Abstract

An ethoxylated bis-phenol-A dimethacrylate based photoresin BPE-100 of relatively high photosensitivity and modulus is used for the creation of sub-50 nm features. This is achieved by using the direct laser writing technique based on the single-photon photoinhibited polymerization. The super-resolution feature is realized by overlapping two laser beams of different wavelengths to enable the wavelength-controlled activation of photoinitiating and photoinhibiting processes in the polymerization. The increased photosensitivity of the photoresin promotes a fast curing speed and enhances the photopolymerization efficiency. Using the photoresin BPE-100, we achieve 40 nm dots for the first time in the super-resolution fabrication technique based on the photoinhibited polymerization, and a minimum linewidth of 130 nm. The influence of the power of the inhibiting laser and the exposure time on the feature size is studied and the results agree well with the prediction obtained from a simulation based on a non-steady-state kinetic model.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
    [CrossRef]
  2. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
    [CrossRef] [PubMed]
  3. K. Choi, J. W. M. Chon, M. Gu, N. Malic, and R. A. Evans, “Low-distortion holographic data storage media using free-radical ring-opening polymerization,” Adv. Funct. Mater. 19(22), 3560–3566 (2009).
    [CrossRef]
  4. L. Li, E. Gershgoren, G. Kumi, W. Y. Chen, P. T. Ho, W. N. Herman, and J. T. Fourkas, “High-performance microring resonators fabricated with multiphoton absorption polymerization,” Adv. Mater. (Deerfield Beach Fla.) 20(19), 3668–3671 (2008).
    [CrossRef]
  5. S. Maruo, A. Takaura, and Y. Saito, “Optically driven micropump with a twin spiral microrotor,” Opt. Express 17(21), 18525–18532 (2009).
    [CrossRef] [PubMed]
  6. Z. Xiong, X. Z. Dong, W. Q. Chen, and X. M. Duan, “Fast solvent-driven micropump fabricated by two-photon microfabrication,” Appl. Phys., A Mater. Sci. Process. 93(2), 447–452 (2008).
    [CrossRef]
  7. T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
    [CrossRef] [PubMed]
  8. H. B. Sun, K. Takada, M. S. Kim, K. S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
    [CrossRef]
  9. M. Z. Sun, Y. Li, H. B. Cui, H. Yang, and Q. H. Gong, “Minimum spacing between suspended nanorods determined by stiction during two-photon polymerization,” Appl. Phys., A Mater. Sci. Process. 100(1), 177–180 (2010).
    [CrossRef]
  10. C. Decker and K. Moussa, “Real-time kinetic-study of laser-induced polymerization,” Macromolecules 22(12), 4455–4462 (1989).
    [CrossRef]
  11. G. Odian, Principles of Polymerization, Fourth Edition (John Wiley & Sons, Inc.: Hoboken, New Jersey 2004).
  12. H. Q. Hou, J. G. Jiang, and M. X. Ding, “Ester-type precursor of polyimide and photosensitivity,” Eur. Polym. J. 35(11), 1993–2000 (1999).
    [CrossRef]
  13. J. Serbin, A. Ovsianikov, and B. Chichkov, “Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,” Opt. Express 12(21), 5221–5228 (2004).
    [CrossRef] [PubMed]
  14. I. V. Khudyakov, W. S. Fox, and M. B. Purvis, “Photopolymerization of vinyl acrylate studied by photodsc,” Ind. Eng. Chem. Res. 40(14), 3092–3097 (2001).
    [CrossRef]
  15. L. H. Nguyen, M. Straub, and M. Gu, “Acrylate-based photopolymer for two-photon microfabrication and photonic applications,” Adv. Funct. Mater. 15(2), 209–216 (2005).
    [CrossRef]
  16. M. Trujillo-Lemon, J. H. Ge, H. Lu, J. Tanaka, and J. W. Stansbury, “Dimethacrylate derivatives of dimer acid,” J. Polym. Sci., Part A: Polym. Chem. 44(12), 3921–3929 (2006).
    [CrossRef]
  17. S. H. Wu, M. Straub, and M. Gu, “Single-monomer acrylate-based resin for three-dimensional photonic crystal fabrication,” Polymer (Guildf.) 46(23), 10246–10255 (2005).
    [CrossRef]
  18. T. A. Pham, P. Kim, M. Kwak, K. Y. Suh, and D. P. Kim, “Inorganic polymer photoresist for direct ceramic patterning by photolithography,” Chem. Commun. (Camb.) •••(39), 4021–4023 (2007).
    [CrossRef] [PubMed]
  19. Z. S. Gan, Y. Y. Cao, B. H. Jia, and M. Gu, “Dynamic modeling of photoinhibited photopolymerization for superresolution photolithography,” under preparation.
  20. E. T. Denisov, T. G. Denisova, and T. S. Pokidova, Handbook of free radical initiators (John Wiley & Sons, Inc.: Hoboken, New Jersey 2004).
  21. M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part i. Modeling,” J. Opt. Soc. Am. B 26(9), 1736–1745 (2009).
    [CrossRef]
  22. M. Gu, Advanced optical imaging theory (Springer: Verlag Berlin Heidelberg 2000).

