H. Men, N. C. Nguyen, R. M. Freund, K. M. Lim, P. A. Parrilo, and J. Peraire, “Design of photonic crystals with multiple and combined band gaps,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 046703 (2011).

[CrossRef]
[PubMed]

H. P. Li, L. Y. Jiang, W. Jia, H. X. Qiang, and X. Y. Li, “Genetic optimization of two-dimensional photonic crystals for large absolute band-gap,” Opt. Commun. 282(14), 3012–3017 (2009).

[CrossRef]

T. Hong-Da, Y. Zhong-Yuan, H. Li-Hong, and L. Yu-Min, “Lateral stress-induced propagation characteristics in photonic crystal fibres,” Chin. Phys. B 18(3), 1109–1115 (2009).

[CrossRef]

S. Zarei, M. Shahabadi, and S. Mohajerzadeh, “Symmetry reduction for maximization of higher-order stop-bands in two-dimensional photonic crystals,” J. Mod. Opt. 55(18), 2971–2980 (2008).

[CrossRef]

F. Wen, S. David, X. Checoury, M. El Kurdi, and P. Boucaud, “Two-dimensional photonic crystals with large complete photonic band gaps in both TE and TM polarizations,” Opt. Express 16(16), 12278–12289 (2008).

[CrossRef]
[PubMed]

O. Sigmund and K. Hougaard, “Geometric properties of optimal photonic crystals,” Phys. Rev. Lett. 100(15), 153904 (2008).

[CrossRef]
[PubMed]

W. R. Frei, H. T. Johnson, and K. D. Choquette, “Optimization of a single defect photonic crystal laser cavity,” J. Appl. Phys. 103(3), 033102 (2008).

[CrossRef]

H. Tian, Z. Yu, L. Han, and Y. Liu, “Birefringence and confinement loss properties in photonic crystal fibers under lateral stress,” IEEE Photon. Technol. Lett. 20(22), 1830–1832 (2008).

[CrossRef]

S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86(6), 061111 (2005).

[CrossRef]

J. Norato, R. Haber, D. Tortorelli, and M. P. Bendsoe, “A geometry projection method for shape optimization,” Int. J. Numer. Methods Eng. 60(14), 2289–2312 (2004).

[CrossRef]

J. S. Jensen and O. Sigmund, “Systematic design of photonic crystal structures using topology optimization: low-loss waveguide bends,” Appl. Phys. Lett. 84(12), 2022–2024 (2004).

[CrossRef]

L. F. Shen, Z. Ye, and S. L. He, “Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm,” Phys. Rev. B 68(3), 035109 (2003).

[CrossRef]

L. F. Shen, S. He, and S. S. Xiao, “Large absolute band gaps in two-dimensional photonic crystals formed by large dielectric pixels,” Phys. Rev. B 66(16), 165315 (2002).

[CrossRef]

G. Turk and J. F. O’Brien, “Modeling with Implicit Surfaces that Interpolate,” ACM Trans. Graph. 21(4), 855–873 (2002).

[CrossRef]

O. Sigmund and J. Petersson, “Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima,” Struct. Optim. 16(1), 68–75 (1998).

[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).

[CrossRef]
[PubMed]

J. Norato, R. Haber, D. Tortorelli, and M. P. Bendsoe, “A geometry projection method for shape optimization,” Int. J. Numer. Methods Eng. 60(14), 2289–2312 (2004).

[CrossRef]

W. R. Frei, H. T. Johnson, and K. D. Choquette, “Optimization of a single defect photonic crystal laser cavity,” J. Appl. Phys. 103(3), 033102 (2008).

[CrossRef]

E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials,” Phys. Rev. B 61(20), 13458–13464 (2000).

[CrossRef]

W. R. Frei, H. T. Johnson, and K. D. Choquette, “Optimization of a single defect photonic crystal laser cavity,” J. Appl. Phys. 103(3), 033102 (2008).

[CrossRef]

W. R. Frei, D. A. Tortorelli, and H. T. Johnson, “Geometry projection method for optimizing photonic nanostructures,” Opt. Lett. 32(1), 77–79 (2007).

[CrossRef]
[PubMed]

H. Men, N. C. Nguyen, R. M. Freund, K. M. Lim, P. A. Parrilo, and J. Peraire, “Design of photonic crystals with multiple and combined band gaps,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 046703 (2011).

