Abstract

We demonstrate both theoretically and experimentally that a gold nanostrip supported by a thin dielectric (silicon dioxide) film and a gold underlay forms an efficient (Fabry-Perot) resonator for gap surface plasmons. Periodic nanostrip arrays are shown to exhibit strong and narrow resonances with nearly complete absorption and quality factors of ~15-20 in the near-infrared. Two-photon luminescence microscopy measurements reveal intensity enhancement factors of ~120 in the 400-nm-period array of 85-nm-wide gold strips atop a 23-nm-thick silica film at the resonance wavelength of ~770nm. Excellent resonant characteristics, the simplicity of tuning the resonance wavelength by adjusting the nanostrip width and/or the dielectric film thickness and the ease of fabrication with (only) one lithography step required make the considered plasmonic configuration very attractive for a wide variety of applications, ranging from surface sensing to photovoltaics.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny and B. Hecht, “Principles of Nano-Optics,” Cambridge University Press, Cambridge, (2006).
  2. W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
    [CrossRef] [PubMed]
  3. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
    [CrossRef]
  4. A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, and S. Cabrini, “Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,” Nanotechnology 21(6), 065306 (2010).
    [CrossRef] [PubMed]
  5. J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
    [CrossRef] [PubMed]
  6. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  7. L. Tang, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
    [CrossRef]
  8. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [CrossRef] [PubMed]
  9. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1(3), 438–483 (2009).
    [CrossRef]
  10. L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
    [CrossRef]
  11. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [CrossRef]
  12. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
    [CrossRef]
  13. T. Søndergaard and S. I. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B 75(7), 073402 (2007).
    [CrossRef]
  14. S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: Nano-antennas and resonators,” Opt. Express 15(17), 10869–10877 (2007).
    [CrossRef] [PubMed]
  15. T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express 15(7), 4198–4204 (2007).
    [CrossRef] [PubMed]
  16. T. Søndergaard and S. I. Bozhevolnyi, “Strip and gap plasmon polariton optical resonators,” Phys. Stat. Solidi B 245(1), 9–19 (2008).
    [CrossRef]
  17. T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration,” Phys. Rev. B 77(11), 115420 (2008).
    [CrossRef]
  18. J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).
    [CrossRef]
  19. J. Jung, T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Theoretical analysis and experimental demonstration of resonant light scattering from metal nanostrips on quartz,” J. Opt. Soc. Am. B 26(1), 121–124 (2009).
    [CrossRef]
  20. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
    [CrossRef] [PubMed]
  21. P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J.-L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
    [CrossRef]
  22. T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. D. Valle, “Theoretical analysis of gold nanostrip gap plasmon resonators,” N. J. Phys. 10(10), 105008 (2008).
    [CrossRef]
  23. G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9(1), 327–331 (2009).
    [CrossRef] [PubMed]
  24. G. Lévêque and O. J. F. Martin, “Tunable composite nanoparticle for plasmonics,” Opt. Lett. 31(18), 2750–2752 (2006).
    [CrossRef] [PubMed]
  25. Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett. 34(3), 244–246 (2009).
    [CrossRef] [PubMed]
  26. Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
    [CrossRef] [PubMed]
  27. R. Ameling, D. Dregely, and H. Giessen, “Strong coupling of localized and surface plasmons to microcavity modes,” Opt. Lett. 36(12), 2218–2220 (2011).
    [CrossRef] [PubMed]
  28. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
    [CrossRef]
  29. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  30. J. Jin, “The finite element method in electromagnetics,” Wiley: New York, p 429 (1993).
  31. F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
    [CrossRef] [PubMed]
  32. J. Beermann, S. M. Novikov, T. Søndergaard, A. E. Boltasseva, and S. I. Bozhevolnyi, “Two-photon mapping of localized field enhancements in thin nanostrip antennas,” Opt. Express 16(22), 17302–17309 (2008).
    [CrossRef] [PubMed]
  33. M. G. Nielsen, A. Pors, R. B. Nielsen, A. Boltasseva, O. Albrektsen, and S. I. Bozhevolnyi, “Demonstration of scattering suppression in retardation-based plasmonic nanoantennas,” Opt. Express 18(14), 14802–14811 (2010).
    [CrossRef] [PubMed]
  34. J. Beermann, I. P. Radko, A. Boltasseva, and S. I. Bozhevolnyi, “Localized field enhancements in fractal shaped periodic metal nanostructures,” Opt. Express 15(23), 15234–15241 (2007).
    [CrossRef] [PubMed]
  35. J. Beermann, A. Evlyukhin, A. Boltasseva, and S. I. Bozhevolnyi, “Nonlinear microscopy of localized field enhancements in fractal shaped periodic metal nanostructures,” J. Opt. Soc. Am. B 25(10), 1585–1592 (2008).
    [CrossRef]
  36. J. Beermann, T. Søndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” N. J. Phys. 13(6), 063029 (2011).
    [CrossRef]
  37. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
    [CrossRef] [PubMed]