2010

M. Z. Sun, Y. Li, H. B. Cui, H. Yang, and Q. H. Gong, “Minimum spacing between suspended nanorods determined by stiction during two-photon polymerization,” Appl. Phys., A Mater. Sci. Process. 100(1), 177–180 (2010).
[CrossRef]

2009

K. Choi, J. W. M. Chon, M. Gu, N. Malic, and R. A. Evans, “Low-distortion holographic data storage media using free-radical ring-opening polymerization,” Adv. Funct. Mater. 19(22), 3560–3566 (2009).
[CrossRef]

S. Maruo, A. Takaura, and Y. Saito, “Optically driven micropump with a twin spiral microrotor,” Opt. Express 17(21), 18525–18532 (2009).
[CrossRef] [PubMed]

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
[CrossRef] [PubMed]

M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part i. Modeling,” J. Opt. Soc. Am. B 26(9), 1736–1745 (2009).
[CrossRef]

2008

Z. Xiong, X. Z. Dong, W. Q. Chen, and X. M. Duan, “Fast solvent-driven micropump fabricated by two-photon microfabrication,” Appl. Phys., A Mater. Sci. Process. 93(2), 447–452 (2008).
[CrossRef]

L. Li, E. Gershgoren, G. Kumi, W. Y. Chen, P. T. Ho, W. N. Herman, and J. T. Fourkas, “High-performance microring resonators fabricated with multiphoton absorption polymerization,” Adv. Mater. (Deerfield Beach Fla.) 20(19), 3668–3671 (2008).
[CrossRef]

2007

T. A. Pham, P. Kim, M. Kwak, K. Y. Suh, and D. P. Kim, “Inorganic polymer photoresist for direct ceramic patterning by photolithography,” Chem. Commun. (Camb.) •••(39), 4021–4023 (2007).
[CrossRef] [PubMed]

2006

M. Trujillo-Lemon, J. H. Ge, H. Lu, J. Tanaka, and J. W. Stansbury, “Dimethacrylate derivatives of dimer acid,” J. Polym. Sci., Part A: Polym. Chem. 44(12), 3921–3929 (2006).
[CrossRef]

2005

S. H. Wu, M. Straub, and M. Gu, “Single-monomer acrylate-based resin for three-dimensional photonic crystal fabrication,” Polymer (Guildf.) 46(23), 10246–10255 (2005).
[CrossRef]

L. H. Nguyen, M. Straub, and M. Gu, “Acrylate-based photopolymer for two-photon microfabrication and photonic applications,” Adv. Funct. Mater. 15(2), 209–216 (2005).
[CrossRef]

2004

J. Serbin, A. Ovsianikov, and B. Chichkov, “Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,” Opt. Express 12(21), 5221–5228 (2004).
[CrossRef] [PubMed]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

2003

H. B. Sun, K. Takada, M. S. Kim, K. S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[CrossRef]

2001

I. V. Khudyakov, W. S. Fox, and M. B. Purvis, “Photopolymerization of vinyl acrylate studied by photodsc,” Ind. Eng. Chem. Res. 40(14), 3092–3097 (2001).
[CrossRef]

1999

H. Q. Hou, J. G. Jiang, and M. X. Ding, “Ester-type precursor of polyimide and photosensitivity,” Eur. Polym. J. 35(11), 1993–2000 (1999).
[CrossRef]

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

1989

C. Decker and K. Moussa, “Real-time kinetic-study of laser-induced polymerization,” Macromolecules 22(12), 4455–4462 (1989).
[CrossRef]

Ananthavel, S. P.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Barlow, S.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Bowman, C. N.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
[CrossRef] [PubMed]

Busch, K.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Chen, W. Q.

