Abstract

Digital holographic microscopy provides an ideal tool for 3D tracking of microspheres while simultaneously allowing a full and accurate characterization of their main physical properties such as: radius and refractive index. We demonstrate that the combination of high resolution multipoint tracking and accurate optical sizing of tracers provides an ideal tool for precise multipoint viscosity measurements. We also report a detailed evaluation of the technique’s accuracy and precision in relation to the primary sources of error.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
    [CrossRef] [PubMed]
  2. G. Spalding, J. Courtial, and R. Di Leonardo, “Holographic optical tweezers,” in Structured Light and its Applications: an Introduction to Phase-Structured Beams and Nanoscale Optical Forces (Elsevier, 2008), p. 139.
  3. R. Di Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96, 134502 (2006).
    [CrossRef] [PubMed]
  4. H. Mushfique, J. Leach, H. Yin, R. Di Leonardo, M. Padgett, and J. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80, 4237–4240 (2008).
    [CrossRef] [PubMed]
  5. M. Valentine, L. Dewalt, and H. Ou-Yang, “Forces on a colloidal particle in a polymer solution: a study using optical tweezers,” J. Phys. Condens. Matter 8, 9477 (1996).
    [CrossRef]
  6. G. Pesce, A. Sasso, and S. Fusco, “Viscosity measurements on micron-size scale using optical tweezers,” Rev. Sci. Instrum. 76, 115105 (2005).
    [CrossRef]
  7. A. Buosciolo, G. Pesce, and A. Sasso, “New calibration method for position detector for simultaneous measurements of force constants and local viscosity in optical tweezers,” Opt. Commun. 230, 357–368 (2004).
    [CrossRef]
  8. A. Bishop, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).
  9. A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab on a Chip 9, 2568–2575 (2009).
    [CrossRef] [PubMed]
  10. N. Klauke, P. Monaghan, G. Sinclair, M. Padgett, and J. Cooper, “Characterisation of spatial and temporal changes in pH gradients in microfluidic channels using optically trapped fluorescent sensors,” Lab on a Chip 6, 788–793 (2006).
    [CrossRef] [PubMed]
  11. D. Weihs, T. Mason, and M. Teitell, “Bio-microrheology: a frontier in microrheology,” Biophys. J. 91, 4296–4305 (2006).
    [CrossRef] [PubMed]
  12. J. Crocker and D. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996).
    [CrossRef]
  13. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
    [CrossRef] [PubMed]
  14. M. Allersma, F. Gittes, M. deCastro, R. Stewart, and C. Schmidt, “Two-dimensional tracking of ncd motility by back focal plane interferometry,” Biophys. J. 74, 1074–1085 (1998).
    [CrossRef] [PubMed]
  15. M. Fischer and K. Berg-Sørensen, “Calibration of trapping force and response function of optical tweezers in viscoelastic media,” J. Opt. A, Pure Appl. Opt. 9, S239 (2007).
    [CrossRef]
  16. M. Atakhorrami, J. Sulkowska, K. Addas, G. Koenderink, J. Tang, A. Levine, F. MacKintosh, and C. Schmidt, “Correlated fluctuations of microparticles in viscoelastic solutions: quantitative measurement of material properties by microrheology in the presence of optical traps,” Phys. Rev. E 73, 061501 (2006).
    [CrossRef]
  17. J. Meiners and S. Quake, “Direct measurement of hydrodynamic cross correlations between two particles in an external potential,” Phys. Rev. Lett. 82, 2211–2214 (1999).
    [CrossRef]
  18. S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. Cooper, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers.” Lab on a Chip 9, 2059 (2009).
    [CrossRef] [PubMed]
  19. E. Schäffer, S.F.. Nørrelykke, and J. Howard, “Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers,” Langmuir 23, 3654 (2007).
    [CrossRef] [PubMed]
  20. S. Lee, Y. Roichman, G. Yi, S. Kim, S. Yang, A. Van Blaaderen, P. Van Oostrum, and D. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007).
    [CrossRef] [PubMed]
  21. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
    [CrossRef] [PubMed]
  22. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
    [CrossRef]
  23. U. Schnars and W. Jüptner, “Digital recording and numerical reconstruction of holograms,” Measurement science and technology 13, R85 (2002).
    [CrossRef]
  24. W. Xu, M. Jericho, I. Meinertzhagen, and H. Kreuzer, “Digital in-line holography of microspheres,” Appl. Opt. 41, 5367–5375 (2002).
    [CrossRef] [PubMed]
  25. J. Garcia-Sucerquia, W. Xu, S. Jericho, P. Klages, M. Jericho, and H. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
    [CrossRef] [PubMed]
  26. S. Lee and D. Grier, “Holographic microscopy of holographically trapped three-dimensional structures,” Opt. Express 15, 1505–1512 (2007).
    [CrossRef] [PubMed]
  27. F. Cheong and D. Grier, “Rotational and translational diffusion of copper oxide nanorods measured with holographic video microscopy,” Opt. Express 18, 6555–6562 (2010).
    [CrossRef] [PubMed]
  28. F. Cheong, B. Krishnatreya, and D. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18, 13563–13573 (2010).
    [CrossRef] [PubMed]
  29. F. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17, 13071–13079 (2009).
    [CrossRef] [PubMed]
  30. F. Cheong, K. Xiao, and D. Grier, “Technical note: Characterizing individual milk fat globules with holographic video microscopy,” J. Dairy Sci. 92, 95–99 (2009).
    [CrossRef]
  31. K. Xiao and D. G. Grier, “Multidimensional Optical Fractionation of Colloidal Particles with Holographic Verification,” Phys. Rev. Lett. 104, 028302 (2010).
    [CrossRef] [PubMed]
  32. J. Crocker, “Measurement of the hydrodynamic corrections to the Brownian motion of two colloidal spheres,” J. Chem. Phys. 106, 2837–2840 (1997).
    [CrossRef]
  33. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2010).
  34. F. Dubois, L. Joannes, and J. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085–7094 (1999).
    [CrossRef]
  35. H. Faxén, “Der Widerstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen ebenen Wänden eingeschlossen ist,” Ann. Phys. 373, 89–119 (1922).
    [CrossRef]
  36. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media (Kluwer Academic Print on Demand, 1991).
  37. J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. Cooper, and M. Padgett, “Comparison of Faxéns correction for a microsphere translating or rotating near a surface,” Phys. Rev. E 79, 26301 (2009).
    [CrossRef]
  38. T. Savin and P. Doyle, “Role of a finite exposure time on measuring an elastic modulus using microrheology,” Phys. Rev. E 71, 41106 (2005).
    [CrossRef]