2011 (5)

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[CrossRef]

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[CrossRef]

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J.-L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[CrossRef]

R. Ameling, D. Dregely, and H. Giessen, “Strong coupling of localized and surface plasmons to microcavity modes,” Opt. Lett. 36(12), 2218–2220 (2011).
[CrossRef] [PubMed]

J. Beermann, T. Søndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” N. J. Phys. 13(6), 063029 (2011).
[CrossRef]

2010 (7)

M. G. Nielsen, A. Pors, R. B. Nielsen, A. Boltasseva, O. Albrektsen, and S. I. Bozhevolnyi, “Demonstration of scattering suppression in retardation-based plasmonic nanoantennas,” Opt. Express 18(14), 14802–14811 (2010).
[CrossRef] [PubMed]

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
[CrossRef] [PubMed]

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[CrossRef] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[CrossRef]

A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, and S. Cabrini, “Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,” Nanotechnology 21(6), 065306 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

2009 (6)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1(3), 438–483 (2009).
[CrossRef]

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).
[CrossRef]

J. Jung, T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Theoretical analysis and experimental demonstration of resonant light scattering from metal nanostrips on quartz,” J. Opt. Soc. Am. B 26(1), 121–124 (2009).
[CrossRef]

Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett. 34(3), 244–246 (2009).
[CrossRef] [PubMed]

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9(1), 327–331 (2009).
[CrossRef] [PubMed]

2008 (6)

J. Beermann, S. M. Novikov, T. Søndergaard, A. E. Boltasseva, and S. I. Bozhevolnyi, “Two-photon mapping of localized field enhancements in thin nanostrip antennas,” Opt. Express 16(22), 17302–17309 (2008).
[CrossRef] [PubMed]

J. Beermann, A. Evlyukhin, A. Boltasseva, and S. I. Bozhevolnyi, “Nonlinear microscopy of localized field enhancements in fractal shaped periodic metal nanostructures,” J. Opt. Soc. Am. B 25(10), 1585–1592 (2008).
[CrossRef]

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. D. Valle, “Theoretical analysis of gold nanostrip gap plasmon resonators,” N. J. Phys. 10(10), 105008 (2008).
[CrossRef]

T. Søndergaard and S. I. Bozhevolnyi, “Strip and gap plasmon polariton optical resonators,” Phys. Stat. Solidi B 245(1), 9–19 (2008).
[CrossRef]

T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration,” Phys. Rev. B 77(11), 115420 (2008).
[CrossRef]

L. Tang, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

2007 (5)

T. Søndergaard and S. I. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B 75(7), 073402 (2007).
[CrossRef]

S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: Nano-antennas and resonators,” Opt. Express 15(17), 10869–10877 (2007).
[CrossRef] [PubMed]

T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express 15(7), 4198–4204 (2007).
[CrossRef] [PubMed]

J. Beermann, I. P. Radko, A. Boltasseva, and S. I. Bozhevolnyi, “Localized field enhancements in fractal shaped periodic metal nanostructures,” Opt. Express 15(23), 15234–15241 (2007).
[CrossRef] [PubMed]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

2006 (3)

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
[CrossRef] [PubMed]

G. Lévêque and O. J. F. Martin, “Tunable composite nanoparticle for plasmonics,” Opt. Lett. 31(18), 2750–2752 (2006).
[CrossRef] [PubMed]

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[CrossRef] [PubMed]

2005 (2)

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Albrektsen, O.

Ameling, R.

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Banaee, M. G.

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
[CrossRef] [PubMed]

Bardou, N.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J.-L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[CrossRef]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Bartal, G.

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9(1), 327–331 (2009).
[CrossRef] [PubMed]

Beermann, J.

Bharadwaj, P.

Boltasseva, A.

Boltasseva, A. E.

Bouchon, P.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J.-L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[CrossRef]

Bozhevolnyi, S. I.