Z. Xiong, X. Z. Dong, W. Q. Chen, and X. M. Duan, “Fast solvent-driven micropump fabricated by two-photon microfabrication,” Appl. Phys., A Mater. Sci. Process. 93(2), 447–452 (2008).
[CrossRef]

Chen, W. Y.

L. Li, E. Gershgoren, G. Kumi, W. Y. Chen, P. T. Ho, W. N. Herman, and J. T. Fourkas, “High-performance microring resonators fabricated with multiphoton absorption polymerization,” Adv. Mater. (Deerfield Beach Fla.) 20(19), 3668–3671 (2008).
[CrossRef]

Chichkov, B.

Choi, K.

K. Choi, J. W. M. Chon, M. Gu, N. Malic, and R. A. Evans, “Low-distortion holographic data storage media using free-radical ring-opening polymerization,” Adv. Funct. Mater. 19(22), 3560–3566 (2009).
[CrossRef]

Chon, J. W. M.

K. Choi, J. W. M. Chon, M. Gu, N. Malic, and R. A. Evans, “Low-distortion holographic data storage media using free-radical ring-opening polymerization,” Adv. Funct. Mater. 19(22), 3560–3566 (2009).
[CrossRef]

Cui, H. B.

M. Z. Sun, Y. Li, H. B. Cui, H. Yang, and Q. H. Gong, “Minimum spacing between suspended nanorods determined by stiction during two-photon polymerization,” Appl. Phys., A Mater. Sci. Process. 100(1), 177–180 (2010).
[CrossRef]

Cumpston, B. H.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Decker, C.

C. Decker and K. Moussa, “Real-time kinetic-study of laser-induced polymerization,” Macromolecules 22(12), 4455–4462 (1989).
[CrossRef]

Deubel, M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Ding, M. X.

H. Q. Hou, J. G. Jiang, and M. X. Ding, “Ester-type precursor of polyimide and photosensitivity,” Eur. Polym. J. 35(11), 1993–2000 (1999).
[CrossRef]

Dong, X. Z.

Z. Xiong, X. Z. Dong, W. Q. Chen, and X. M. Duan, “Fast solvent-driven micropump fabricated by two-photon microfabrication,” Appl. Phys., A Mater. Sci. Process. 93(2), 447–452 (2008).
[CrossRef]

Duan, X. M.

Z. Xiong, X. Z. Dong, W. Q. Chen, and X. M. Duan, “Fast solvent-driven micropump fabricated by two-photon microfabrication,” Appl. Phys., A Mater. Sci. Process. 93(2), 447–452 (2008).
[CrossRef]

Dyer, D. L.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Ehrlich, J. E.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Erskine, L. L.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Evans, R. A.

K. Choi, J. W. M. Chon, M. Gu, N. Malic, and R. A. Evans, “Low-distortion holographic data storage media using free-radical ring-opening polymerization,” Adv. Funct. Mater. 19(22), 3560–3566 (2009).
[CrossRef]

Fourkas, J. T.

L. Li, E. Gershgoren, G. Kumi, W. Y. Chen, P. T. Ho, W. N. Herman, and J. T. Fourkas, “High-performance microring resonators fabricated with multiphoton absorption polymerization,” Adv. Mater. (Deerfield Beach Fla.) 20(19), 3668–3671 (2008).
[CrossRef]

Fox, W. S.

I. V. Khudyakov, W. S. Fox, and M. B. Purvis, “Photopolymerization of vinyl acrylate studied by photodsc,” Ind. Eng. Chem. Res. 40(14), 3092–3097 (2001).
[CrossRef]

Ge, J. H.

M. Trujillo-Lemon, J. H. Ge, H. Lu, J. Tanaka, and J. W. Stansbury, “Dimethacrylate derivatives of dimer acid,” J. Polym. Sci., Part A: Polym. Chem. 44(12), 3921–3929 (2006).
[CrossRef]

Gershgoren, E.

L. Li, E. Gershgoren, G. Kumi, W. Y. Chen, P. T. Ho, W. N. Herman, and J. T. Fourkas, “High-performance microring resonators fabricated with multiphoton absorption polymerization,” Adv. Mater. (Deerfield Beach Fla.) 20(19), 3668–3671 (2008).
[CrossRef]

Gleeson, M. R.