2010

2009

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. Cooper, and M. Padgett, “Comparison of Faxéns correction for a microsphere translating or rotating near a surface,” Phys. Rev. E 79, 26301 (2009).
[CrossRef]

F. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17, 13071–13079 (2009).
[CrossRef] [PubMed]

F. Cheong, K. Xiao, and D. Grier, “Technical note: Characterizing individual milk fat globules with holographic video microscopy,” J. Dairy Sci. 92, 95–99 (2009).
[CrossRef]

A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab on a Chip 9, 2568–2575 (2009).
[CrossRef] [PubMed]

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. Cooper, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers.” Lab on a Chip 9, 2059 (2009).
[CrossRef] [PubMed]

2008

H. Mushfique, J. Leach, H. Yin, R. Di Leonardo, M. Padgett, and J. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80, 4237–4240 (2008).
[CrossRef] [PubMed]

2007

E. Schäffer, S.F.. Nørrelykke, and J. Howard, “Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers,” Langmuir 23, 3654 (2007).
[CrossRef] [PubMed]

S. Lee, Y. Roichman, G. Yi, S. Kim, S. Yang, A. Van Blaaderen, P. Van Oostrum, and D. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007).
[CrossRef] [PubMed]

M. Fischer and K. Berg-Sørensen, “Calibration of trapping force and response function of optical tweezers in viscoelastic media,” J. Opt. A, Pure Appl. Opt. 9, S239 (2007).
[CrossRef]

S. Lee and D. Grier, “Holographic microscopy of holographically trapped three-dimensional structures,” Opt. Express 15, 1505–1512 (2007).
[CrossRef] [PubMed]

2006

M. Atakhorrami, J. Sulkowska, K. Addas, G. Koenderink, J. Tang, A. Levine, F. MacKintosh, and C. Schmidt, “Correlated fluctuations of microparticles in viscoelastic solutions: quantitative measurement of material properties by microrheology in the presence of optical traps,” Phys. Rev. E 73, 061501 (2006).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, S. Jericho, P. Klages, M. Jericho, and H. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
[CrossRef] [PubMed]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
[CrossRef] [PubMed]

R. Di Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96, 134502 (2006).
[CrossRef] [PubMed]

N. Klauke, P. Monaghan, G. Sinclair, M. Padgett, and J. Cooper, “Characterisation of spatial and temporal changes in pH gradients in microfluidic channels using optically trapped fluorescent sensors,” Lab on a Chip 6, 788–793 (2006).
[CrossRef] [PubMed]

D. Weihs, T. Mason, and M. Teitell, “Bio-microrheology: a frontier in microrheology,” Biophys. J. 91, 4296–4305 (2006).
[CrossRef] [PubMed]

