Abstract

A numerical analysis of conventional and differential pulse-width pair Brillouin optical time domain analysis systems is reported. The tests are focused on determining the performance of these systems especially in terms of spatial resolution, as a function of the pulse characteristics. A new definition of spatial resolution is given, based on analysis of the shape of the Brillouin gain spectrum. The influence of the rise/fall time of the pulse light to the spatial resolution is also studied.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Measures, Structural Monitoring with Fiber Optic Technology (Academic, 2001).
  2. H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, and Y. Kusakabe, “Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete piles,” IEICE Trans. Electron. E 85-C, 945–951 (2002).
  3. A. Fellay, L. Thévenez, M. Facchini, M. Niklès, and P. Robert, Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution.,” in Optical Fiber Sensors, OSA Technical Digest Series (Optical Society of America, 1997), paper OWD3, http://www.opticsinfobase.org/abstract.cfm?URI=OFS-1997-OWD3 .
  4. V. P. Kalosha, E. Ponomarev, L. Chen, and X. Bao, “How to obtain high spectral resolution of SBS-based distributed sensing by using nanosecond pulses,” Opt. Express 14(6), 2071–2078 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-6-2071 .
    [CrossRef] [PubMed]
  5. V. Lecoeuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “Transient response in high-resolution Brillouin-based distributed sensing using probe pulses shorter than the acoustic relaxation time,” Opt. Lett. 25(3), 156–158 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-3-156 .
    [CrossRef] [PubMed]
  6. Y. Wan, S. Afshar V, L. Zou, L. Chen, and X. Bao, “Subpeaks in the Brillouin loss spectra of distributed fiber-optic sensors,” Opt. Lett. 30(10), 1099–1101 (2005), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-10-1099 .
    [CrossRef] [PubMed]
  7. X. Bao, Q. Yu, V. P. Kalosha, and L. Chen, “Influence of transient phonon relaxation on the Brillouin loss spectrum of nanosecond pulses,” Opt. Lett. 31(7), 888–890 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-7-888 .
    [CrossRef] [PubMed]
  8. A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-pulse brillouin optical time-domain sensor with 20-mm spatial resolution,” J. Lightwave Technol. 25(1), 381–386 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=JLT-25-1-381 .
    [CrossRef]
  9. K. Y. Song, W. Zou, Z. He, and K. Hotate, “Optical time-domain measurement of Brillouin dynamic grating spectrum in a polarization-maintaining fiber,” Opt. Lett. 34(9), 1381–1383 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-9-1381 .
    [CrossRef] [PubMed]
  10. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-26-21616 .
    [CrossRef] [PubMed]
  11. Y. Dong, X. Bao, and W. Li, “Differential Brillouin gain for improving the temperature accuracy and spatial resolution in a long-distance distributed fiber sensor,” Appl. Opt. 48(22), 4297–4301 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=ao-48-22-4297 .
    [CrossRef] [PubMed]
  12. A. Minardo, R. Bernini, and L. Zeni, “Stimulated Brillouin scattering modeling for high-resolution, time-domain distributed sensing,” Opt. Express 15(16), 10397–10407 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-16-10397 .
    [CrossRef] [PubMed]
  13. J.-C. Beugnot, M. Tur, S. F. Mafang, and L. Thévenaz, “Distributed Brillouin sensing with sub-meter spatial resolution: modeling and processing,” Opt. Express 19(8), 7381–7397 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-8-7381 .
    [CrossRef] [PubMed]
  14. Y. Li, X. Bao, Y. Dong, and L. Chen, “A Novel Distributed Brillouin Sensor Based on Optical Differential Parametric Amplification,” J. Lightwave Technol. 28(18), 2621–2626 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=JLT-28-18-2621 .
    [CrossRef]
  15. A. W. Brown, M. D. DeMerchant, X. Bao, and T. W. Bremner, “Spatial resolution enhancement of a Brillouin-distributed sensor using a novel signal processing method,” J. Lightwave Technol. 17(7), 1179–1183 (1999), http://www.opticsinfobase.org/abstract.cfm?URI=JLT-17-7-1179 .
    [CrossRef]

2011 (1)

2010 (1)

2009 (2)

2008 (1)

2007 (2)

2006 (2)

2005 (1)

2002 (1)

H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, and Y. Kusakabe, “Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete piles,” IEICE Trans. Electron. E 85-C, 945–951 (2002).