Gong, Q. H.

M. Z. Sun, Y. Li, H. B. Cui, H. Yang, and Q. H. Gong, “Minimum spacing between suspended nanorods determined by stiction during two-photon polymerization,” Appl. Phys., A Mater. Sci. Process. 100(1), 177–180 (2010).
[CrossRef]

Gu, M.

K. Choi, J. W. M. Chon, M. Gu, N. Malic, and R. A. Evans, “Low-distortion holographic data storage media using free-radical ring-opening polymerization,” Adv. Funct. Mater. 19(22), 3560–3566 (2009).
[CrossRef]

L. H. Nguyen, M. Straub, and M. Gu, “Acrylate-based photopolymer for two-photon microfabrication and photonic applications,” Adv. Funct. Mater. 15(2), 209–216 (2005).
[CrossRef]

S. H. Wu, M. Straub, and M. Gu, “Single-monomer acrylate-based resin for three-dimensional photonic crystal fabrication,” Polymer (Guildf.) 46(23), 10246–10255 (2005).
[CrossRef]

Heikal, A. A.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Herman, W. N.

L. Li, E. Gershgoren, G. Kumi, W. Y. Chen, P. T. Ho, W. N. Herman, and J. T. Fourkas, “High-performance microring resonators fabricated with multiphoton absorption polymerization,” Adv. Mater. (Deerfield Beach Fla.) 20(19), 3668–3671 (2008).
[CrossRef]

Ho, P. T.

L. Li, E. Gershgoren, G. Kumi, W. Y. Chen, P. T. Ho, W. N. Herman, and J. T. Fourkas, “High-performance microring resonators fabricated with multiphoton absorption polymerization,” Adv. Mater. (Deerfield Beach Fla.) 20(19), 3668–3671 (2008).
[CrossRef]

Hou, H. Q.

H. Q. Hou, J. G. Jiang, and M. X. Ding, “Ester-type precursor of polyimide and photosensitivity,” Eur. Polym. J. 35(11), 1993–2000 (1999).
[CrossRef]

Jiang, J. G.

H. Q. Hou, J. G. Jiang, and M. X. Ding, “Ester-type precursor of polyimide and photosensitivity,” Eur. Polym. J. 35(11), 1993–2000 (1999).
[CrossRef]

Kawata, S.

H. B. Sun, K. Takada, M. S. Kim, K. S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[CrossRef]

Khudyakov, I. V.

I. V. Khudyakov, W. S. Fox, and M. B. Purvis, “Photopolymerization of vinyl acrylate studied by photodsc,” Ind. Eng. Chem. Res. 40(14), 3092–3097 (2001).
[CrossRef]

Kim, D. P.

T. A. Pham, P. Kim, M. Kwak, K. Y. Suh, and D. P. Kim, “Inorganic polymer photoresist for direct ceramic patterning by photolithography,” Chem. Commun. (Camb.) •••(39), 4021–4023 (2007).
[CrossRef] [PubMed]

Kim, M. S.

H. B. Sun, K. Takada, M. S. Kim, K. S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[CrossRef]

Kim, P.

T. A. Pham, P. Kim, M. Kwak, K. Y. Suh, and D. P. Kim, “Inorganic polymer photoresist for direct ceramic patterning by photolithography,” Chem. Commun. (Camb.) •••(39), 4021–4023 (2007).
[CrossRef] [PubMed]

Kowalski, B. A.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
[CrossRef] [PubMed]

Kuebler, S. M.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Kumi, G.

L. Li, E. Gershgoren, G. Kumi, W. Y. Chen, P. T. Ho, W. N. Herman, and J. T. Fourkas, “High-performance microring resonators fabricated with multiphoton absorption polymerization,” Adv. Mater. (Deerfield Beach Fla.) 20(19), 3668–3671 (2008).
[CrossRef]

Kwak, M.

T. A. Pham, P. Kim, M. Kwak, K. Y. Suh, and D. P. Kim, “Inorganic polymer photoresist for direct ceramic patterning by photolithography,” Chem. Commun. (Camb.) •••(39), 4021–4023 (2007).
[CrossRef] [PubMed]

Lee, I.-Y. S.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Lee, K. S.