2005

G. Pesce, A. Sasso, and S. Fusco, “Viscosity measurements on micron-size scale using optical tweezers,” Rev. Sci. Instrum. 76, 115105 (2005).
[CrossRef]

T. Savin and P. Doyle, “Role of a finite exposure time on measuring an elastic modulus using microrheology,” Phys. Rev. E 71, 41106 (2005).
[CrossRef]

2004

A. Buosciolo, G. Pesce, and A. Sasso, “New calibration method for position detector for simultaneous measurements of force constants and local viscosity in optical tweezers,” Opt. Commun. 230, 357–368 (2004).
[CrossRef]

2003

D. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef] [PubMed]

2002

U. Schnars and W. Jüptner, “Digital recording and numerical reconstruction of holograms,” Measurement science and technology 13, R85 (2002).
[CrossRef]

W. Xu, M. Jericho, I. Meinertzhagen, and H. Kreuzer, “Digital in-line holography of microspheres,” Appl. Opt. 41, 5367–5375 (2002).
[CrossRef] [PubMed]

1999

1998

M. Allersma, F. Gittes, M. deCastro, R. Stewart, and C. Schmidt, “Two-dimensional tracking of ncd motility by back focal plane interferometry,” Biophys. J. 74, 1074–1085 (1998).
[CrossRef] [PubMed]

1997

J. Crocker, “Measurement of the hydrodynamic corrections to the Brownian motion of two colloidal spheres,” J. Chem. Phys. 106, 2837–2840 (1997).
[CrossRef]

1996

M. Valentine, L. Dewalt, and H. Ou-Yang, “Forces on a colloidal particle in a polymer solution: a study using optical tweezers,” J. Phys. Condens. Matter 8, 9477 (1996).
[CrossRef]

J. Crocker and D. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996).
[CrossRef]

1994

1922

H. Faxén, “Der Widerstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen ebenen Wänden eingeschlossen ist,” Ann. Phys. 373, 89–119 (1922).
[CrossRef]

Addas, K.

M. Atakhorrami, J. Sulkowska, K. Addas, G. Koenderink, J. Tang, A. Levine, F. MacKintosh, and C. Schmidt, “Correlated fluctuations of microparticles in viscoelastic solutions: quantitative measurement of material properties by microrheology in the presence of optical traps,” Phys. Rev. E 73, 061501 (2006).
[CrossRef]

Allersma, M.

M. Allersma, F. Gittes, M. deCastro, R. Stewart, and C. Schmidt, “Two-dimensional tracking of ncd motility by back focal plane interferometry,” Biophys. J. 74, 1074–1085 (1998).
[CrossRef] [PubMed]

Amato-Grill, J.

Atakhorrami, M.

M. Atakhorrami, J. Sulkowska, K. Addas, G. Koenderink, J. Tang, A. Levine, F. MacKintosh, and C. Schmidt, “Correlated fluctuations of microparticles in viscoelastic solutions: quantitative measurement of material properties by microrheology in the presence of optical traps,” Phys. Rev. E 73, 061501 (2006).
[CrossRef]

Berg-Sørensen, K.

M. Fischer and K. Berg-Sørensen, “Calibration of trapping force and response function of optical tweezers in viscoelastic media,” J. Opt. A, Pure Appl. Opt. 9, S239 (2007).
[CrossRef]

Bishop, A.

A. Bishop, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).

Bohren, C.

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2010).

Brenner, H.

J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media (Kluwer Academic Print on Demand, 1991).

Buosciolo, A.

A. Buosciolo, G. Pesce, and A. Sasso, “New calibration method for position detector for simultaneous measurements of force constants and local viscosity in optical tweezers,” Opt. Commun. 230, 357–368 (2004).
[CrossRef]

Cheong, F.

Cooper, J.

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. Cooper, and M. Padgett, “Comparison of Faxéns correction for a microsphere translating or rotating near a surface,” Phys. Rev. E 79, 26301 (2009).
[CrossRef]

A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab on a Chip 9, 2568–2575 (2009).
[CrossRef] [PubMed]

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. Cooper, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers.” Lab on a Chip 9, 2059 (2009).
[CrossRef] [PubMed]

H. Mushfique, J. Leach, H. Yin, R. Di Leonardo, M. Padgett, and J. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80, 4237–4240 (2008).
[CrossRef] [PubMed]

R. Di Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96, 134502 (2006).
[CrossRef] [PubMed]

N. Klauke, P. Monaghan, G. Sinclair, M. Padgett, and J. Cooper, “Characterisation of spatial and temporal changes in pH gradients in microfluidic channels using optically trapped fluorescent sensors,” Lab on a Chip 6, 788–793 (2006).
[CrossRef] [PubMed]

Courtial, J.

