Abstract

The influence of the host matrix on the spectroscopic and laser properties of Nd3+ in a K-Ba-Al phosphate glass has been investigated as a function of rare-earth concentration. Site-selective time resolved laser spectroscopy and stimulated emission experiments under selective wavelength laser pumping show the existence of a very complex crystal field site distribution of Nd3+ ions in this glass. The peak of the broad stimulated 4F3/24I11/2 emission shifts in a non monotonous way up to 3 nm as a function of the excitation wavelength. This behavior can be explained by the relatively moderate inter-site energy transfer among Nd3+ ions found in this system and measured by using fluorescence line narrowing spectroscopy. The best slope efficiency obtained for the laser emission was 40%.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. J. Duarte, Tunable laser applications (CRC, New York, 2009).
  2. M. J. Weber, “Science and technology of laser glass,” J. Non-Cryst. Solids 123(1-3), 208–222 (1990).
    [CrossRef]
  3. M. J. Weber, “Fluorescence and glass lasers,” J. Non-Cryst. Solids 47(1), 117–133 (1982).
    [CrossRef]
  4. L. A. Riseberg, “Laser-Induced Fluorescence-Line-Narrowing Spectroscopy of Glass: Nd,” Phys. Rev. A 7(2), 671–678 (1973).
    [CrossRef]
  5. M. J. Weber, “Laser Excited Fluorescence Spectroscopy in Glass,” in Laser Spectroscopy of Solids, W.M. Yen and P.M. Selzer, eds. (Springer, Berlin, 1981), pp. 189–239.
  6. S. A. Brawer and M. J. Weber, “Observation of fluorescence line narrowing, hole burning, and ion-ion energy transfer in neodymium laser glass,” Appl. Phys. Lett. 35(1), 31–33 (1979).
    [CrossRef]
  7. J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263&264(1-2), 318–341 (2000).
    [CrossRef]
  8. R. Balakrishnaiah, P. Babu, C. K. Jayasankar, A. S. Joshi, A. Speghini, and M. Bettinelli, “Optical and luminescence properties of Nd3+ ions in K–Ba–Al-phosphate and fluorophosphate glasses,” J. Phys. Condens. Matter 18(1), 165–179 (2006).
    [CrossRef]
  9. W. F. Krupke, “Induced emission cross-sections in neodymium laser glasses,” IEEE J. Quantum Electron. QE-10(4), 450–457 (1974).
    [CrossRef]
  10. R. Balda, J. Fernández, M. Sanz, A. de Pablos, J. M. Fdez-Navarro, and J. Mugnier, “Laser spectroscopy of Nd3+ ions in GeO2-PbO-Bi2O3 glasses,” Phys. Rev. B 61(5), 3384–3390 (2000).
    [CrossRef]
  11. T. T. Basiev, V. A. Malyshev, and A. K. Prhvuskii, “Spectral Migration of Excitations in Rare-Earth Activated Glasses,” in Spectroscopy of Solids Containing Rare Earth Ions, A.A. Kaplyanskii and R.M. Macfarlane, eds. (North-Holland, Amsterdam, 1987), pp. 275–341.
  12. L. M. Lacha, R. Balda, J. Fernández, and J. L. Adam, “Time-resolved fluorescence line narrowing spectroscopy and fluorescence quenching in Nd3+-doped fluoroarsenate glasses,” Opt. Mater. 25(2), 193–200 (2004).
    [CrossRef]
  13. R. Balda, M. Sanz, J. Fernández, and J. M. Fdez-Navarro, “Energy transfer and upconversion processes in Nd3+-doped GeO2–PbO–Nb2O5 glass,” J. Opt. Soc. Am. B 17(10), 1671–1677 (2000).
    [CrossRef]

2006

R. Balakrishnaiah, P. Babu, C. K. Jayasankar, A. S. Joshi, A. Speghini, and M. Bettinelli, “Optical and luminescence properties of Nd3+ ions in K–Ba–Al-phosphate and fluorophosphate glasses,” J. Phys. Condens. Matter 18(1), 165–179 (2006).
[CrossRef]

