Abstract

In this paper, we propose a new method that is capable of obtaining a clear 3D image by the reduction of false alarms caused by noise in the stage of acquisition of raw time of flight (TOF) data. This method is implemented by intensity dividing a laser-return pulse into two Geiger-mode avalanche photodiodes (GmAPDs); an AND gate compares the arrival time of the electrical signals from the GmAPDs. Despite the fact that the energy of a laser-return pulse is decreased by half, the false alarm probability is drastically decreased because the noise distributed randomly in the time domain is filtered out. The experimental measurement is in agreement with the theoretical analysis. As a result, we can obtain a clear 3D image despite the high noise.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. D. Richmond and S. C. Cain, Direct-Detection LADAR System, Tutorial Texts Vol. TT85 (SPIE Press, 2010), p. 1.
  2. M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Geinriches, D. G. Kocher, R. M. Marino, J. G. Moony, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional laser radar with geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13(2), 351–370 (2002).
  3. B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. H. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13(2), 335–350 (2002).
  4. R. M. Marino and W. R. Davis, “Jigsaw: a foliage-penetrating 3D imaging laser radar system,” Lincoln Lab. J. 15(1), 23–36 (2005).
  5. J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, and A. C. Walker, “Laser depth measurement based on time-correlated single-photon counting,” Opt. Lett. 22(8), 543–545 (1997).
    [CrossRef] [PubMed]
  6. J. Massa, G. Buller, A. Walker, G. Smith, S. Cova, M. Umasuthan, and A. Wallace, “Optical design and evaluation of a three-dimensional imaging and ranging system based on time-correlated single-photon counting,” Appl. Opt. 41(6), 1063–1070 (2002).
    [CrossRef] [PubMed]
  7. A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
    [CrossRef] [PubMed]
  8. P. Cho, H. Anderson, R. Hatch, and P. Ramaswami, “Real-time 3D ladar imaging,” Lincoln Lab. J. 16, 147–164 (2006).
  9. M. S. Oh, H. J. Kong, T. H. Kim, D. H. Hong, B. W. Kim, and D. J. Park, “Time-of-flight analysis of three-dimensional imaging laser radar using a Geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys. 49(2), 026601 (2010).
    [CrossRef]
  10. D. G. Fouche, “Detection and false-alarm probabilities for laser radars that use Geiger-mode detectors,” Appl. Opt. 42(27), 5388–5398 (2003).
    [CrossRef] [PubMed]
  11. A. V. Gelalian, Laser Radar Systems (Artech House, Boston, 1992).
  12. M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, and B. W. Kim, “Reduction of range walk error in direct detection laser radar using a Geiger mode avalanche photodiode,” Opt. Commun. 283(2), 304–308 (2010).
    [CrossRef]

2010

M. S. Oh, H. J. Kong, T. H. Kim, D. H. Hong, B. W. Kim, and D. J. Park, “Time-of-flight analysis of three-dimensional imaging laser radar using a Geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys. 49(2), 026601 (2010).
[CrossRef]

M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, and B. W. Kim, “Reduction of range walk error in direct detection laser radar using a Geiger mode avalanche photodiode,” Opt. Commun. 283(2), 304–308 (2010).
[CrossRef]

2009

2006

P. Cho, H. Anderson, R. Hatch, and P. Ramaswami, “Real-time 3D ladar imaging,” Lincoln Lab. J. 16, 147–164 (2006).

2005

R. M. Marino and W. R. Davis, “Jigsaw: a foliage-penetrating 3D imaging laser radar system,” Lincoln Lab. J. 15(1), 23–36 (2005).

2003

2002

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Geinriches, D. G. Kocher, R. M. Marino, J. G. Moony, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional laser radar with geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13(2), 351–370 (2002).

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. H. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13(2), 335–350 (2002).

J. Massa, G. Buller, A. Walker, G. Smith, S. Cova, M. Umasuthan, and A. Wallace, “Optical design and evaluation of a three-dimensional imaging and ranging system based on time-correlated single-photon counting,” Appl. Opt. 41(6), 1063–1070 (2002).
[CrossRef] [PubMed]

1997

Albota, M. A.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Geinriches, D. G. Kocher, R. M. Marino, J. G. Moony, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional laser radar with geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13(2), 351–370 (2002).

Anderson, H.

P. Cho, H. Anderson, R. Hatch, and P. Ramaswami, “Real-time 3D ladar imaging,” Lincoln Lab. J. 16, 147–164 (2006).

Aull, B. F.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Geinriches, D. G. Kocher, R. M. Marino, J. G. Moony, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional laser radar with geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13(2), 351–370 (2002).

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. H. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13(2), 335–350 (2002).

Buller, G.

Buller, G. S.

Cho, P.

P. Cho, H. Anderson, R. Hatch, and P. Ramaswami, “Real-time 3D ladar imaging,” Lincoln Lab. J. 16, 147–164 (2006).

Collins, R. J.