G. Spalding, J. Courtial, and R. Di Leonardo, “Holographic optical tweezers,” in Structured Light and its Applications: an Introduction to Phase-Structured Beams and Nanoscale Optical Forces (Elsevier, 2008), p. 139.

Crocker, J.

J. Crocker, “Measurement of the hydrodynamic corrections to the Brownian motion of two colloidal spheres,” J. Chem. Phys. 106, 2837–2840 (1997).
[CrossRef]

J. Crocker and D. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996).
[CrossRef]

Cuche, E.

deCastro, M.

M. Allersma, F. Gittes, M. deCastro, R. Stewart, and C. Schmidt, “Two-dimensional tracking of ncd motility by back focal plane interferometry,” Biophys. J. 74, 1074–1085 (1998).
[CrossRef] [PubMed]

Depeursinge, C.

Dewalt, L.

M. Valentine, L. Dewalt, and H. Ou-Yang, “Forces on a colloidal particle in a polymer solution: a study using optical tweezers,” J. Phys. Condens. Matter 8, 9477 (1996).
[CrossRef]

Di Leonardo, R.

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. Cooper, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers.” Lab on a Chip 9, 2059 (2009).
[CrossRef] [PubMed]

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. Cooper, and M. Padgett, “Comparison of Faxéns correction for a microsphere translating or rotating near a surface,” Phys. Rev. E 79, 26301 (2009).
[CrossRef]

H. Mushfique, J. Leach, H. Yin, R. Di Leonardo, M. Padgett, and J. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80, 4237–4240 (2008).
[CrossRef] [PubMed]

R. Di Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96, 134502 (2006).
[CrossRef] [PubMed]

G. Spalding, J. Courtial, and R. Di Leonardo, “Holographic optical tweezers,” in Structured Light and its Applications: an Introduction to Phase-Structured Beams and Nanoscale Optical Forces (Elsevier, 2008), p. 139.

Dixon, L.

Doyle, P.

T. Savin and P. Doyle, “Role of a finite exposure time on measuring an elastic modulus using microrheology,” Phys. Rev. E 71, 41106 (2005).
[CrossRef]

Dreyfus, R.

Dubois, F.

Faxén, H.

H. Faxén, “Der Widerstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen ebenen Wänden eingeschlossen ist,” Ann. Phys. 373, 89–119 (1922).
[CrossRef]

Fischer, M.

M. Fischer and K. Berg-Sørensen, “Calibration of trapping force and response function of optical tweezers in viscoelastic media,” J. Opt. A, Pure Appl. Opt. 9, S239 (2007).
[CrossRef]

Fusco, S.

G. Pesce, A. Sasso, and S. Fusco, “Viscosity measurements on micron-size scale using optical tweezers,” Rev. Sci. Instrum. 76, 115105 (2005).
[CrossRef]

Garcia-Sucerquia, J.

Gittes, F.

M. Allersma, F. Gittes, M. deCastro, R. Stewart, and C. Schmidt, “Two-dimensional tracking of ncd motility by back focal plane interferometry,” Biophys. J. 74, 1074–1085 (1998).
[CrossRef] [PubMed]

Grier, D.

Grier, D. G.

K. Xiao and D. G. Grier, “Multidimensional Optical Fractionation of Colloidal Particles with Holographic Verification,” Phys. Rev. Lett. 104, 028302 (2010).
[CrossRef] [PubMed]

Happel, J.

J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media (Kluwer Academic Print on Demand, 1991).

Heckenberg, N.

A. Bishop, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).

Howard, J.

E. Schäffer, S.F.. Nørrelykke, and J. Howard, “Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers,” Langmuir 23, 3654 (2007).
[CrossRef] [PubMed]

Huffman, D.

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2010).

Jericho, M.

Jericho, S.

Joannes, L.

Jüptner, W.

U. Schnars and W. Jüptner, “Digital recording and numerical reconstruction of holograms,” Measurement science and technology 13, R85 (2002).
[CrossRef]

U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
[CrossRef] [PubMed]

Katz, J.

Keen, S.

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. Cooper, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers.” Lab on a Chip 9, 2059 (2009).
[CrossRef] [PubMed]

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. Cooper, and M. Padgett, “Comparison of Faxéns correction for a microsphere translating or rotating near a surface,” Phys. Rev. E 79, 26301 (2009).
[CrossRef]

Kim, S.

Klages, P.

Klauke, N.