2004

L. M. Lacha, R. Balda, J. Fernández, and J. L. Adam, “Time-resolved fluorescence line narrowing spectroscopy and fluorescence quenching in Nd3+-doped fluoroarsenate glasses,” Opt. Mater. 25(2), 193–200 (2004).
[CrossRef]

2000

R. Balda, M. Sanz, J. Fernández, and J. M. Fdez-Navarro, “Energy transfer and upconversion processes in Nd3+-doped GeO2–PbO–Nb2O5 glass,” J. Opt. Soc. Am. B 17(10), 1671–1677 (2000).
[CrossRef]

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263&264(1-2), 318–341 (2000).
[CrossRef]

R. Balda, J. Fernández, M. Sanz, A. de Pablos, J. M. Fdez-Navarro, and J. Mugnier, “Laser spectroscopy of Nd3+ ions in GeO2-PbO-Bi2O3 glasses,” Phys. Rev. B 61(5), 3384–3390 (2000).
[CrossRef]

1990

M. J. Weber, “Science and technology of laser glass,” J. Non-Cryst. Solids 123(1-3), 208–222 (1990).
[CrossRef]

1982

M. J. Weber, “Fluorescence and glass lasers,” J. Non-Cryst. Solids 47(1), 117–133 (1982).
[CrossRef]

1979

S. A. Brawer and M. J. Weber, “Observation of fluorescence line narrowing, hole burning, and ion-ion energy transfer in neodymium laser glass,” Appl. Phys. Lett. 35(1), 31–33 (1979).
[CrossRef]

1974

W. F. Krupke, “Induced emission cross-sections in neodymium laser glasses,” IEEE J. Quantum Electron. QE-10(4), 450–457 (1974).
[CrossRef]

1973

L. A. Riseberg, “Laser-Induced Fluorescence-Line-Narrowing Spectroscopy of Glass: Nd,” Phys. Rev. A 7(2), 671–678 (1973).
[CrossRef]

Adam, J. L.

L. M. Lacha, R. Balda, J. Fernández, and J. L. Adam, “Time-resolved fluorescence line narrowing spectroscopy and fluorescence quenching in Nd3+-doped fluoroarsenate glasses,” Opt. Mater. 25(2), 193–200 (2004).
[CrossRef]

Babu, P.

R. Balakrishnaiah, P. Babu, C. K. Jayasankar, A. S. Joshi, A. Speghini, and M. Bettinelli, “Optical and luminescence properties of Nd3+ ions in K–Ba–Al-phosphate and fluorophosphate glasses,” J. Phys. Condens. Matter 18(1), 165–179 (2006).
[CrossRef]

Balakrishnaiah, R.

R. Balakrishnaiah, P. Babu, C. K. Jayasankar, A. S. Joshi, A. Speghini, and M. Bettinelli, “Optical and luminescence properties of Nd3+ ions in K–Ba–Al-phosphate and fluorophosphate glasses,” J. Phys. Condens. Matter 18(1), 165–179 (2006).
[CrossRef]

Balda, R.

L. M. Lacha, R. Balda, J. Fernández, and J. L. Adam, “Time-resolved fluorescence line narrowing spectroscopy and fluorescence quenching in Nd3+-doped fluoroarsenate glasses,” Opt. Mater. 25(2), 193–200 (2004).
[CrossRef]

R. Balda, M. Sanz, J. Fernández, and J. M. Fdez-Navarro, “Energy transfer and upconversion processes in Nd3+-doped GeO2–PbO–Nb2O5 glass,” J. Opt. Soc. Am. B 17(10), 1671–1677 (2000).
[CrossRef]

R. Balda, J. Fernández, M. Sanz, A. de Pablos, J. M. Fdez-Navarro, and J. Mugnier, “Laser spectroscopy of Nd3+ ions in GeO2-PbO-Bi2O3 glasses,” Phys. Rev. B 61(5), 3384–3390 (2000).
[CrossRef]

Bettinelli, M.

