 (2000).
[CrossRef]

A. R. Cowan and Jeff F. Young, “Mode matching for second-harmonic generation in photonic crystal waveguides,” Phys. Rev. B 65, 085106 (2002).
[CrossRef]

J. Torres, D. Coquillat, R. Legros, J. P. Lascaray, F. Teppe, D. Scalbert, D. Peyrade, Y. Chen, O. Briot, M. Le Vassor d’Yerville, E. Centeno, D. Cassagne, and J. P. Albert, “Giant second-harmonic generation in a one-dimensional gan photonic crystal,” Phys. Rev. B 69, 085105 (2004).
[CrossRef]

V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B 60, R16255–R16258 (1999).
[CrossRef]

M. J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77, 115437 (2008).
[CrossRef]

T. Ochiai and K. Sakoda, “Nearly free-photon approximation for two-dimensional photonic crystal slabs,” Phys. Rev. B 64, 045108 (2001).
[CrossRef]

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

C. T. Chan, S. Datta, K. M. Ho, and C. M. Soukoulis, “A7 structure: a family of photonic crystals,” Phys. Rev. B 50, 1988–1991 (1994).
[CrossRef]

Phys. Rev. Lett.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[CrossRef] [PubMed]

Y. Dumeige, I. Sagnes, P. Monnier, P. Vidakovic, I. Abram, C. Mériadec, and A. Levenson, “Phase-matched frequency doubling at photonic band edges: efficiency scaling as the fifth power of the length,” Phys. Rev. Lett. 89, 043901 (2002).
[CrossRef] [PubMed]

C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. S. Kim, and C. Lienau, “Femtosecond light transmission and subradiant damping in plasmonic crystals,” Phys. Rev. Lett. 94, 113901 (2005).
[CrossRef] [PubMed]

J. Wiersig, “Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities,” Phys. Rev. Lett. 97, 253901 (2006).
[CrossRef]

Q. H. Song and H. Cao, “Improving optical confinement in nanostructures via external mode coupling,” Phys. Rev. Lett. 105, 053902 (2010).
[CrossRef] [PubMed]

Rep. Prog. Phys.

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73, 096501 (2010).
[CrossRef]

Other

Detailed information and technical datasheets are available via the manufacturers website: http://www.gelpak.com

http://www.ioffe.ru/SVA/NSM/Semicond/AlGaAs/index.html .

The force Fs to peel off the membrane breaking all gel-membrane bonds on the surface is proportional to L × (1 – π(r/a)2)). The force needed to break the membrane free Fb is given by the work needed to peel free the membranes along the sides and gives Fb ∝ d × (a – 2r). The ratio between the two forces Fs/Fb is then proportional to Ld×1−π(r/a)2a−2r, where the second term is a geometrical factor that accounts for the square lattice of air holes in the membrane.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Transfer of a photonic crystal membrane to a gel. (a) Schematic drawing of the process. (b) Optical microscope images of 300×300 μm2 large photonic crystal membrane before (b) and after (c) the transfer. The membrane is 150 nm thick, and contains a square lattice of 300 nm diameter holes with a lattice constant a = 820 nm. (d) Atomic force microscope image of a 12 × 12 μm2 section of a similar membrane (300 nm diameter holes, a = 640 nm) before the transfer, showing typical height variations.

Fig. 2
Fig. 2

Comparison of the measured reflection spectra for p-polarized light before (triangles) and after (circles) transfer to the gel. Resonances due to the (0,±1) and (−1,±1) leaky modes are clearly visible and show that the transfer process leads to a red shift of the leaky modes. The solid lines through the data are fits of a Fano model with two resonances to the experimental data (see text).

Fig. 3
Fig. 3

Measured transmission for s-polarized incident light of a photonic crystal slab after the transfer to the gel. Data are shown as grayscale as a function of frequency (vertical axis) and in-plane wavevector k|| along the ΓM and ΓX symmetry directions of the square lattice. The leaky modes are visible in the figure as the darker lines in the grayscale plot. The lattice constant of the square lattice is a = 820 nm.

Fig. 4
Fig. 4

Measured transmission spectra (dots) as a function of frequency showing the avoided crossing of the (1,0) and (−1,±1) modes. Data are shown for angles of incidence from 10° to 40° for every 2°, for both s-polarization (left) and p-polarization (right). Each measured spectrum is offset vertically for clarity. The solid lines are fits of a Fano model using either a double or a single resonance to the data.

Fig. 5
Fig. 5

Dispersion relation of the avoided crossing of the (1,0) and (−1,±1) modes obtained from the Fano fits in Fig. 4. The center frequencies of the modes (a) and quality factors (b) are plotted as a function of the in-plane wavevector k ||. The triangles in (a) correspond to the (−1,±1) mode that couples to p-polarized light, while the filled and open circles are the center frequencies of the (1,0) and (−1,±1) modes that couple to s-polarized light. The solid lines in (a) are fits to the data using a coupled mode theory (see text). The maximum achievable quality factor for the subradiant mode is close to 300 and is limited by the finite size of the structure.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R ( ν ) = | r d ( ν ) + j A j i ( ν ν j ) + ( γ j + Γ j ) | 2 ,
H = ( ν 1 κ 1 κ 1 κ 1 ν 2 + κ 2 κ 2 κ 1 κ 2 ν 2 + κ 2 ) .
1 Q = 1 Q ideal + 1 Q loss .

Metrics