N. Klauke, P. Monaghan, G. Sinclair, M. Padgett, and J. Cooper, “Characterisation of spatial and temporal changes in pH gradients in microfluidic channels using optically trapped fluorescent sensors,” Lab on a Chip 6, 788–793 (2006).
[CrossRef] [PubMed]

Koenderink, G.

M. Atakhorrami, J. Sulkowska, K. Addas, G. Koenderink, J. Tang, A. Levine, F. MacKintosh, and C. Schmidt, “Correlated fluctuations of microparticles in viscoelastic solutions: quantitative measurement of material properties by microrheology in the presence of optical traps,” Phys. Rev. E 73, 061501 (2006).
[CrossRef]

Kreuzer, H.

Krishnatreya, B.

Leach, J.

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. Cooper, and M. Padgett, “Comparison of Faxéns correction for a microsphere translating or rotating near a surface,” Phys. Rev. E 79, 26301 (2009).
[CrossRef]

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. Cooper, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers.” Lab on a Chip 9, 2059 (2009).
[CrossRef] [PubMed]

H. Mushfique, J. Leach, H. Yin, R. Di Leonardo, M. Padgett, and J. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80, 4237–4240 (2008).
[CrossRef] [PubMed]

R. Di Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96, 134502 (2006).
[CrossRef] [PubMed]

Lee, S.

Legros, J.

Levine, A.

M. Atakhorrami, J. Sulkowska, K. Addas, G. Koenderink, J. Tang, A. Levine, F. MacKintosh, and C. Schmidt, “Correlated fluctuations of microparticles in viscoelastic solutions: quantitative measurement of material properties by microrheology in the presence of optical traps,” Phys. Rev. E 73, 061501 (2006).
[CrossRef]

Love, G.

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. Cooper, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers.” Lab on a Chip 9, 2059 (2009).
[CrossRef] [PubMed]

MacKintosh, F.

M. Atakhorrami, J. Sulkowska, K. Addas, G. Koenderink, J. Tang, A. Levine, F. MacKintosh, and C. Schmidt, “Correlated fluctuations of microparticles in viscoelastic solutions: quantitative measurement of material properties by microrheology in the presence of optical traps,” Phys. Rev. E 73, 061501 (2006).
[CrossRef]

Malkiel, E.

Marquet, P.

Mason, T.

D. Weihs, T. Mason, and M. Teitell, “Bio-microrheology: a frontier in microrheology,” Biophys. J. 91, 4296–4305 (2006).
[CrossRef] [PubMed]

Meiners, J.

J. Meiners and S. Quake, “Direct measurement of hydrodynamic cross correlations between two particles in an external potential,” Phys. Rev. Lett. 82, 2211–2214 (1999).
[CrossRef]

Meinertzhagen, I.

Monaghan, P.

N. Klauke, P. Monaghan, G. Sinclair, M. Padgett, and J. Cooper, “Characterisation of spatial and temporal changes in pH gradients in microfluidic channels using optically trapped fluorescent sensors,” Lab on a Chip 6, 788–793 (2006).
[CrossRef] [PubMed]

Mushfique, H.

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. Cooper, and M. Padgett, “Comparison of Faxéns correction for a microsphere translating or rotating near a surface,” Phys. Rev. E 79, 26301 (2009).
[CrossRef]

H. Mushfique, J. Leach, H. Yin, R. Di Leonardo, M. Padgett, and J. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80, 4237–4240 (2008).
[CrossRef] [PubMed]

R. Di Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96, 134502 (2006).
[CrossRef] [PubMed]

Nieminen, T.

A. Bishop, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).

Nørrelykke, S.F..

E. Schäffer, S.F.. Nørrelykke, and J. Howard, “Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers,” Langmuir 23, 3654 (2007).
[CrossRef] [PubMed]

Ou-Yang, H.

M. Valentine, L. Dewalt, and H. Ou-Yang, “Forces on a colloidal particle in a polymer solution: a study using optical tweezers,” J. Phys. Condens. Matter 8, 9477 (1996).
[CrossRef]

Padgett, M.

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. Cooper, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers.” Lab on a Chip 9, 2059 (2009).
[CrossRef] [PubMed]

A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab on a Chip 9, 2568–2575 (2009).
[CrossRef] [PubMed]

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. Cooper, and M. Padgett, “Comparison of Faxéns correction for a microsphere translating or rotating near a surface,” Phys. Rev. E 79, 26301 (2009).
[CrossRef]

H. Mushfique, J. Leach, H. Yin, R. Di Leonardo, M. Padgett, and J. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80, 4237–4240 (2008).
[CrossRef] [PubMed]

R. Di Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96, 134502 (2006).
[CrossRef] [PubMed]

N. Klauke, P. Monaghan, G. Sinclair, M. Padgett, and J. Cooper, “Characterisation of spatial and temporal changes in pH gradients in microfluidic channels using optically trapped fluorescent sensors,” Lab on a Chip 6, 788–793 (2006).
[CrossRef] [PubMed]

Pesce, G.