R. Balakrishnaiah, P. Babu, C. K. Jayasankar, A. S. Joshi, A. Speghini, and M. Bettinelli, “Optical and luminescence properties of Nd3+ ions in K–Ba–Al-phosphate and fluorophosphate glasses,” J. Phys. Condens. Matter 18(1), 165–179 (2006).
[CrossRef]

Brawer, S. A.

S. A. Brawer and M. J. Weber, “Observation of fluorescence line narrowing, hole burning, and ion-ion energy transfer in neodymium laser glass,” Appl. Phys. Lett. 35(1), 31–33 (1979).
[CrossRef]

Campbell, J. H.

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263&264(1-2), 318–341 (2000).
[CrossRef]

de Pablos, A.

R. Balda, J. Fernández, M. Sanz, A. de Pablos, J. M. Fdez-Navarro, and J. Mugnier, “Laser spectroscopy of Nd3+ ions in GeO2-PbO-Bi2O3 glasses,” Phys. Rev. B 61(5), 3384–3390 (2000).
[CrossRef]

Fdez-Navarro, J. M.

R. Balda, J. Fernández, M. Sanz, A. de Pablos, J. M. Fdez-Navarro, and J. Mugnier, “Laser spectroscopy of Nd3+ ions in GeO2-PbO-Bi2O3 glasses,” Phys. Rev. B 61(5), 3384–3390 (2000).
[CrossRef]

R. Balda, M. Sanz, J. Fernández, and J. M. Fdez-Navarro, “Energy transfer and upconversion processes in Nd3+-doped GeO2–PbO–Nb2O5 glass,” J. Opt. Soc. Am. B 17(10), 1671–1677 (2000).
[CrossRef]

Fernández, J.

L. M. Lacha, R. Balda, J. Fernández, and J. L. Adam, “Time-resolved fluorescence line narrowing spectroscopy and fluorescence quenching in Nd3+-doped fluoroarsenate glasses,” Opt. Mater. 25(2), 193–200 (2004).
[CrossRef]

R. Balda, M. Sanz, J. Fernández, and J. M. Fdez-Navarro, “Energy transfer and upconversion processes in Nd3+-doped GeO2–PbO–Nb2O5 glass,” J. Opt. Soc. Am. B 17(10), 1671–1677 (2000).
[CrossRef]

R. Balda, J. Fernández, M. Sanz, A. de Pablos, J. M. Fdez-Navarro, and J. Mugnier, “Laser spectroscopy of Nd3+ ions in GeO2-PbO-Bi2O3 glasses,” Phys. Rev. B 61(5), 3384–3390 (2000).
[CrossRef]

Jayasankar, C. K.

R. Balakrishnaiah, P. Babu, C. K. Jayasankar, A. S. Joshi, A. Speghini, and M. Bettinelli, “Optical and luminescence properties of Nd3+ ions in K–Ba–Al-phosphate and fluorophosphate glasses,” J. Phys. Condens. Matter 18(1), 165–179 (2006).
[CrossRef]

Joshi, A. S.

R. Balakrishnaiah, P. Babu, C. K. Jayasankar, A. S. Joshi, A. Speghini, and M. Bettinelli, “Optical and luminescence properties of Nd3+ ions in K–Ba–Al-phosphate and fluorophosphate glasses,” J. Phys. Condens. Matter 18(1), 165–179 (2006).
[CrossRef]

Krupke, W. F.

W. F. Krupke, “Induced emission cross-sections in neodymium laser glasses,” IEEE J. Quantum Electron. QE-10(4), 450–457 (1974).
[CrossRef]

Lacha, L. M.

L. M. Lacha, R. Balda, J. Fernández, and J. L. Adam, “Time-resolved fluorescence line narrowing spectroscopy and fluorescence quenching in Nd3+-doped fluoroarsenate glasses,” Opt. Mater. 25(2), 193–200 (2004).
[CrossRef]

Mugnier, J.