[CrossRef]
[PubMed]

J. Norato, R. Haber, D. Tortorelli, and M. P. Bendsoe, “A geometry projection method for shape optimization,” Int. J. Numer. Methods Eng. 60(14), 2289–2312 (2004).

[CrossRef]

H. Tian, Z. Yu, L. Han, and Y. Liu, “Birefringence and confinement loss properties in photonic crystal fibers under lateral stress,” IEEE Photon. Technol. Lett. 20(22), 1830–1832 (2008).

[CrossRef]

L. F. Shen, Z. Ye, and S. L. He, “Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm,” Phys. Rev. B 68(3), 035109 (2003).

[CrossRef]

T. Hong-Da, Y. Zhong-Yuan, H. Li-Hong, and L. Yu-Min, “Lateral stress-induced propagation characteristics in photonic crystal fibres,” Chin. Phys. B 18(3), 1109–1115 (2009).

[CrossRef]

O. Sigmund and K. Hougaard, “Geometric properties of optimal photonic crystals,” Phys. Rev. Lett. 100(15), 153904 (2008).

[CrossRef]
[PubMed]

J. S. Jensen and O. Sigmund, “Systematic design of photonic crystal structures using topology optimization: low-loss waveguide bends,” Appl. Phys. Lett. 84(12), 2022–2024 (2004).

[CrossRef]

H. P. Li, L. Y. Jiang, W. Jia, H. X. Qiang, and X. Y. Li, “Genetic optimization of two-dimensional photonic crystals for large absolute band-gap,” Opt. Commun. 282(14), 3012–3017 (2009).

[CrossRef]

H. P. Li, L. Y. Jiang, W. Jia, H. X. Qiang, and X. Y. Li, “Genetic optimization of two-dimensional photonic crystals for large absolute band-gap,” Opt. Commun. 282(14), 3012–3017 (2009).

[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).

[CrossRef]
[PubMed]

W. R. Frei, H. T. Johnson, and K. D. Choquette, “Optimization of a single defect photonic crystal laser cavity,” J. Appl. Phys. 103(3), 033102 (2008).

[CrossRef]

W. R. Frei, D. A. Tortorelli, and H. T. Johnson, “Geometry projection method for optimizing photonic nanostructures,” Opt. Lett. 32(1), 77–79 (2007).

[CrossRef]
[PubMed]

H. P. Li, L. Y. Jiang, W. Jia, H. X. Qiang, and X. Y. Li, “Genetic optimization of two-dimensional photonic crystals for large absolute band-gap,” Opt. Commun. 282(14), 3012–3017 (2009).

[CrossRef]

H. P. Li, L. Y. Jiang, W. Jia, H. X. Qiang, and X. Y. Li, “Genetic optimization of two-dimensional photonic crystals for large absolute band-gap,” Opt. Commun. 282(14), 3012–3017 (2009).

[CrossRef]

E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials,” Phys. Rev. B 61(20), 13458–13464 (2000).

[CrossRef]

T. Hong-Da, Y. Zhong-Yuan, H. Li-Hong, and L. Yu-Min, “Lateral stress-induced propagation characteristics in photonic crystal fibres,” Chin. Phys. B 18(3), 1109–1115 (2009).

[CrossRef]

H. Men, N. C. Nguyen, R. M. Freund, K. M. Lim, P. A. Parrilo, and J. Peraire, “Design of photonic crystals with multiple and combined band gaps,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 046703 (2011).

[CrossRef]
[PubMed]

S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86(6), 061111 (2005).

[CrossRef]

S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86(6), 061111 (2005).

[CrossRef]

W. L. Liu and T. J. Yang, “Engineering the band-gap of a two-dimensional photonic crystal with slender dielectric veins,” Phys. Lett. A 369(5-6), 518–523 (2007).

[CrossRef]

H. Tian, Z. Yu, L. Han, and Y. Liu, “Birefringence and confinement loss properties in photonic crystal fibers under lateral stress,” IEEE Photon. Technol. Lett. 20(22), 1830–1832 (2008).

[CrossRef]

H. Men, N. C. Nguyen, R. M. Freund, K. M. Lim, P. A. Parrilo, and J. Peraire, “Design of photonic crystals with multiple and combined band gaps,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 046703 (2011).

[CrossRef]
[PubMed]

S. Zarei, M. Shahabadi, and S. Mohajerzadeh, “Symmetry reduction for maximization of higher-order stop-bands in two-dimensional photonic crystals,” J. Mod. Opt. 55(18), 2971–2980 (2008).