G. Pesce, A. Sasso, and S. Fusco, “Viscosity measurements on micron-size scale using optical tweezers,” Rev. Sci. Instrum. 76, 115105 (2005).
[CrossRef]

A. Buosciolo, G. Pesce, and A. Sasso, “New calibration method for position detector for simultaneous measurements of force constants and local viscosity in optical tweezers,” Opt. Commun. 230, 357–368 (2004).
[CrossRef]

Quake, S.

J. Meiners and S. Quake, “Direct measurement of hydrodynamic cross correlations between two particles in an external potential,” Phys. Rev. Lett. 82, 2211–2214 (1999).
[CrossRef]

Roichman, Y.

Rubinsztein-Dunlop, H.

A. Bishop, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).

Ruocco, G.

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. Cooper, and M. Padgett, “Comparison of Faxéns correction for a microsphere translating or rotating near a surface,” Phys. Rev. E 79, 26301 (2009).
[CrossRef]

R. Di Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96, 134502 (2006).
[CrossRef] [PubMed]

Sasso, A.

G. Pesce, A. Sasso, and S. Fusco, “Viscosity measurements on micron-size scale using optical tweezers,” Rev. Sci. Instrum. 76, 115105 (2005).
[CrossRef]

A. Buosciolo, G. Pesce, and A. Sasso, “New calibration method for position detector for simultaneous measurements of force constants and local viscosity in optical tweezers,” Opt. Commun. 230, 357–368 (2004).
[CrossRef]

Saunter, C.

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. Cooper, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers.” Lab on a Chip 9, 2059 (2009).
[CrossRef] [PubMed]

Savin, T.

T. Savin and P. Doyle, “Role of a finite exposure time on measuring an elastic modulus using microrheology,” Phys. Rev. E 71, 41106 (2005).
[CrossRef]

Schäffer, E.

E. Schäffer, S.F.. Nørrelykke, and J. Howard, “Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers,” Langmuir 23, 3654 (2007).
[CrossRef] [PubMed]

Schmidt, C.

M. Atakhorrami, J. Sulkowska, K. Addas, G. Koenderink, J. Tang, A. Levine, F. MacKintosh, and C. Schmidt, “Correlated fluctuations of microparticles in viscoelastic solutions: quantitative measurement of material properties by microrheology in the presence of optical traps,” Phys. Rev. E 73, 061501 (2006).
[CrossRef]

M. Allersma, F. Gittes, M. deCastro, R. Stewart, and C. Schmidt, “Two-dimensional tracking of ncd motility by back focal plane interferometry,” Biophys. J. 74, 1074–1085 (1998).
[CrossRef] [PubMed]

Schnars, U.

U. Schnars and W. Jüptner, “Digital recording and numerical reconstruction of holograms,” Measurement science and technology 13, R85 (2002).
[CrossRef]

U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
[CrossRef] [PubMed]

Sheng, J.

Sinclair, G.

N. Klauke, P. Monaghan, G. Sinclair, M. Padgett, and J. Cooper, “Characterisation of spatial and temporal changes in pH gradients in microfluidic channels using optically trapped fluorescent sensors,” Lab on a Chip 6, 788–793 (2006).
[CrossRef] [PubMed]

Spalding, G.

G. Spalding, J. Courtial, and R. Di Leonardo, “Holographic optical tweezers,” in Structured Light and its Applications: an Introduction to Phase-Structured Beams and Nanoscale Optical Forces (Elsevier, 2008), p. 139.

Stewart, R.

M. Allersma, F. Gittes, M. deCastro, R. Stewart, and C. Schmidt, “Two-dimensional tracking of ncd motility by back focal plane interferometry,” Biophys. J. 74, 1074–1085 (1998).
[CrossRef] [PubMed]

Sulkowska, J.

M. Atakhorrami, J. Sulkowska, K. Addas, G. Koenderink, J. Tang, A. Levine, F. MacKintosh, and C. Schmidt, “Correlated fluctuations of microparticles in viscoelastic solutions: quantitative measurement of material properties by microrheology in the presence of optical traps,” Phys. Rev. E 73, 061501 (2006).
[CrossRef]

Sun, B.

Tang, J.

M. Atakhorrami, J. Sulkowska, K. Addas, G. Koenderink, J. Tang, A. Levine, F. MacKintosh, and C. Schmidt, “Correlated fluctuations of microparticles in viscoelastic solutions: quantitative measurement of material properties by microrheology in the presence of optical traps,” Phys. Rev. E 73, 061501 (2006).
[CrossRef]

Tassieri, M.