R. Balda, J. Fernández, M. Sanz, A. de Pablos, J. M. Fdez-Navarro, and J. Mugnier, “Laser spectroscopy of Nd3+ ions in GeO2-PbO-Bi2O3 glasses,” Phys. Rev. B 61(5), 3384–3390 (2000).
[CrossRef]

Riseberg, L. A.

L. A. Riseberg, “Laser-Induced Fluorescence-Line-Narrowing Spectroscopy of Glass: Nd,” Phys. Rev. A 7(2), 671–678 (1973).
[CrossRef]

Sanz, M.

R. Balda, M. Sanz, J. Fernández, and J. M. Fdez-Navarro, “Energy transfer and upconversion processes in Nd3+-doped GeO2–PbO–Nb2O5 glass,” J. Opt. Soc. Am. B 17(10), 1671–1677 (2000).
[CrossRef]

R. Balda, J. Fernández, M. Sanz, A. de Pablos, J. M. Fdez-Navarro, and J. Mugnier, “Laser spectroscopy of Nd3+ ions in GeO2-PbO-Bi2O3 glasses,” Phys. Rev. B 61(5), 3384–3390 (2000).
[CrossRef]

Speghini, A.

R. Balakrishnaiah, P. Babu, C. K. Jayasankar, A. S. Joshi, A. Speghini, and M. Bettinelli, “Optical and luminescence properties of Nd3+ ions in K–Ba–Al-phosphate and fluorophosphate glasses,” J. Phys. Condens. Matter 18(1), 165–179 (2006).
[CrossRef]

Suratwala, T. I.

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263&264(1-2), 318–341 (2000).
[CrossRef]

Weber, M. J.

M. J. Weber, “Science and technology of laser glass,” J. Non-Cryst. Solids 123(1-3), 208–222 (1990).
[CrossRef]

M. J. Weber, “Fluorescence and glass lasers,” J. Non-Cryst. Solids 47(1), 117–133 (1982).
[CrossRef]

S. A. Brawer and M. J. Weber, “Observation of fluorescence line narrowing, hole burning, and ion-ion energy transfer in neodymium laser glass,” Appl. Phys. Lett. 35(1), 31–33 (1979).
[CrossRef]

Appl. Phys. Lett.

S. A. Brawer and M. J. Weber, “Observation of fluorescence line narrowing, hole burning, and ion-ion energy transfer in neodymium laser glass,” Appl. Phys. Lett. 35(1), 31–33 (1979).
[CrossRef]

IEEE J. Quantum Electron.

W. F. Krupke, “Induced emission cross-sections in neodymium laser glasses,” IEEE J. Quantum Electron. QE-10(4), 450–457 (1974).
[CrossRef]

J. Non-Cryst. Solids

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263&264(1-2), 318–341 (2000).
[CrossRef]

M. J. Weber, “Science and technology of laser glass,” J. Non-Cryst. Solids 123(1-3), 208–222 (1990).
[CrossRef]

M. J. Weber, “Fluorescence and glass lasers,” J. Non-Cryst. Solids 47(1), 117–133 (1982).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Condens. Matter

R. Balakrishnaiah, P. Babu, C. K. Jayasankar, A. S. Joshi, A. Speghini, and M. Bettinelli, “Optical and luminescence properties of Nd3+ ions in K–Ba–Al-phosphate and fluorophosphate glasses,” J. Phys. Condens. Matter 18(1), 165–179 (2006).
[CrossRef]

Opt. Mater.