2000 (1)

1999 (1)

Afshar V, S.

Bao, X.

Y. Li, X. Bao, Y. Dong, and L. Chen, “A Novel Distributed Brillouin Sensor Based on Optical Differential Parametric Amplification,” J. Lightwave Technol. 28(18), 2621–2626 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=JLT-28-18-2621 .
[CrossRef]

Y. Dong, X. Bao, and W. Li, “Differential Brillouin gain for improving the temperature accuracy and spatial resolution in a long-distance distributed fiber sensor,” Appl. Opt. 48(22), 4297–4301 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=ao-48-22-4297 .
[CrossRef] [PubMed]

W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-26-21616 .
[CrossRef] [PubMed]

X. Bao, Q. Yu, V. P. Kalosha, and L. Chen, “Influence of transient phonon relaxation on the Brillouin loss spectrum of nanosecond pulses,” Opt. Lett. 31(7), 888–890 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-7-888 .
[CrossRef] [PubMed]

V. P. Kalosha, E. Ponomarev, L. Chen, and X. Bao, “How to obtain high spectral resolution of SBS-based distributed sensing by using nanosecond pulses,” Opt. Express 14(6), 2071–2078 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-6-2071 .
[CrossRef] [PubMed]

Y. Wan, S. Afshar V, L. Zou, L. Chen, and X. Bao, “Subpeaks in the Brillouin loss spectra of distributed fiber-optic sensors,” Opt. Lett. 30(10), 1099–1101 (2005), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-10-1099 .
[CrossRef] [PubMed]

A. W. Brown, M. D. DeMerchant, X. Bao, and T. W. Bremner, “Spatial resolution enhancement of a Brillouin-distributed sensor using a novel signal processing method,” J. Lightwave Technol. 17(7), 1179–1183 (1999), http://www.opticsinfobase.org/abstract.cfm?URI=JLT-17-7-1179 .
[CrossRef]

Bernini, R.

Beugnot, J.-C.

Bremner, T. W.

Brown, A. W.

Brown, K.

Chen, L.

Colpitts, B. G.

DeMerchant, M. D.

Dong, Y.

He, Z.

Hotate, K.

Jackson, D. A.

Kalosha, V. P.

Kurashima, T.

H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, and Y. Kusakabe, “Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete piles,” IEICE Trans. Electron. E 85-C, 945–951 (2002).

Kusakabe, Y.

H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, and Y. Kusakabe, “Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete piles,” IEICE Trans. Electron. E 85-C, 945–951 (2002).

Lecoeuche, V.

Li, W.

Li, Y.

Mafang, S. F.

Minardo, A.

Naruse, H.

H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, and Y. Kusakabe, “Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete piles,” IEICE Trans. Electron. E 85-C, 945–951 (2002).

Nobiki, A.

H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, and Y. Kusakabe, “Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete piles,” IEICE Trans. Electron. E 85-C, 945–951 (2002).

Ohno, H.

H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, and Y. Kusakabe, “Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete piles,” IEICE Trans. Electron. E 85-C, 945–951 (2002).

Pannell, C. N.

Ponomarev, E.

Song, K. Y.

Thévenaz, L.

Tur, M.

Uchiyama, Y.

H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, and Y. Kusakabe, “Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete piles,” IEICE Trans. Electron. E 85-C, 945–951 (2002).

Wan, Y.

Webb, D. J.

Yu, Q.

Zeni, L.

Zou, L.

Zou, W.

Appl. Opt. (1)

IEICE Trans. Electron. E (1)

H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, and Y. Kusakabe, “Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete piles,” IEICE Trans. Electron. E 85-C, 945–951 (2002).

J. Lightwave Technol. (3)

Opt. Express (4)

Opt. Lett. (4)

Other (2)

A. Fellay, L. Thévenez, M. Facchini, M. Niklès, and P. Robert, Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution.,” in Optical Fiber Sensors, OSA Technical Digest Series (Optical Society of America, 1997), paper OWD3, http://www.opticsinfobase.org/abstract.cfm?URI=OFS-1997-OWD3 .

