Abstract

In this paper, optical bistability effect in an ultracompact plasmonic racetrack resonator with nonlinear optical Kerr medium is investigated both analytically and numerically. The properties of optical bistability and pump threshold are studied at 1.55µm with various detuning parameters by an analytical model. The transmission switch from the upper branch to the lower branch with a pulse is also demonstrated by a finite-difference time-domain method. An extinction ratio of 97.8% and a switching time of 0.38ps can be achieved with proper detuning parameter. Such a plasmonic resonator design provides a promising realization for highly effective optical modulators and switch.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [CrossRef] [PubMed]
  2. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
    [CrossRef] [PubMed]
  3. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
    [CrossRef]
  4. R. Zia, J. Schuller, A. Chandran, and M. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
    [CrossRef]
  5. A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmonics: Electrifying plasmonics on silicon,” Nat. Mater. 9(1), 3–4 (2010).
    [CrossRef] [PubMed]
  6. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  7. M. Kuttge, F. J. García de Abajo, and A. Polman, “Ultrasmall mode volume plasmonic nanodisk resonators,” Nano Lett. 10(5), 1537–1541 (2010).
    [CrossRef] [PubMed]
  8. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
    [CrossRef] [PubMed]
  9. S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14(7), 2932–2937 (2006).
    [CrossRef] [PubMed]
  10. S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14(5), 1957–1964 (2006).
    [CrossRef] [PubMed]
  11. A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007).
    [CrossRef]
  12. Z. Han, V. Van, W. N. Herman, and P. T. Ho, “Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes,” Opt. Express 17(15), 12678–12684 (2009).
    [CrossRef] [PubMed]
  13. S. A. Maier, “Effective Mode Volume of Nanoscale Plasmon Cavities,” Opt. Quantum Electron. 38(1-3), 257–267 (2006).
    [CrossRef]
  14. S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10(9), 3679–3683 (2010).
    [CrossRef] [PubMed]
  15. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded plasmonic waveguide-ring resonators,” Opt. Express 17(4), 2968–2975 (2009).
    [CrossRef] [PubMed]
  16. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
    [CrossRef] [PubMed]
  17. B. Wang and G. P. Wang, “Plasmonic waveguide ring resonator at terahertz frequencies,” Appl. Phys. Lett. 89(13), 133106 (2006).
    [CrossRef]
  18. H. Lu, X. M. Liu, L. R. Wang, Y. K. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19(4), 2910–2915 (2011).
    [CrossRef] [PubMed]
  19. X. S. Lin, J. H. Yan, Y. B. Zheng, L. J. Wu, and S. Lan, “Bistable switching in the lossy side-coupled plasmonic waveguide-cavity structures,” Opt. Express 19(10), 9594–9599 (2011).
    [CrossRef] [PubMed]
  20. X. Wang, P. Wang, C. Chen, J. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic racetrack resonator with high extinction ratio under critical coupling condition,” J. Appl. Phys. 107(12), 124517 (2010).
    [CrossRef]
  21. A. V. Krasavin, K. F. MacDonald, N. I. Zheludev, and A. V. Zayats, “High-contrast modulation of light with light by control of surface plasmon polariton wave coupling,” Appl. Phys. Lett. 85(16), 3369–3371 (2004).
    [CrossRef]
  22. S. W. Liu and M. Xiao, “Electro-optic switch in ferroelectric thin films mediated by surface plasmons,” Appl. Phys. Lett. 88(14), 143512 (2006).
    [CrossRef]
  23. H. A. Haus and Y. Lai, “Theory of Cascaded Quarter Wave Shifted Distributed Feedback Resonators,” IEEE J. Quantum Electron. 28(1), 205–213 (1992).
    [CrossRef]
  24. M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
    [CrossRef] [PubMed]

2011

2010

X. Wang, P. Wang, C. Chen, J. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic racetrack resonator with high extinction ratio under critical coupling condition,” J. Appl. Phys. 107(12), 124517 (2010).
[CrossRef]

M. Kuttge, F. J. García de Abajo, and A. Polman, “Ultrasmall mode volume plasmonic nanodisk resonators,” Nano Lett. 10(5), 1537–1541 (2010).
[CrossRef] [PubMed]

A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmonics: Electrifying plasmonics on silicon,” Nat. Mater. 9(1), 3–4 (2010).
[CrossRef] [PubMed]

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10(9), 3679–3683 (2010).
[CrossRef] [PubMed]

2009

2007

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007).
[CrossRef]

2006

S. W. Liu and M. Xiao, “Electro-optic switch in ferroelectric thin films mediated by surface plasmons,” Appl. Phys. Lett. 88(14), 143512 (2006).
[CrossRef]