L. M. Lacha, R. Balda, J. Fernández, and J. L. Adam, “Time-resolved fluorescence line narrowing spectroscopy and fluorescence quenching in Nd3+-doped fluoroarsenate glasses,” Opt. Mater. 25(2), 193–200 (2004).
[CrossRef]

Phys. Rev. A

L. A. Riseberg, “Laser-Induced Fluorescence-Line-Narrowing Spectroscopy of Glass: Nd,” Phys. Rev. A 7(2), 671–678 (1973).
[CrossRef]

Phys. Rev. B

R. Balda, J. Fernández, M. Sanz, A. de Pablos, J. M. Fdez-Navarro, and J. Mugnier, “Laser spectroscopy of Nd3+ ions in GeO2-PbO-Bi2O3 glasses,” Phys. Rev. B 61(5), 3384–3390 (2000).
[CrossRef]

Other

T. T. Basiev, V. A. Malyshev, and A. K. Prhvuskii, “Spectral Migration of Excitations in Rare-Earth Activated Glasses,” in Spectroscopy of Solids Containing Rare Earth Ions, A.A. Kaplyanskii and R.M. Macfarlane, eds. (North-Holland, Amsterdam, 1987), pp. 275–341.

M. J. Weber, “Laser Excited Fluorescence Spectroscopy in Glass,” in Laser Spectroscopy of Solids, W.M. Yen and P.M. Selzer, eds. (Springer, Berlin, 1981), pp. 189–239.

F. J. Duarte, Tunable laser applications (CRC, New York, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Room temperature steady-state emission spectra of the 4F3/24I9/2,11/2 transitions for different Nd2O3 concentrations.

Fig. 2
Fig. 2

Integrated emission intensity of the 4F3/24I11/2 transition for different Nd3+ concentrations.

Fig. 3
Fig. 3

Excitation spectra of the 4I9/24F3/2 transition obtained by collecting the luminescence at different emission wavelengths along the 4F3/24I11/2 emission for the sample doped with 0.5 mol% of Nd2O3. Data correspond to 10 K.

Fig. 4
Fig. 4

Steady-state emission spectra of the 4F3/24I11/2 transition for different excitation wavelengths along the low Stark component of the 4F3/2 level for the sample doped with 0.5 mol% of Nd2O3. Data correspond to 10 K.

Fig. 5
Fig. 5

TRFLN emission spectra obtained at three different time delays after the laser pulse, (a) 5 μs, (b) 100 μs, and (c) 300 μs by exciting at 872 nm for the sample doped with 2% of Nd2O3.

Fig. 6
Fig. 6

TRFLN emission spectra obtained at 5 μs by exciting at 872 nm for the samples doped with 1, 2, and 5% of Nd2O3.

Fig. 7
Fig. 7

Analysis of the time evolution of the TRFLN 4F3/24I9/2 emission by means of Eq. (2) for the samples doped with 1, 2, 3, and 5% of Nd2O3 Symbols correspond to experimental data and the solid lines are fits to Eq. (2). Data correspond to 10 K.

Fig. 8
Fig. 8

Laser output spectra of 4F3/24I11/2 transition for the sample doped with 5 mol% as a function of excitation wavelength along the 4F5/2 level.

Fig. 9
Fig. 9

Laser output spectra of 4F3/24I11/2 transition as a function of excitation wavelength for the sample doped with 5 mol%.

Fig. 10
Fig. 10

Laser excitation spectra profiles obtained by collecting the laser emission at short and long wings of the laser spectrum transition for the sample doped with 5 mol%.

Tables (2)

Tables Icon

Table 1 Room temperature emission properties of Nd3+ for different concentrations.

Tables Icon

Table 2 Laser threshold pump energy and passive losses for different samples. D is the optical density at maximal absorption wavelength (799 nm), Eth is the laser threshold pump energy, D 0 is the optical density due only to passive losses obtained from Eq. (3), and d is the sample thickness.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ p ( λ p ) = λ p 4 8 π c n 2 Δ λ e f f A [ ( F 4 3 / 2 ) ; ( I 4 11 / 2 ) ]
L n ( 1 + I B I N ) = γ ( E L ) t 1 / 2
D 0 = 0.43 E t h σ ( 1 10 D )

Metrics