A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab on a Chip 9, 2568–2575 (2009).
[CrossRef] [PubMed]

Teitell, M.

D. Weihs, T. Mason, and M. Teitell, “Bio-microrheology: a frontier in microrheology,” Biophys. J. 91, 4296–4305 (2006).
[CrossRef] [PubMed]

Valentine, M.

M. Valentine, L. Dewalt, and H. Ou-Yang, “Forces on a colloidal particle in a polymer solution: a study using optical tweezers,” J. Phys. Condens. Matter 8, 9477 (1996).
[CrossRef]

Van Blaaderen, A.

Van Oostrum, P.

Weihs, D.

D. Weihs, T. Mason, and M. Teitell, “Bio-microrheology: a frontier in microrheology,” Biophys. J. 91, 4296–4305 (2006).
[CrossRef] [PubMed]

Xiao, K.

K. Xiao and D. G. Grier, “Multidimensional Optical Fractionation of Colloidal Particles with Holographic Verification,” Phys. Rev. Lett. 104, 028302 (2010).
[CrossRef] [PubMed]

F. Cheong, K. Xiao, and D. Grier, “Technical note: Characterizing individual milk fat globules with holographic video microscopy,” J. Dairy Sci. 92, 95–99 (2009).
[CrossRef]

F. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17, 13071–13079 (2009).
[CrossRef] [PubMed]

Xu, W.

Yang, S.

Yao, A.

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. Cooper, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers.” Lab on a Chip 9, 2059 (2009).
[CrossRef] [PubMed]

A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab on a Chip 9, 2568–2575 (2009).
[CrossRef] [PubMed]

Yi, G.

Yin, H.

H. Mushfique, J. Leach, H. Yin, R. Di Leonardo, M. Padgett, and J. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80, 4237–4240 (2008).
[CrossRef] [PubMed]

Anal. Chem.

H. Mushfique, J. Leach, H. Yin, R. Di Leonardo, M. Padgett, and J. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80, 4237–4240 (2008).
[CrossRef] [PubMed]

Ann. Phys.

H. Faxén, “Der Widerstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen ebenen Wänden eingeschlossen ist,” Ann. Phys. 373, 89–119 (1922).
[CrossRef]

Appl. Opt.

Biophys. J.

M. Allersma, F. Gittes, M. deCastro, R. Stewart, and C. Schmidt, “Two-dimensional tracking of ncd motility by back focal plane interferometry,” Biophys. J. 74, 1074–1085 (1998).
[CrossRef] [PubMed]

D. Weihs, T. Mason, and M. Teitell, “Bio-microrheology: a frontier in microrheology,” Biophys. J. 91, 4296–4305 (2006).
[CrossRef] [PubMed]

J. Chem. Phys.

J. Crocker, “Measurement of the hydrodynamic corrections to the Brownian motion of two colloidal spheres,” J. Chem. Phys. 106, 2837–2840 (1997).
[CrossRef]

J. Colloid Interface Sci.

J. Crocker and D. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996).
[CrossRef]

J. Dairy Sci.

F. Cheong, K. Xiao, and D. Grier, “Technical note: Characterizing individual milk fat globules with holographic video microscopy,” J. Dairy Sci. 92, 95–99 (2009).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

M. Fischer and K. Berg-Sørensen, “Calibration of trapping force and response function of optical tweezers in viscoelastic media,” J. Opt. A, Pure Appl. Opt. 9, S239 (2007).
[CrossRef]

J. Phys. Condens. Matter

M. Valentine, L. Dewalt, and H. Ou-Yang, “Forces on a colloidal particle in a polymer solution: a study using optical tweezers,” J. Phys. Condens. Matter 8, 9477 (1996).
[CrossRef]

Lab on a Chip

A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab on a Chip 9, 2568–2575 (2009).
[CrossRef] [PubMed]

N. Klauke, P. Monaghan, G. Sinclair, M. Padgett, and J. Cooper, “Characterisation of spatial and temporal changes in pH gradients in microfluidic channels using optically trapped fluorescent sensors,” Lab on a Chip 6, 788–793 (2006).
[CrossRef] [PubMed]

S. Keen, A. Yao, J. Leach, R. Di Leonardo, C. Saunter, G. Love, J. Cooper, and M. Padgett, “Multipoint viscosity measurements in microfluidic channels using optical tweezers.” Lab on a Chip 9, 2059 (2009).
[CrossRef] [PubMed]

Langmuir

E. Schäffer, S.F.. Nørrelykke, and J. Howard, “Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers,” Langmuir 23, 3654 (2007).
[CrossRef] [PubMed]

Measurement science and technology

U. Schnars and W. Jüptner, “Digital recording and numerical reconstruction of holograms,” Measurement science and technology 13, R85 (2002).
[CrossRef]

Nature

D. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef] [PubMed]

Opt. Commun.