[CrossRef]

H. Men, N. C. Nguyen, R. M. Freund, K. M. Lim, P. A. Parrilo, and J. Peraire, “Design of photonic crystals with multiple and combined band gaps,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 046703 (2011).

[CrossRef]
[PubMed]

J. Norato, R. Haber, D. Tortorelli, and M. P. Bendsoe, “A geometry projection method for shape optimization,” Int. J. Numer. Methods Eng. 60(14), 2289–2312 (2004).

[CrossRef]

G. Turk and J. F. O’Brien, “Modeling with Implicit Surfaces that Interpolate,” ACM Trans. Graph. 21(4), 855–873 (2002).

[CrossRef]

H. Men, N. C. Nguyen, R. M. Freund, K. M. Lim, P. A. Parrilo, and J. Peraire, “Design of photonic crystals with multiple and combined band gaps,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 046703 (2011).

[CrossRef]
[PubMed]

H. Men, N. C. Nguyen, R. M. Freund, K. M. Lim, P. A. Parrilo, and J. Peraire, “Design of photonic crystals with multiple and combined band gaps,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 046703 (2011).

[CrossRef]
[PubMed]

O. Sigmund and J. Petersson, “Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima,” Struct. Optim. 16(1), 68–75 (1998).

[CrossRef]

S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86(6), 061111 (2005).

[CrossRef]

H. P. Li, L. Y. Jiang, W. Jia, H. X. Qiang, and X. Y. Li, “Genetic optimization of two-dimensional photonic crystals for large absolute band-gap,” Opt. Commun. 282(14), 3012–3017 (2009).

[CrossRef]

S. Zarei, M. Shahabadi, and S. Mohajerzadeh, “Symmetry reduction for maximization of higher-order stop-bands in two-dimensional photonic crystals,” J. Mod. Opt. 55(18), 2971–2980 (2008).

[CrossRef]

L. F. Shen, Z. Ye, and S. L. He, “Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm,” Phys. Rev. B 68(3), 035109 (2003).

[CrossRef]

L. F. Shen, S. He, and S. S. Xiao, “Large absolute band gaps in two-dimensional photonic crystals formed by large dielectric pixels,” Phys. Rev. B 66(16), 165315 (2002).

[CrossRef]

E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials,” Phys. Rev. B 61(20), 13458–13464 (2000).

[CrossRef]

O. Sigmund and K. Hougaard, “Geometric properties of optimal photonic crystals,” Phys. Rev. Lett. 100(15), 153904 (2008).

[CrossRef]
[PubMed]

J. S. Jensen and O. Sigmund, “Systematic design of photonic crystal structures using topology optimization: low-loss waveguide bends,” Appl. Phys. Lett. 84(12), 2022–2024 (2004).

[CrossRef]

O. Sigmund and J. Petersson, “Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima,” Struct. Optim. 16(1), 68–75 (1998).

[CrossRef]

E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials,” Phys. Rev. B 61(20), 13458–13464 (2000).

[CrossRef]

H. Tian, Z. Yu, L. Han, and Y. Liu, “Birefringence and confinement loss properties in photonic crystal fibers under lateral stress,” IEEE Photon. Technol. Lett. 20(22), 1830–1832 (2008).

[CrossRef]

J. Norato, R. Haber, D. Tortorelli, and M. P. Bendsoe, “A geometry projection method for shape optimization,” Int. J. Numer. Methods Eng. 60(14), 2289–2312 (2004).

[CrossRef]

G. Turk and J. F. O’Brien, “Modeling with Implicit Surfaces that Interpolate,” ACM Trans. Graph. 21(4), 855–873 (2002).

[CrossRef]

L. F. Shen, S. He, and S. S. Xiao, “Large absolute band gaps in two-dimensional photonic crystals formed by large dielectric pixels,” Phys. Rev. B 66(16), 165315 (2002).

[CrossRef]

W. L. Liu and T. J. Yang, “Engineering the band-gap of a two-dimensional photonic crystal with slender dielectric veins,” Phys. Lett. A 369(5-6), 518–523 (2007).

[CrossRef]

L. F. Shen, Z. Ye, and S. L. He, “Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm,” Phys. Rev. B 68(3), 035109 (2003).