J. Beermann, T. Søndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” N. J. Phys. 13(6), 063029 (2011).
[CrossRef]

M. G. Nielsen, A. Pors, R. B. Nielsen, A. Boltasseva, O. Albrektsen, and S. I. Bozhevolnyi, “Demonstration of scattering suppression in retardation-based plasmonic nanoantennas,” Opt. Express 18(14), 14802–14811 (2010).
[CrossRef] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[CrossRef]

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).
[CrossRef]

J. Jung, T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Theoretical analysis and experimental demonstration of resonant light scattering from metal nanostrips on quartz,” J. Opt. Soc. Am. B 26(1), 121–124 (2009).
[CrossRef]

T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration,” Phys. Rev. B 77(11), 115420 (2008).
[CrossRef]

T. Søndergaard and S. I. Bozhevolnyi, “Strip and gap plasmon polariton optical resonators,” Phys. Stat. Solidi B 245(1), 9–19 (2008).
[CrossRef]

J. Beermann, S. M. Novikov, T. Søndergaard, A. E. Boltasseva, and S. I. Bozhevolnyi, “Two-photon mapping of localized field enhancements in thin nanostrip antennas,” Opt. Express 16(22), 17302–17309 (2008).
[CrossRef] [PubMed]

J. Beermann, A. Evlyukhin, A. Boltasseva, and S. I. Bozhevolnyi, “Nonlinear microscopy of localized field enhancements in fractal shaped periodic metal nanostructures,” J. Opt. Soc. Am. B 25(10), 1585–1592 (2008).
[CrossRef]

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. D. Valle, “Theoretical analysis of gold nanostrip gap plasmon resonators,” N. J. Phys. 10(10), 105008 (2008).
[CrossRef]

J. Beermann, I. P. Radko, A. Boltasseva, and S. I. Bozhevolnyi, “Localized field enhancements in fractal shaped periodic metal nanostructures,” Opt. Express 15(23), 15234–15241 (2007).
[CrossRef] [PubMed]

T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express 15(7), 4198–4204 (2007).
[CrossRef] [PubMed]

T. Søndergaard and S. I. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B 75(7), 073402 (2007).
[CrossRef]

S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: Nano-antennas and resonators,” Opt. Express 15(17), 10869–10877 (2007).
[CrossRef] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Cabrini, S.

A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, and S. Cabrini, “Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,” Nanotechnology 21(6), 065306 (2010).
[CrossRef] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Chu, Y.

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
[CrossRef] [PubMed]

Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett. 34(3), 244–246 (2009).
[CrossRef] [PubMed]

Crozier, K. B.

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
[CrossRef] [PubMed]

Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett. 34(3), 244–246 (2009).
[CrossRef] [PubMed]

Dagher, G.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J.-L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[CrossRef]

Derkacs, D.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

Deutsch, B.

Devaux, E.

J. Beermann, T. Søndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” N. J. Phys. 13(6), 063029 (2011).
[CrossRef]

Dregely, D.

Dupuis, C.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J.-L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[CrossRef]

Ebbesen, T. W.

J. Beermann, T. Søndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” N. J. Phys. 13(6), 063029 (2011).
[CrossRef]

Eisler, H.-J.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
[CrossRef] [PubMed]

Evlyukhin, A.

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Farahani, J. N.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
[CrossRef] [PubMed]

Ferlazzo, L.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J.-L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[CrossRef]

Fromm, D. P.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Ghenuche, P.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J.-L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[CrossRef]

Giessen, H.

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[CrossRef]

Haidar, R.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J.-L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[CrossRef]

Harteneck, B.

A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, and S. Cabrini, “Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,” Nanotechnology 21(6), 065306 (2010).
[CrossRef] [PubMed]

Hecht, B.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
[CrossRef] [PubMed]

Huang, L.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[CrossRef]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Jung, J.

J. Jung, T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Theoretical analysis and experimental demonstration of resonant light scattering from metal nanostrips on quartz,” J. Opt. Soc. Am. B 26(1), 121–124 (2009).
[CrossRef]

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).
[CrossRef]

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. D. Valle, “Theoretical analysis of gold nanostrip gap plasmon resonators,” N. J. Phys. 10(10), 105008 (2008).
[CrossRef]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Kino, G. S.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Kurokawa, Y.

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[CrossRef] [PubMed]

Latif, S.

L. Tang, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

Lerosey, G.

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9(1), 327–331 (2009).
[CrossRef] [PubMed]

Lévêque, G.

Lim, S. H.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

Ly-Gagnon, D.-S.

L. Tang, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

Mar, W.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

Martin, O. J. F.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[CrossRef] [PubMed]

G. Lévêque and O. J. F. Martin, “Tunable composite nanoparticle for plasmonics,” Opt. Lett. 31(18), 2750–2752 (2006).
[CrossRef] [PubMed]

Matheu, P.

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9(1), 327–331 (2009).
[CrossRef] [PubMed]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

Miller, D. A. B.

L. Tang, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

Miyazaki, H. T.