A. Buosciolo, G. Pesce, and A. Sasso, “New calibration method for position detector for simultaneous measurements of force constants and local viscosity in optical tweezers,” Opt. Commun. 230, 357–368 (2004).
[CrossRef]

Opt. Express

Phys. Rev. E

J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. Cooper, and M. Padgett, “Comparison of Faxéns correction for a microsphere translating or rotating near a surface,” Phys. Rev. E 79, 26301 (2009).
[CrossRef]

T. Savin and P. Doyle, “Role of a finite exposure time on measuring an elastic modulus using microrheology,” Phys. Rev. E 71, 41106 (2005).
[CrossRef]

M. Atakhorrami, J. Sulkowska, K. Addas, G. Koenderink, J. Tang, A. Levine, F. MacKintosh, and C. Schmidt, “Correlated fluctuations of microparticles in viscoelastic solutions: quantitative measurement of material properties by microrheology in the presence of optical traps,” Phys. Rev. E 73, 061501 (2006).
[CrossRef]

Phys. Rev. Lett.

J. Meiners and S. Quake, “Direct measurement of hydrodynamic cross correlations between two particles in an external potential,” Phys. Rev. Lett. 82, 2211–2214 (1999).
[CrossRef]

A. Bishop, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92, 198104 (2004).

R. Di Leonardo, J. Leach, H. Mushfique, J. Cooper, G. Ruocco, and M. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96, 134502 (2006).
[CrossRef] [PubMed]

K. Xiao and D. G. Grier, “Multidimensional Optical Fractionation of Colloidal Particles with Holographic Verification,” Phys. Rev. Lett. 104, 028302 (2010).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

G. Pesce, A. Sasso, and S. Fusco, “Viscosity measurements on micron-size scale using optical tweezers,” Rev. Sci. Instrum. 76, 115105 (2005).
[CrossRef]

Other

G. Spalding, J. Courtial, and R. Di Leonardo, “Holographic optical tweezers,” in Structured Light and its Applications: an Introduction to Phase-Structured Beams and Nanoscale Optical Forces (Elsevier, 2008), p. 139.

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2010).

J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media (Kluwer Academic Print on Demand, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic view of our digital holographic microscope/tweezers system. DM: dichroic mirror. Sample illumination can be switched between white light and a collimated diode laser (λ = 0.657).

Fig. 2
Fig. 2

The correlation function c(t) of background fluctuations is plotted as a function of time. It vanishes in approximately two minutes.

Fig. 3
Fig. 3

Mean square displacements of all particles along the x direction averaged over 10000 trajectories. Experimental data (squares and circles) are fitted to Eq. (7) (solid lines). The size of error bars is smaller than symbols size.

Fig. 4
Fig. 4

Experimental (solid circles) and best fit (solid line) normalized radial intensities. Experimental and theoretical holograms are shown as insets.

Fig. 5
Fig. 5

Viscosity measured at the vertices of a 8μm × 8μm square tracking for a time t the free Brownian motion of four 2.07μm diameter silica beads (shown in inset). In plot (a), viscosity is inferred using the measured radii of particles, while in plot (b) the nominal radius is adopted. The dotted line shows the predicted viscosity for water at 23° C. Both accuracy and precision of viscosity measurement improve when the radius of the tracked probes can be measured.

Tables (2)

Tables Icon

Table 1 Estimated Accuracies and Precisions of Position, Radius and Relative Refractive Index Measurements*

Tables Icon

Table 2 Radius, Relative Refractive Index and Measured Viscosity for the Four Particles*

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I t h ( r , r p , a , m ) = 1 + 2 α { exp ( j k r z ^ ) x ^ f ( r r p , a , m ) } + α 2 f ( r r p , a , m ) 2
β = Σ i I t h ( x i ) I e x p ( x i ) Σ i I e x p ( x i ) 2
c ( t ) = 1 N i δ b i ( 0 ) δ b i ( t ) with δ b i ( t ) = b i ( t ) b i
I g = I b T s c
I g = 1 + 2 α ' { exp ( j k r z ^ ) x ^ f } where α = α | E i | 2 | E i | 2 b
D = k B T 6 π η a ( 1 9 16 ( a h ) + O ( a 3 h 3 ) )
( x ( t ) x ( 0 ) ) 2 = 2 D x t 2 3 D x T s

Metrics