H. B. Sun, K. Takada, M. S. Kim, K. S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[CrossRef]

Li, L.

L. Li, E. Gershgoren, G. Kumi, W. Y. Chen, P. T. Ho, W. N. Herman, and J. T. Fourkas, “High-performance microring resonators fabricated with multiphoton absorption polymerization,” Adv. Mater. (Deerfield Beach Fla.) 20(19), 3668–3671 (2008).
[CrossRef]

Li, Y.

M. Z. Sun, Y. Li, H. B. Cui, H. Yang, and Q. H. Gong, “Minimum spacing between suspended nanorods determined by stiction during two-photon polymerization,” Appl. Phys., A Mater. Sci. Process. 100(1), 177–180 (2010).
[CrossRef]

Lu, H.

M. Trujillo-Lemon, J. H. Ge, H. Lu, J. Tanaka, and J. W. Stansbury, “Dimethacrylate derivatives of dimer acid,” J. Polym. Sci., Part A: Polym. Chem. 44(12), 3921–3929 (2006).
[CrossRef]

Malic, N.

K. Choi, J. W. M. Chon, M. Gu, N. Malic, and R. A. Evans, “Low-distortion holographic data storage media using free-radical ring-opening polymerization,” Adv. Funct. Mater. 19(22), 3560–3566 (2009).
[CrossRef]

Marder, S. R.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Maruo, S.

McCord-Maughon, D.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

McLeod, R. R.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
[CrossRef] [PubMed]

Moussa, K.

C. Decker and K. Moussa, “Real-time kinetic-study of laser-induced polymerization,” Macromolecules 22(12), 4455–4462 (1989).
[CrossRef]

Nguyen, L. H.

L. H. Nguyen, M. Straub, and M. Gu, “Acrylate-based photopolymer for two-photon microfabrication and photonic applications,” Adv. Funct. Mater. 15(2), 209–216 (2005).
[CrossRef]

Ovsianikov, A.

Pereira, S.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Perry, J. W.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Pham, T. A.

T. A. Pham, P. Kim, M. Kwak, K. Y. Suh, and D. P. Kim, “Inorganic polymer photoresist for direct ceramic patterning by photolithography,” Chem. Commun. (Camb.) •••(39), 4021–4023 (2007).
[CrossRef] [PubMed]

Purvis, M. B.

I. V. Khudyakov, W. S. Fox, and M. B. Purvis, “Photopolymerization of vinyl acrylate studied by photodsc,” Ind. Eng. Chem. Res. 40(14), 3092–3097 (2001).
[CrossRef]

Qin, J.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Röckel, H.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Rumi, M.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Saito, Y.

Scott, T. F.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
[CrossRef] [PubMed]

Serbin, J.

Sheridan, J. T.

Soukoulis, C. M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Stansbury, J. W.

M. Trujillo-Lemon, J. H. Ge, H. Lu, J. Tanaka, and J. W. Stansbury, “Dimethacrylate derivatives of dimer acid,” J. Polym. Sci., Part A: Polym. Chem. 44(12), 3921–3929 (2006).
[CrossRef]

Straub, M.

S. H. Wu, M. Straub, and M. Gu, “Single-monomer acrylate-based resin for three-dimensional photonic crystal fabrication,” Polymer (Guildf.) 46(23), 10246–10255 (2005).
[CrossRef]

L. H. Nguyen, M. Straub, and M. Gu, “Acrylate-based photopolymer for two-photon microfabrication and photonic applications,” Adv. Funct. Mater. 15(2), 209–216 (2005).
[CrossRef]

Suh, K. Y.

T. A. Pham, P. Kim, M. Kwak, K. Y. Suh, and D. P. Kim, “Inorganic polymer photoresist for direct ceramic patterning by photolithography,” Chem. Commun. (Camb.) •••(39), 4021–4023 (2007).
[CrossRef] [PubMed]

Sullivan, A. C.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
[CrossRef] [PubMed]

Sun, H. B.

H. B. Sun, K. Takada, M. S. Kim, K. S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[CrossRef]

Sun, M. Z.

M. Z. Sun, Y. Li, H. B. Cui, H. Yang, and Q. H. Gong, “Minimum spacing between suspended nanorods determined by stiction during two-photon polymerization,” Appl. Phys., A Mater. Sci. Process. 100(1), 177–180 (2010).
[CrossRef]

Takada, K.