Cova, S.

Daniels, P. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. H. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13(2), 335–350 (2002).

Davis, W. R.

R. M. Marino and W. R. Davis, “Jigsaw: a foliage-penetrating 3D imaging laser radar system,” Lincoln Lab. J. 15(1), 23–36 (2005).

Fancey, S. J.

Felton, B. H.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. H. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13(2), 335–350 (2002).

Fernández, V.

Fouche, D. G.

D. G. Fouche, “Detection and false-alarm probabilities for laser radars that use Geiger-mode detectors,” Appl. Opt. 42(27), 5388–5398 (2003).
[CrossRef] [PubMed]

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Geinriches, D. G. Kocher, R. M. Marino, J. G. Moony, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional laser radar with geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13(2), 351–370 (2002).

Geinriches, R. M.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Geinriches, D. G. Kocher, R. M. Marino, J. G. Moony, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional laser radar with geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13(2), 351–370 (2002).

Hatch, R.

P. Cho, H. Anderson, R. Hatch, and P. Ramaswami, “Real-time 3D ladar imaging,” Lincoln Lab. J. 16, 147–164 (2006).

Heinrichs, R. M.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. H. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13(2), 335–350 (2002).

Hong, D. H.

M. S. Oh, H. J. Kong, T. H. Kim, D. H. Hong, B. W. Kim, and D. J. Park, “Time-of-flight analysis of three-dimensional imaging laser radar using a Geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys. 49(2), 026601 (2010).
[CrossRef]

Hong, K. H.

M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, and B. W. Kim, “Reduction of range walk error in direct detection laser radar using a Geiger mode avalanche photodiode,” Opt. Commun. 283(2), 304–308 (2010).
[CrossRef]

Kim, B. W.

M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, and B. W. Kim, “Reduction of range walk error in direct detection laser radar using a Geiger mode avalanche photodiode,” Opt. Commun. 283(2), 304–308 (2010).
[CrossRef]

M. S. Oh, H. J. Kong, T. H. Kim, D. H. Hong, B. W. Kim, and D. J. Park, “Time-of-flight analysis of three-dimensional imaging laser radar using a Geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys. 49(2), 026601 (2010).
[CrossRef]

Kim, T. H.

M. S. Oh, H. J. Kong, T. H. Kim, D. H. Hong, B. W. Kim, and D. J. Park, “Time-of-flight analysis of three-dimensional imaging laser radar using a Geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys. 49(2), 026601 (2010).
[CrossRef]

M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, and B. W. Kim, “Reduction of range walk error in direct detection laser radar using a Geiger mode avalanche photodiode,” Opt. Commun. 283(2), 304–308 (2010).
[CrossRef]

Kocher, D. G.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Geinriches, D. G. Kocher, R. M. Marino, J. G. Moony, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional laser radar with geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13(2), 351–370 (2002).

Kong, H. J.

M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, and B. W. Kim, “Reduction of range walk error in direct detection laser radar using a Geiger mode avalanche photodiode,” Opt. Commun. 283(2), 304–308 (2010).
[CrossRef]

M. S. Oh, H. J. Kong, T. H. Kim, D. H. Hong, B. W. Kim, and D. J. Park, “Time-of-flight analysis of three-dimensional imaging laser radar using a Geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys. 49(2), 026601 (2010).
[CrossRef]

Krichel, N. J.

Landers, D. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. H. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13(2), 335–350 (2002).

Loomis, A. H.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. H. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13(2), 335–350 (2002).

Marino, R. M.

R. M. Marino and W. R. Davis, “Jigsaw: a foliage-penetrating 3D imaging laser radar system,” Lincoln Lab. J. 15(1), 23–36 (2005).

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Geinriches, D. G. Kocher, R. M. Marino, J. G. Moony, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional laser radar with geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13(2), 351–370 (2002).

Massa, J.

Massa, J. S.

McCarthy, A.

Moony, J. G.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Geinriches, D. G. Kocher, R. M. Marino, J. G. Moony, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional laser radar with geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13(2), 351–370 (2002).

Newbury, N. R.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Geinriches, D. G. Kocher, R. M. Marino, J. G. Moony, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional laser radar with geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13(2), 351–370 (2002).

O'Brien, M. E.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Geinriches, D. G. Kocher, R. M. Marino, J. G. Moony, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional laser radar with geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13(2), 351–370 (2002).

Oh, M. S.

M. S. Oh, H. J. Kong, T. H. Kim, D. H. Hong, B. W. Kim, and D. J. Park, “Time-of-flight analysis of three-dimensional imaging laser radar using a Geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys. 49(2), 026601 (2010).
[CrossRef]

M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, and B. W. Kim, “Reduction of range walk error in direct detection laser radar using a Geiger mode avalanche photodiode,” Opt. Commun. 283(2), 304–308 (2010).
[CrossRef]

Park, D. J.