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[CrossRef] [PubMed]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Mullen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Nielsen, M. G.

Nielsen, R. B.

Novikov, S. M.

J. Beermann, T. Søndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” N. J. Phys. 13(6), 063029 (2011).
[CrossRef]

J. Beermann, S. M. Novikov, T. Søndergaard, A. E. Boltasseva, and S. I. Bozhevolnyi, “Two-photon mapping of localized field enhancements in thin nanostrip antennas,” Opt. Express 16(22), 17302–17309 (2008).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[CrossRef]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1(3), 438–483 (2009).
[CrossRef]

Ogletree, D. F.

A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, and S. Cabrini, “Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,” Nanotechnology 21(6), 065306 (2010).
[CrossRef] [PubMed]

Okyay, A. K.

L. Tang, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

Pardo, F.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J.-L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[CrossRef]

Pelouard, J.-L.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J.-L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[CrossRef]

Pile, D. F. P.

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9(1), 327–331 (2009).
[CrossRef] [PubMed]

Pohl, D. W.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
[CrossRef] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Pors, A.

Portier, B.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J.-L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[CrossRef]

Quidant, R.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[CrossRef]

Radko, I. P.

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[CrossRef]

Santschi, C.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[CrossRef] [PubMed]

Saraswat, K. C.

L. Tang, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

Schmidt, M.

A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, and S. Cabrini, “Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,” Nanotechnology 21(6), 065306 (2010).
[CrossRef] [PubMed]

Schuck, P. J.

A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, and S. Cabrini, “Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,” Nanotechnology 21(6), 065306 (2010).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Schwartzberg, A.

A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, and S. Cabrini, “Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,” Nanotechnology 21(6), 065306 (2010).
[CrossRef] [PubMed]

Shen, Y. R.

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
[CrossRef] [PubMed]

Søndergaard, T.

J. Beermann, T. Søndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” N. J. Phys. 13(6), 063029 (2011).
[CrossRef]

J. Jung, T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Theoretical analysis and experimental demonstration of resonant light scattering from metal nanostrips on quartz,” J. Opt. Soc. Am. B 26(1), 121–124 (2009).
[CrossRef]

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).
[CrossRef]

T. Søndergaard and S. I. Bozhevolnyi, “Strip and gap plasmon polariton optical resonators,” Phys. Stat. Solidi B 245(1), 9–19 (2008).
[CrossRef]

T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration,” Phys. Rev. B 77(11), 115420 (2008).
[CrossRef]

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. D. Valle, “Theoretical analysis of gold nanostrip gap plasmon resonators,” N. J. Phys. 10(10), 105008 (2008).
[CrossRef]

J. Beermann, S. M. Novikov, T. Søndergaard, A. E. Boltasseva, and S. I. Bozhevolnyi, “Two-photon mapping of localized field enhancements in thin nanostrip antennas,” Opt. Express 16(22), 17302–17309 (2008).
[CrossRef] [PubMed]

S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: Nano-antennas and resonators,” Opt. Express 15(17), 10869–10877 (2007).
[CrossRef] [PubMed]

T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express 15(7), 4198–4204 (2007).
[CrossRef] [PubMed]

T. Søndergaard and S. I. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B 75(7), 073402 (2007).
[CrossRef]

Sundaramurthy, A.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Tang, L.

L. Tang, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

Valle, G. D.

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. D. Valle, “Theoretical analysis of gold nanostrip gap plasmon resonators,” N. J. Phys. 10(10), 105008 (2008).
[CrossRef]

Van Hulst, N.

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[CrossRef]

Wang, F.

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
[CrossRef] [PubMed]

Weber-Bargioni, A.

A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, and S. Cabrini, “Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,” Nanotechnology 21(6), 065306 (2010).
[CrossRef] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Yu, E. T.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Zhang, W.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[CrossRef] [PubMed]

Zhang, X.

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9(1), 327–331 (2009).
[CrossRef] [PubMed]

ACS Nano (1)

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
[CrossRef] [PubMed]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (1)

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J.-L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[CrossRef]

J. Appl. Phys. (1)

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101(10), 104309 (2007).
[CrossRef]

J. Opt. Soc. Am. B (2)

N. J. Phys. (2)

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. D. Valle, “Theoretical analysis of gold nanostrip gap plasmon resonators,” N. J. Phys. 10(10), 105008 (2008).
[CrossRef]

J. Beermann, T. Søndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” N. J. Phys. 13(6), 063029 (2011).
[CrossRef]

Nano Lett. (2)

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9(1), 327–331 (2009).
[CrossRef] [PubMed]