S. A. Maier, “Effective Mode Volume of Nanoscale Plasmon Cavities,” Opt. Quantum Electron. 38(1-3), 257–267 (2006).
[CrossRef]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

B. Wang and G. P. Wang, “Plasmonic waveguide ring resonator at terahertz frequencies,” Appl. Phys. Lett. 89(13), 133106 (2006).
[CrossRef]

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[CrossRef] [PubMed]

S. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14(7), 2932–2937 (2006).
[CrossRef] [PubMed]

S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14(5), 1957–1964 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

R. Zia, J. Schuller, A. Chandran, and M. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[CrossRef]

2005

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[CrossRef]

2004

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

A. V. Krasavin, K. F. MacDonald, N. I. Zheludev, and A. V. Zayats, “High-contrast modulation of light with light by control of surface plasmon polariton wave coupling,” Appl. Phys. Lett. 85(16), 3369–3371 (2004).
[CrossRef]

2002

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[CrossRef] [PubMed]

1992

H. A. Haus and Y. Lai, “Theory of Cascaded Quarter Wave Shifted Distributed Feedback Resonators,” IEEE J. Quantum Electron. 28(1), 205–213 (1992).
[CrossRef]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Atwater, H. A.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[CrossRef]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded plasmonic waveguide-ring resonators,” Opt. Express 17(4), 2968–2975 (2009).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Brongersma, M.

R. Zia, J. Schuller, A. Chandran, and M. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[CrossRef]

Brongersma, M. L.

A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmonics: Electrifying plasmonics on silicon,” Nat. Mater. 9(1), 3–4 (2010).
[CrossRef] [PubMed]

Chandran, A.

R. Zia, J. Schuller, A. Chandran, and M. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[CrossRef]

Chen, C.

X. Wang, P. Wang, C. Chen, J. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic racetrack resonator with high extinction ratio under critical coupling condition,” J. Appl. Phys. 107(12), 124517 (2010).
[CrossRef]

Chen, J.

X. Wang, P. Wang, C. Chen, J. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic racetrack resonator with high extinction ratio under critical coupling condition,” J. Appl. Phys. 107(12), 124517 (2010).
[CrossRef]

Chen, Z.

Dereux, A.

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Fink, Y.

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[CrossRef] [PubMed]

García de Abajo, F. J.

M. Kuttge, F. J. García de Abajo, and A. Polman, “Ultrasmall mode volume plasmonic nanodisk resonators,” Nano Lett. 10(5), 1537–1541 (2010).
[CrossRef] [PubMed]

Gong, Y. K.

Han, Z.

Haus, H. A.

H. A. Haus and Y. Lai, “Theory of Cascaded Quarter Wave Shifted Distributed Feedback Resonators,” IEEE J. Quantum Electron. 28(1), 205–213 (1992).
[CrossRef]

Herman, W. N.

Ho, P. T.

Holmgaard, T.

Hosseini, A.

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007).
[CrossRef]

Hryciw, A.

A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmonics: Electrifying plasmonics on silicon,” Nat. Mater. 9(1), 3–4 (2010).
[CrossRef] [PubMed]

Ibanescu, M.

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[CrossRef] [PubMed]

Joannopoulos, J. D.

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[CrossRef] [PubMed]

Johnson, S. G.

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[CrossRef] [PubMed]

Jun, Y. C.

A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmonics: Electrifying plasmonics on silicon,” Nat. Mater. 9(1), 3–4 (2010).
[CrossRef] [PubMed]

Kang, J.-H.

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10(9), 3679–3683 (2010).
[CrossRef] [PubMed]

Kim, S.-K.

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10(9), 3679–3683 (2010).
[CrossRef] [PubMed]

Krasavin, A. V.

A. V. Krasavin, K. F. MacDonald, N. I. Zheludev, and A. V. Zayats, “High-contrast modulation of light with light by control of surface plasmon polariton wave coupling,” Appl. Phys. Lett. 85(16), 3369–3371 (2004).
[CrossRef]

Kurokawa, Y.

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[CrossRef] [PubMed]

Kuttge, M.

M. Kuttge, F. J. García de Abajo, and A. Polman, “Ultrasmall mode volume plasmonic nanodisk resonators,” Nano Lett. 10(5), 1537–1541 (2010).
[CrossRef] [PubMed]

Kwon, S.-H.

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10(9), 3679–3683 (2010).
[CrossRef] [PubMed]

Lai, Y.

H. A. Haus and Y. Lai, “Theory of Cascaded Quarter Wave Shifted Distributed Feedback Resonators,” IEEE J. Quantum Electron. 28(1), 205–213 (1992).
[CrossRef]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Lan, S.