H. B. Sun, K. Takada, M. S. Kim, K. S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[CrossRef]

Takaura, A.

Tanaka, J.

M. Trujillo-Lemon, J. H. Ge, H. Lu, J. Tanaka, and J. W. Stansbury, “Dimethacrylate derivatives of dimer acid,” J. Polym. Sci., Part A: Polym. Chem. 44(12), 3921–3929 (2006).
[CrossRef]

Trujillo-Lemon, M.

M. Trujillo-Lemon, J. H. Ge, H. Lu, J. Tanaka, and J. W. Stansbury, “Dimethacrylate derivatives of dimer acid,” J. Polym. Sci., Part A: Polym. Chem. 44(12), 3921–3929 (2006).
[CrossRef]

von Freymann, G.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Wegener, M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Wu, S. H.

S. H. Wu, M. Straub, and M. Gu, “Single-monomer acrylate-based resin for three-dimensional photonic crystal fabrication,” Polymer (Guildf.) 46(23), 10246–10255 (2005).
[CrossRef]

Wu, X.-L.

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Xiong, Z.

Z. Xiong, X. Z. Dong, W. Q. Chen, and X. M. Duan, “Fast solvent-driven micropump fabricated by two-photon microfabrication,” Appl. Phys., A Mater. Sci. Process. 93(2), 447–452 (2008).
[CrossRef]

Yang, H.

M. Z. Sun, Y. Li, H. B. Cui, H. Yang, and Q. H. Gong, “Minimum spacing between suspended nanorods determined by stiction during two-photon polymerization,” Appl. Phys., A Mater. Sci. Process. 100(1), 177–180 (2010).
[CrossRef]

Adv. Funct. Mater.

K. Choi, J. W. M. Chon, M. Gu, N. Malic, and R. A. Evans, “Low-distortion holographic data storage media using free-radical ring-opening polymerization,” Adv. Funct. Mater. 19(22), 3560–3566 (2009).
[CrossRef]

L. H. Nguyen, M. Straub, and M. Gu, “Acrylate-based photopolymer for two-photon microfabrication and photonic applications,” Adv. Funct. Mater. 15(2), 209–216 (2005).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

L. Li, E. Gershgoren, G. Kumi, W. Y. Chen, P. T. Ho, W. N. Herman, and J. T. Fourkas, “High-performance microring resonators fabricated with multiphoton absorption polymerization,” Adv. Mater. (Deerfield Beach Fla.) 20(19), 3668–3671 (2008).
[CrossRef]

Appl. Phys. Lett.

H. B. Sun, K. Takada, M. S. Kim, K. S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

M. Z. Sun, Y. Li, H. B. Cui, H. Yang, and Q. H. Gong, “Minimum spacing between suspended nanorods determined by stiction during two-photon polymerization,” Appl. Phys., A Mater. Sci. Process. 100(1), 177–180 (2010).
[CrossRef]

Z. Xiong, X. Z. Dong, W. Q. Chen, and X. M. Duan, “Fast solvent-driven micropump fabricated by two-photon microfabrication,” Appl. Phys., A Mater. Sci. Process. 93(2), 447–452 (2008).
[CrossRef]

Chem. Commun. (Camb.)

T. A. Pham, P. Kim, M. Kwak, K. Y. Suh, and D. P. Kim, “Inorganic polymer photoresist for direct ceramic patterning by photolithography,” Chem. Commun. (Camb.) •••(39), 4021–4023 (2007).
[CrossRef] [PubMed]

Eur. Polym. J.

H. Q. Hou, J. G. Jiang, and M. X. Ding, “Ester-type precursor of polyimide and photosensitivity,” Eur. Polym. J. 35(11), 1993–2000 (1999).
[CrossRef]

Ind. Eng. Chem. Res.

I. V. Khudyakov, W. S. Fox, and M. B. Purvis, “Photopolymerization of vinyl acrylate studied by photodsc,” Ind. Eng. Chem. Res. 40(14), 3092–3097 (2001).
[CrossRef]

J. Opt. Soc. Am. B

J. Polym. Sci., Part A: Polym. Chem.

M. Trujillo-Lemon, J. H. Ge, H. Lu, J. Tanaka, and J. W. Stansbury, “Dimethacrylate derivatives of dimer acid,” J. Polym. Sci., Part A: Polym. Chem. 44(12), 3921–3929 (2006).
[CrossRef]

Macromolecules

C. Decker and K. Moussa, “Real-time kinetic-study of laser-induced polymerization,” Macromolecules 22(12), 4455–4462 (1989).
[CrossRef]

Nat. Mater.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Nature

J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Opt. Express

Polymer (Guildf.)