R. M. Measures, Structural Monitoring with Fiber Optic Technology (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) BGS linewidth calculated for an SP-BOTDA system as a function of the pulse-width and pulse ER; (b) BGS linewidth calculated for a DPP-BOTDA system as a function of the pulse-width difference and pulses ER.

Fig. 2
Fig. 2

(a) BGS gain peak calculated for an SP-BOTDA system as a function of the pulse-width and pulse ER; (b) BGS gain peak calculated for a DPP-BOTDA system as a function of the pulse-width difference and pulses ER.

Fig. 3
Fig. 3

(a) Time-domain spatial resolution calculated for an SP-BOTDA system as a function of the pulse-width and pulse ER; (b) Time-domain spatial resolution calculated for a DPP-BOTDA system as a function of the pulse-width difference and pulses ER.

Fig. 4
Fig. 4

(a) Time-domain waveforms calculated for an SP-BOTDA system in a nonuniform fiber (pulse-width set to 3 ns); (b) Time-domain waveforms calculated for a DPP-BOTDA system in a nonuniform fiber (pulse-width difference set to 3 ns).

Fig. 5
Fig. 5

Ratio of the correct BGS peak to the spurious BGS peak in an SP-BOTDA system, as a function of the perturbation width and pulse-width. The different curves refer to a pulse-width ranging from 3 ns to 10 ns at 1-ns step. The black dashed line indicates the level chosen for defining the frequency-domain spatial resolution. (a) ER = 40 dB; (b) ER = 30 dB; (c) ER = 20 dB.

Fig. 6
Fig. 6

Ratio of the correct BGS peak to the spurious BGS peak in a DPP-BOTDA system, as a function of the perturbation width and pulse-width. The different curves refer to a pulse-width difference ranging from 3 ns to 10 ns at 1-ns step. The black dashed line indicates the level chosen for defining the frequency-domain spatial resolution. (a) ER = 40 dB; (b) ER = 30 dB; (c) ER = 20 dB.

Fig. 7
Fig. 7

(a) Frequency-domain spatial resolution calculated for an SP-BOTDA system as a function of pulse-width and ER; (b) Frequency-domain spatial resolution calculated for a DPP-BOTDA system as a function of pulse-width difference and ER.

Fig. 8
Fig. 8

Time-domain waveforms calculated for an SP-BOTDA system in a nonuniform fiber. The pulse-width is 3 ns, while the pulse ER is 20 dB. The blue curve refers to a pump-probe offset resonant at perturbation, while red curve refers to a pump-probe frequency offset tuned to the Brillouin resonance outside the perturbation. The inset shows a zoom of the transition indicated by the arrow.

Fig. 9
Fig. 9

Combination of BGS linewidth and frequency-domain spatial resolution calculated for an SP-BOTDA system (solid lines) or a DPP-BPTDA system (dashed line).

Fig. 10
Fig. 10

(a) Time-domain (solid lines) and frequency-domain (dashed lines) spatial resolution calculated for an SP-BOTDA system as a function of the pulse rise time and ER. The pulse-width is set to 5 ns; (b) Time-domain (solid lines) and frequency-domain (dashed lines) spatial resolution calculated for a DPP-BOTDA system as a function of the pulses rise time and ER. The pulse-width difference is set to 5 ns.

Fig. 11
Fig. 11

(a) Time-domain (solid lines) and frequency-domain (dashed lines) spatial resolution calculated for an SP-BOTDA system as a function of the pulse fall time and pulse ER. The pulse-width is set to 5 ns; (b) Time-domain (solid lines) and frequency-domain (dashed lines) spatial resolution calculated for a DPP-BOTDA system as a function of the pulses fall time and pulses ER. The pulse-width difference is set to 5 ns.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E s ( 0 , ω ) = g B Γ 1 2 0 L G ( z , ω ) exp ( 2 j n c ω z ) d z
G ( z , ω ) = E s C W ( z ) ( E p ( ω ) E p ( ω ) Γ 1 + j ( Δ ( z ) + ω ) )
E p ( t ) = ( E p , p e a k E l e a k ) ( tanh ( t 1 ) tanh ( t 2 ) / 2 ) + E l e a k

Metrics