Lee, Y.-H.

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10(9), 3679–3683 (2010).
[CrossRef] [PubMed]

Lieber, C. M.

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10(9), 3679–3683 (2010).
[CrossRef] [PubMed]

Lin, X. S.

Lipson, M.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Liu, L.

Liu, S. W.

S. W. Liu and M. Xiao, “Electro-optic switch in ferroelectric thin films mediated by surface plasmons,” Appl. Phys. Lett. 88(14), 143512 (2006).
[CrossRef]

Liu, X. M.

Lu, H.

Lu, Y.

X. Wang, P. Wang, C. Chen, J. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic racetrack resonator with high extinction ratio under critical coupling condition,” J. Appl. Phys. 107(12), 124517 (2010).
[CrossRef]

MacDonald, K. F.

A. V. Krasavin, K. F. MacDonald, N. I. Zheludev, and A. V. Zayats, “High-contrast modulation of light with light by control of surface plasmon polariton wave coupling,” Appl. Phys. Lett. 85(16), 3369–3371 (2004).
[CrossRef]

Maier, S. A.

S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14(5), 1957–1964 (2006).
[CrossRef] [PubMed]

S. A. Maier, “Effective Mode Volume of Nanoscale Plasmon Cavities,” Opt. Quantum Electron. 38(1-3), 257–267 (2006).
[CrossRef]

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[CrossRef]

Mao, D.

Markey, L.

Massoud, Y.

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007).
[CrossRef]

Min, B.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[CrossRef] [PubMed]

Ming, H.

X. Wang, P. Wang, C. Chen, J. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic racetrack resonator with high extinction ratio under critical coupling condition,” J. Appl. Phys. 107(12), 124517 (2010).
[CrossRef]

Miyazaki, H. T.

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[CrossRef] [PubMed]

Ostby, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[CrossRef] [PubMed]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Park, H.-G.

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10(9), 3679–3683 (2010).
[CrossRef] [PubMed]

Polman, A.

M. Kuttge, F. J. García de Abajo, and A. Polman, “Ultrasmall mode volume plasmonic nanodisk resonators,” Nano Lett. 10(5), 1537–1541 (2010).
[CrossRef] [PubMed]

Qiu, M.

Regreny, P.

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10(9), 3679–3683 (2010).
[CrossRef] [PubMed]

Schuller, J.

R. Zia, J. Schuller, A. Chandran, and M. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[CrossRef]

Seassal, C.

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10(9), 3679–3683 (2010).
[CrossRef] [PubMed]

Soljacic, M.

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[CrossRef] [PubMed]

Sorger, V.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[CrossRef] [PubMed]

Ulin-Avila, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[CrossRef] [PubMed]

Vahala, K.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[CrossRef] [PubMed]

Van, V.

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Wang, B.

B. Wang and G. P. Wang, “Plasmonic waveguide ring resonator at terahertz frequencies,” Appl. Phys. Lett. 89(13), 133106 (2006).
[CrossRef]

Wang, G. P.

B. Wang and G. P. Wang, “Plasmonic waveguide ring resonator at terahertz frequencies,” Appl. Phys. Lett. 89(13), 133106 (2006).
[CrossRef]

Wang, L. R.

Wang, P.

X. Wang, P. Wang, C. Chen, J. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic racetrack resonator with high extinction ratio under critical coupling condition,” J. Appl. Phys. 107(12), 124517 (2010).
[CrossRef]

Wang, X.

X. Wang, P. Wang, C. Chen, J. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic racetrack resonator with high extinction ratio under critical coupling condition,” J. Appl. Phys. 107(12), 124517 (2010).
[CrossRef]

Wu, L. J.

Xiao, M.

S. W. Liu and M. Xiao, “Electro-optic switch in ferroelectric thin films mediated by surface plasmons,” Appl. Phys. Lett. 88(14), 143512 (2006).
[CrossRef]

Xiao, S. S.

Yan, J. H.

Yang, L.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[CrossRef] [PubMed]

Zayats, A. V.

A. V. Krasavin, K. F. MacDonald, N. I. Zheludev, and A. V. Zayats, “High-contrast modulation of light with light by control of surface plasmon polariton wave coupling,” Appl. Phys. Lett. 85(16), 3369–3371 (2004).
[CrossRef]

Zhan, Q.

X. Wang, P. Wang, C. Chen, J. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic racetrack resonator with high extinction ratio under critical coupling condition,” J. Appl. Phys. 107(12), 124517 (2010).
[CrossRef]

Zhang, X.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[CrossRef] [PubMed]

Zheludev, N. I.