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[CrossRef] [PubMed]

Nanotechnology (1)

A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D. F. Ogletree, P. J. Schuck, and S. Cabrini, “Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography,” Nanotechnology 21(6), 065306 (2010).
[CrossRef] [PubMed]

Nat. Mater. (2)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Nat. Photonics (5)

L. Tang, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[CrossRef]

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[CrossRef]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. B (4)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration,” Phys. Rev. B 77(11), 115420 (2008).
[CrossRef]

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).
[CrossRef]

T. Søndergaard and S. I. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys. Rev. B 75(7), 073402 (2007).
[CrossRef]

Phys. Rev. Lett. (4)

J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
[CrossRef] [PubMed]

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006).
[CrossRef] [PubMed]

Phys. Stat. Solidi B (1)

T. Søndergaard and S. I. Bozhevolnyi, “Strip and gap plasmon polariton optical resonators,” Phys. Stat. Solidi B 245(1), 9–19 (2008).
[CrossRef]

Other (2)

L. Novotny and B. Hecht, “Principles of Nano-Optics,” Cambridge University Press, Cambridge, (2006).

J. Jin, “The finite element method in electromagnetics,” Wiley: New York, p 429 (1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The configuration of a CL-GPR unit-cell. A continuous SiO2 film with the thickness t is sandwiched between a continuous 200nm thick gold underlay and a gold strip with the height h and width w; the vertical dashed lines indicate the effective resonator length w' > w, caused by an additional plasmon phase shift acquired by the GSP upon reflection from an edge of the metal strip. The domain above the SiO2 film is assumed to be air. The CL-GPR unit-cell is periodically repeated along the x-axis with period Λ. A plane wave is incident normally onto the structure (along the y-direction) and is polarized along the x-axis (TM polarization).

Fig. 2
Fig. 2

(a,b) Reflectivity spectra with t as a parameter for the two different CL-GPR array periods: (a) Λ = 400nm and (b) Λ = 600nm; w = 85nm. (c) The dependences of the GSP resonance wavelength (solid curves) and the parameter ƞ (dashed curves) determining the additional phase shift of the GSPs upon their reflection from the edges of the gold strip on thickness t of the SiO2 layer.

Fig. 6
Fig. 6

Experimental (a,b) and simulated (c,d) reflectivity spectra from the CL-GPR arrays for the normally incident beam with the TM polarization: (a,c) fixed Λ = 600nm and three different strip widths w, and (b,d) fixed w = 85nm and three different array periods Λ. The dash-and-dot curve in (a) shows the reflectivity spectrum for a normally incident focused beam with the TE polarization.

Fig. 3
Fig. 3

Typical distributions of the resonant electric field magnitude in the (x,y)-plane for the two different SiO2 thicknesses (a) t = 20nm and (b) t = 70nm in a periodic CL-GPR array with Λ = 400nm. (c) The dependences of the normalized (to the amplitude of the incident wave E0) local electric field in the middle of the SiO2 layer for Λ = 400nm; both the dependences were plotted for the resonant wavelengths of 706nm and 616nm for the respective values of t = 20nm and t = 70nm.

Fig. 4
Fig. 4

(a,b) Typical distributions of the resonant electric field magnitude in the (x,y)-plane for the two different SiO2 layer thicknesses (a) t = 20nm and (b) t = 70nm in a periodic CL-GPR array with Λ = 600nm. (c) The dependences of the normalized (to the amplitude of the incident wave E0) local electric field in the middle of the SiO2 layer for Λ = 600nm; both the dependences were plotted for the resonant wavelengths of 746nm and 762nm for the respective values of t = 20nm and t = 70nm.

Fig. 5
Fig. 5

(a) Schematic of the 30µm × 30µm CL-GPR array in the form of gold strips on a 23nm thick SiO2 film and 100nm thick gold underlay. (b) A representative scanning-electron microscopy image showing a small section of a CL-GPR array with w = 135nm, h = 53nm, t = 23nm and Λ = 600nm.

Fig. 7
Fig. 7

Typical FH (a) and TPL (b) images near the corner of a CL-GPR array with w = 85nm and Λ = 400nm; the polarization of the incident beam is in the x-direction. (c) The typical measured x-dependencies of the FH reflectivity and normalized TPL signals along the x-direction across the array edge at x~4μm. (d) The estimated intensity enhancement factor α as a function of the incident wavelength, superimposed with the measured reflectivity spectrum.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

w 2 π λ n g s p = m π φ ,
w n g s p = λ η .
T P L a r r a y T P L r e f = α 2 P a r r a y 2 A a r r a y P r e f 2 A r e f ,

Metrics