S. H. Wu, M. Straub, and M. Gu, “Single-monomer acrylate-based resin for three-dimensional photonic crystal fabrication,” Polymer (Guildf.) 46(23), 10246–10255 (2005).
[CrossRef]

Science

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
[CrossRef] [PubMed]

Other

Z. S. Gan, Y. Y. Cao, B. H. Jia, and M. Gu, “Dynamic modeling of photoinhibited photopolymerization for superresolution photolithography,” under preparation.

E. T. Denisov, T. G. Denisova, and T. S. Pokidova, Handbook of free radical initiators (John Wiley & Sons, Inc.: Hoboken, New Jersey 2004).

G. Odian, Principles of Polymerization, Fourth Edition (John Wiley & Sons, Inc.: Hoboken, New Jersey 2004).

M. Gu, Advanced optical imaging theory (Springer: Verlag Berlin Heidelberg 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) The heat flow against the exposure time of the photoresin TEGDMA and BPE-100 measured by the Photo-DSC (the inset is the relevant conversion percent against exposure time). (b) Scheme of the optical setup for photoinhibited polymerization. (c) Optical microscopic and SEM images of the dashed line fabricated in the photoresin BPE-100 by the irradiation of an inhibiting laser beam at intervals. The violet columns represent the sections of the line exposed to the inhibiting laser. The status of the exposure of the inhibiting laser switches the polymerization.

Fig. 2
Fig. 2

Simulation results of the conversion rate of monomer are plotted along the transverse direction at different levels of the irradiation intensity of the inhibiting laser. The arrow indicates the direction of increasing the ratio of the irradiation intensity of the inhibiting laser to the initiating laser. The inset is the normalized dot size as a function of the ratio of the irradiation intensity of the inhibiting laser to the initiating laser. In the calculation, the absorption cross section of initiator and the inhibitor is 2.1 × 10−21cm2 and 5.9 × 10−21cm2 respectively, The rate constants for the initiation caused by the photoinitiator (CQ), the termination caused by the photoinhibitor (TED), and the initiation caused by the photoinhibitor (TED) are 3 × 107 cm3mol−1s−1, 1.2 × 108 cm3mol−1s−1 and 3 × 105 cm3mol−1s−1, respectively. The rate constant for the polymerization is 2 × 106 cm3mol−1s−1. The rate constant for the chain termination is 4 × 107 cm3mol−1s−1. The diffusion constant of initiator/inhibitor radicals is 0.25 µm2/s and the diffusion constant of chain-initiating radicals is 0.05 µm2/s. These values were based on the literatures [11, 20, and 21] and estimated from the fits to the experimental data.

Fig. 3
Fig. 3

The dot sizes are plotted as a function of the power of the inhibiting laser in the photoresin BPE-100. The dots were fabricated under the exposure of the initiating laser of the power of 200 nW at the exposure time of 0.7 s. The SEM images are corresponding to the dots fabricated under the exposure of different power of the inhibiting laser. The red curves are the simulated results with the exposure time of 0.7 s, 0.5 s and 0.4 s, respectively, and the exposure of the initiating laser of power of 200 nW.

Fig. 4
Fig. 4

The experiment results of the dots fabricated with different exposure conditions. The dot sizes are plotted as a function of the power of the inhibiting laser and the exposure time. The exposure power of the initiating laser is (a) 130 nW, (b) 160 nW and (c) 200 nW. (d) is the SEM image of the dot fabricated under the irradiation of the initiating laser of 200 nW and the inhibiting laser of 6 μW at the exposure time of 0.4 s.

Fig. 5
Fig. 5

(a) is the SEM image of a line fabricated at a fixed scanning speed of 3 μm/s, under the exposure of initiating laser of constant power of 200 nW. (b)-(e) are the lines fabricated with different power levels of the inhibiting laser: for (b) 0 μW, (c) 1.0 μW, (d) 1.5 μW and (e) 2.0 μW, at the scanning speed of 3 μm/s, under the irradiation of initiating laser of 200 nW. The scale bar represents 200 nm.

Metrics