A. V. Krasavin, K. F. MacDonald, N. I. Zheludev, and A. V. Zayats, “High-contrast modulation of light with light by control of surface plasmon polariton wave coupling,” Appl. Phys. Lett. 85(16), 3369–3371 (2004).
[CrossRef]

Zheng, Y. B.

Zia, R.

R. Zia, J. Schuller, A. Chandran, and M. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[CrossRef]

Appl. Phys. Lett.

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90(18), 181102 (2007).
[CrossRef]

A. V. Krasavin, K. F. MacDonald, N. I. Zheludev, and A. V. Zayats, “High-contrast modulation of light with light by control of surface plasmon polariton wave coupling,” Appl. Phys. Lett. 85(16), 3369–3371 (2004).
[CrossRef]

S. W. Liu and M. Xiao, “Electro-optic switch in ferroelectric thin films mediated by surface plasmons,” Appl. Phys. Lett. 88(14), 143512 (2006).
[CrossRef]

B. Wang and G. P. Wang, “Plasmonic waveguide ring resonator at terahertz frequencies,” Appl. Phys. Lett. 89(13), 133106 (2006).
[CrossRef]

IEEE J. Quantum Electron.

H. A. Haus and Y. Lai, “Theory of Cascaded Quarter Wave Shifted Distributed Feedback Resonators,” IEEE J. Quantum Electron. 28(1), 205–213 (1992).
[CrossRef]

J. Appl. Phys.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[CrossRef]

X. Wang, P. Wang, C. Chen, J. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic racetrack resonator with high extinction ratio under critical coupling condition,” J. Appl. Phys. 107(12), 124517 (2010).
[CrossRef]

Mater. Today

R. Zia, J. Schuller, A. Chandran, and M. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006).
[CrossRef]

Nano Lett.

M. Kuttge, F. J. García de Abajo, and A. Polman, “Ultrasmall mode volume plasmonic nanodisk resonators,” Nano Lett. 10(5), 1537–1541 (2010).
[CrossRef] [PubMed]

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10(9), 3679–3683 (2010).
[CrossRef] [PubMed]

Nat. Mater.

A. Hryciw, Y. C. Jun, and M. L. Brongersma, “Plasmonics: Electrifying plasmonics on silicon,” Nat. Mater. 9(1), 3–4 (2010).
[CrossRef] [PubMed]

Nature

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[CrossRef] [PubMed]

Opt. Express

Opt. Quantum Electron.

S. A. Maier, “Effective Mode Volume of Nanoscale Plasmon Cavities,” Opt. Quantum Electron. 38(1-3), 257–267 (2006).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 055601 (2002).
[CrossRef] [PubMed]

Phys. Rev. Lett.

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[CrossRef] [PubMed]

Science

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic configuration of the nonlinear plasmonic racetrack resonator.

Fig. 2
Fig. 2

The transmission efficiency as a function of the incident power at different detuning parameter δ. The blue lines and green lines denote the transmission respective obtained from increasing and decreasing intensity of incident light.

Fig. 3
Fig. 3

The transmission efficiency as a function of the incident wavelength with parameters w=180nm, R= Lc =500nm, and g =20nm.

Fig. 4
Fig. 4

The transmission efficiency as a function of the incident power at different detuning parameter δ. The down and up arrow represent the increasing and decreasing intensity of incident light.

Fig. 5
Fig. 5

(a) The switching process with a pulse, with a peak power 1.748MW/cm2, the same carrier frequency as that of CW, which is superimposed upon the CW excitation. (b) and (c) is the magnetic field distribution of the states of switching on and switching off respectively.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d a d t = j ω 0 a ( 1 τ 0 + 1 τ e ) a + 2 τ e s + ,
a = 2 τ e s + / [ j ( ω ω 0 ) + ( 1 τ 0 + 1 τ e ) ] ,
s = c s s + + c a a ,
s = s + + 2 τ e a ,
T = | s s + | 2 = ( 1 τ e 1 τ 0 ) 2 + ( ω ω 0 ) 2 ( 1 τ e + 1 τ 0 ) 2 + ( ω ω 0 ) 2 ,
T = | s s + | 2 = ( ω ω 0 ) 2 γ 2 + ( ω ω 0 ) 2 ,
T = ( δ + ω γ ) 2 1 + ( δ + ω γ ) 2 ,
ω γ = ( P i n P o u t ) ω 0 c κ Q 2 n 2 ( r ) | max ,
T = p o u t ' p i n ' = 1 1 1 + ( p i n ' p o u t ' δ ) 2 ,

Metrics