[CrossRef]

H. Tian, Z. Yu, L. Han, and Y. Liu, “Birefringence and confinement loss properties in photonic crystal fibers under lateral stress,” IEEE Photon. Technol. Lett. 20(22), 1830–1832 (2008).

[CrossRef]

T. Hong-Da, Y. Zhong-Yuan, H. Li-Hong, and L. Yu-Min, “Lateral stress-induced propagation characteristics in photonic crystal fibres,” Chin. Phys. B 18(3), 1109–1115 (2009).

[CrossRef]

S. Zarei, M. Shahabadi, and S. Mohajerzadeh, “Symmetry reduction for maximization of higher-order stop-bands in two-dimensional photonic crystals,” J. Mod. Opt. 55(18), 2971–2980 (2008).

[CrossRef]

T. Hong-Da, Y. Zhong-Yuan, H. Li-Hong, and L. Yu-Min, “Lateral stress-induced propagation characteristics in photonic crystal fibres,” Chin. Phys. B 18(3), 1109–1115 (2009).

[CrossRef]

G. Turk and J. F. O’Brien, “Modeling with Implicit Surfaces that Interpolate,” ACM Trans. Graph. 21(4), 855–873 (2002).

[CrossRef]

S. Preble, M. Lipson, and H. Lipson, “Two-dimensional photonic crystals designed by evolutionary algorithms,” Appl. Phys. Lett. 86(6), 061111 (2005).

[CrossRef]

J. S. Jensen and O. Sigmund, “Systematic design of photonic crystal structures using topology optimization: low-loss waveguide bends,” Appl. Phys. Lett. 84(12), 2022–2024 (2004).

[CrossRef]

T. Hong-Da, Y. Zhong-Yuan, H. Li-Hong, and L. Yu-Min, “Lateral stress-induced propagation characteristics in photonic crystal fibres,” Chin. Phys. B 18(3), 1109–1115 (2009).

[CrossRef]

H. Tian, Z. Yu, L. Han, and Y. Liu, “Birefringence and confinement loss properties in photonic crystal fibers under lateral stress,” IEEE Photon. Technol. Lett. 20(22), 1830–1832 (2008).

[CrossRef]

J. Norato, R. Haber, D. Tortorelli, and M. P. Bendsoe, “A geometry projection method for shape optimization,” Int. J. Numer. Methods Eng. 60(14), 2289–2312 (2004).

[CrossRef]

W. R. Frei, H. T. Johnson, and K. D. Choquette, “Optimization of a single defect photonic crystal laser cavity,” J. Appl. Phys. 103(3), 033102 (2008).

[CrossRef]

S. Zarei, M. Shahabadi, and S. Mohajerzadeh, “Symmetry reduction for maximization of higher-order stop-bands in two-dimensional photonic crystals,” J. Mod. Opt. 55(18), 2971–2980 (2008).

[CrossRef]

H. P. Li, L. Y. Jiang, W. Jia, H. X. Qiang, and X. Y. Li, “Genetic optimization of two-dimensional photonic crystals for large absolute band-gap,” Opt. Commun. 282(14), 3012–3017 (2009).

[CrossRef]

W. L. Liu and T. J. Yang, “Engineering the band-gap of a two-dimensional photonic crystal with slender dielectric veins,” Phys. Lett. A 369(5-6), 518–523 (2007).

[CrossRef]

L. F. Shen, Z. Ye, and S. L. He, “Design of two-dimensional photonic crystals with large absolute band gaps using a genetic algorithm,” Phys. Rev. B 68(3), 035109 (2003).

[CrossRef]

L. F. Shen, S. He, and S. S. Xiao, “Large absolute band gaps in two-dimensional photonic crystals formed by large dielectric pixels,” Phys. Rev. B 66(16), 165315 (2002).

[CrossRef]

E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials,” Phys. Rev. B 61(20), 13458–13464 (2000).

[CrossRef]

H. Men, N. C. Nguyen, R. M. Freund, K. M. Lim, P. A. Parrilo, and J. Peraire, “Design of photonic crystals with multiple and combined band gaps,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 046703 (2011).

[CrossRef]
[PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).

[CrossRef]
[PubMed]

O. Sigmund and K. Hougaard, “Geometric properties of optimal photonic crystals,” Phys. Rev. Lett. 100(15), 153904 (2008).

[CrossRef]
[PubMed]

O. Sigmund and J. Petersson, “Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima,” Struct. Optim. 16(1), 68–75 (1998).

[CrossRef]