M. S. Oh, H. J. Kong, T. H. Kim, D. H. Hong, B. W. Kim, and D. J. Park, “Time-of-flight analysis of three-dimensional imaging laser radar using a Geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys. 49(2), 026601 (2010).
[CrossRef]

Player, B. E.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Geinriches, D. G. Kocher, R. M. Marino, J. G. Moony, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional laser radar with geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13(2), 351–370 (2002).

Ramaswami, P.

P. Cho, H. Anderson, R. Hatch, and P. Ramaswami, “Real-time 3D ladar imaging,” Lincoln Lab. J. 16, 147–164 (2006).

Smith, G.

Umasuthan, M.

Walker, A.

Walker, A. C.

Wallace, A.

Wallace, A. M.

Willard, B. C.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Geinriches, D. G. Kocher, R. M. Marino, J. G. Moony, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional laser radar with geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13(2), 351–370 (2002).

Young, D. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. H. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13(2), 335–350 (2002).

Zayhowski, J. J.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Geinriches, D. G. Kocher, R. M. Marino, J. G. Moony, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional laser radar with geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13(2), 351–370 (2002).

Appl. Opt.

Jpn. J. Appl. Phys.

M. S. Oh, H. J. Kong, T. H. Kim, D. H. Hong, B. W. Kim, and D. J. Park, “Time-of-flight analysis of three-dimensional imaging laser radar using a Geiger-mode avalanche photodiode,” Jpn. J. Appl. Phys. 49(2), 026601 (2010).
[CrossRef]

Lincoln Lab. J.

P. Cho, H. Anderson, R. Hatch, and P. Ramaswami, “Real-time 3D ladar imaging,” Lincoln Lab. J. 16, 147–164 (2006).

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Geinriches, D. G. Kocher, R. M. Marino, J. G. Moony, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional laser radar with geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13(2), 351–370 (2002).

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. H. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13(2), 335–350 (2002).

R. M. Marino and W. R. Davis, “Jigsaw: a foliage-penetrating 3D imaging laser radar system,” Lincoln Lab. J. 15(1), 23–36 (2005).

Opt. Commun.

M. S. Oh, H. J. Kong, T. H. Kim, K. H. Hong, and B. W. Kim, “Reduction of range walk error in direct detection laser radar using a Geiger mode avalanche photodiode,” Opt. Commun. 283(2), 304–308 (2010).
[CrossRef]

Opt. Lett.

Other

R. D. Richmond and S. C. Cain, Direct-Detection LADAR System, Tutorial Texts Vol. TT85 (SPIE Press, 2010), p. 1.

A. V. Gelalian, Laser Radar Systems (Artech House, Boston, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of a laser radar system employing the false alarm reduction method.

Fig. 2
Fig. 2

Experimental setup for the false alarm reduction technique in the case of (a) single GmAPD and (b) dual GmAPD. L, lens; OBF, optical bandpass filter; HWP, half-wave plate; PBS, polarization beam splitter; ND Fliter, neutral density filter; QWP, quarter-wave plate; GmAPD, Geiger-mode avalanche photodiode.

Fig. 3
Fig. 3

Detection and false alarm probabilities acquired by theory (curve) and experiment (dot) versus the energy of an emitted laser pulse (bottom x-axis) in the cases of (a) NPE = 15kHz and (b) NPE = 9.5MHz where top x-axis represents the corresponding the mean number of firings by the emitted laser pulse. (c) False alarm probabilities in case of NPE = 15kHz.

Fig. 4
Fig. 4

(a) 2D image of the target and 3D images when NPE = 12MHz in the cases of (b)single GmAPD and(c)dual GmAPDs

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P D ( i ) = exp [ 0 ( i 1 ) τ b i n R P E ( t ) d t ] × { 1 exp [ ( i 1 ) τ b i n i τ b i n R P E ( t ) d t ] }
P D _ target_single = P D ( j )                  = exp [ N P E ( j 1 ) τ b i n ] × { 1 exp [ ( S P E + N P E ) τ b i n ] }
P F a l s e _ single = i = 1 i j N P D ( i )
P D _ target_dual = P D _ 1 ( j ) × P D _ 2 ( j )
P F a l s e _ dual = i = 1 i j N P D _ 1 ( i ) × P D _ 2 ( i )
P D _ 1 ( j ) = P D _ 2 ( j ) = exp [ { ( N B G 2 + N D a r k ) ( j 1 ) τ b i n } ] × { 1 exp [ ( S P E + N B G 2 + N D a r k ) τ b i n ] }
S P E _ t o t = S P E τ b i n = η Q λ h c E R                        = η Q λ h c E T ( F O V θ T ) 2 ρ π cos θ target A R R 2 η T η R η E C η A 2
P D ( i ) = exp [ N P E ( j 1 ) τ b i n ] × { 1 exp [ N P E τ b i n ] }

Metrics