Abstract

The Microfluidic Optical Stretcher (MOS) has previously been shown to be a versatile tool to measure mechanical properties of single suspended cells. In this study we combine optical stretching and fluorescent calcium imaging. A cell line transfected with a heat sensitive cation channel was used as a model system to show the versatility of the setup. The cells were loaded with the Ca2+ dye Fluo-4 and imaged with confocal laser scanning microscopy while being stretched. During optical stretching heat is transferred to the cell causing a pronounced Ca2+ influx through the cation channel. The technique opens new perspectives for investigating the role of Ca2+ in regulating cell mechanical behavior.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [CrossRef]
  2. A. Ashkin and J. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
    [CrossRef] [PubMed]
  3. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
    [CrossRef] [PubMed]
  4. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
    [CrossRef] [PubMed]
  5. H. Zhang and K.-K. Liu, “Optical tweezers for single cells,” J. R. Soc., Interface 5, 671–690 (2008).
    [CrossRef]
  6. J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
    [CrossRef] [PubMed]
  7. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
    [CrossRef] [PubMed]
  8. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
    [CrossRef] [PubMed]
  9. F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A. 106, 15696–15701 (2009).
    [CrossRef] [PubMed]
  10. B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed. Microdevices 9, 703–710 (2007).
    [CrossRef] [PubMed]
  11. T. W. Remmerbach, F. Wottawah, J. Dietrich, B. Lincoln, C. Wittekind, and J. Guck, “Oral Cancer Diagnosis by Mechanical Phenotyping,” Cancer Res. 69, 1728–1732 (2009).
    [CrossRef] [PubMed]
  12. A. Fritsch, M. Höckel, T. Kiessling, K. D. Nnetu, F. Wetzel, M. Zink, and J. A. Käs, “Are biomechanical changes necessary for tumour progression?” Nat. Phys. 6, 730–732 (2010).
    [CrossRef]
  13. D. Icard-Arcizet, O. Cardoso, A. Richert, and S. Hnon, “Cell stiffening in response to external stress is correlated to actin recruitment,” Biophys. J. 94, 2906–2913 (2008).
    [CrossRef] [PubMed]
  14. M. Whitaker, “Calcium at fertilization and in early development,” Physiol. Rev. 86, 25–88 (2006).
    [CrossRef]
  15. E. Neher and T. Sakaba, “Multiple roles of calcium ions in the regulation of neurotransmitter release,” Neuron 59, 861–872 (2008).
    [CrossRef] [PubMed]
  16. J. Lee, A. Ishihara, G. Oxford, B. Johnson, and K. Jacobson, “Regulation of cell movement is mediated by stretch-activated calcium channels,” Nature 400, 382–386 (1999).
    [CrossRef] [PubMed]
  17. R. E. Haddock and C. E. Hill, “Rhythmicity in arterial smooth muscle,” J. Physiol. 566, 645–656 (2005).
    [CrossRef] [PubMed]
  18. G. Iribe, C. W. Ward, P. Camelliti, C. Bollensdorff, F. Mason, R. A. Burton, A. Garny, M. K. Morphew, A. Hoenger, W. J. Lederer, and P. Kohl, “Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate,” Circ. Res. 104, 787–795 (2009).
    [CrossRef] [PubMed]
  19. C. Wei, X. Wang, M. Chen, K. Ouyang, L.-S. Song, and H. Cheng, “Calcium flickers steer cell migration,” Nature 457, 901–905 (2009).
    [CrossRef] [PubMed]
  20. S. Wray, “Insights into the uterus,” Exp. Physiol. 92, 621–631 (2007).
    [CrossRef] [PubMed]
  21. M. J. Sanderson and E. R. Dirksen, “Mechanosensitivity of cultured ciliated cells from the mammalian respiratory tract: implications for the regulation of mucociliary transport,” Proc. Natl. Acad. Sci. U.S.A. 83, 7302–7306 (1986).
    [CrossRef] [PubMed]
  22. M. J. Sanderson, A. C. Charles, and E. R. Dirksen, “Mechanical stimulation and intercellular communication increases intracellular Ca2+ in epithelial cells.” Cell Regul. 1, 585–596 (1990).
    [PubMed]
  23. R. Y. Tsien, “New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures,” Biochemistry 19, 2396–2404 (1980).
    [CrossRef] [PubMed]
  24. R. Y. Tsien, “A non-disruptive technique for loading calcium buffers and indicators into cells,” Nature 290, 527–528 (1981).
    [CrossRef] [PubMed]
  25. R. Y. Tsien, T. Pozzan, and T. J. Rink, “Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator.” J. Cell Biol. 94, 325–334 (1982).
    [CrossRef] [PubMed]
  26. A. Minta, J. Kao, and R. Tsien, “Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores,” J. Biol. Chem. 264, 8171–8178 (1989).
    [PubMed]
  27. K. R. Gee, K. A. Brown, W.-N. U. Chen, J. Bishop-Stewart, D. Gray, and I. Johnson, “Chemical and physiological characterization of fluo-4 Ca2+-indicator dyes,” Cell Calcium 27, 97–106 (2000).
    [CrossRef] [PubMed]
  28. R. M. Paredes, J. C. Etzler, L. T. Watts, W. Zheng, and J. D. Lechleiter, “Chemical calcium indicators,” Methods 46, 143–151 (2008).
    [CrossRef] [PubMed]
  29. A. E. Palmer and R. Y. Tsien, “Measuring calcium signaling using genetically targetable fluorescent indicators,” Nat. Protoc. 1, 1057–1065 (2006).
    [CrossRef]
  30. N. Demaurex, “Calcium measurements in organelles with Ca2+-sensitive fluorescent proteins,” Cell Calcium 38, 213–222 (2005).
    [CrossRef] [PubMed]
  31. M. J. Caterina and D. Julius, “The vanilloid receptor: a molecular gateway to the pain pathway,” Annu. Rev. Neurosci. 24, 487–517 (2001).
    [CrossRef] [PubMed]
  32. M. J. Caterina, “Transient receptor potential ion channels as participants in thermosensation and thermoregulation,” Am. J. Physiol. Regulatory Integrative Comp. Physiol. 292, R64–R76 (2007).
    [CrossRef]
  33. B. Nilius, G. Owsianik, T. Voets, and J. A. Peters, “Transient receptor potential cation channels in disease,” Physiol. Rev. 87, 165–217 (2007).
    [CrossRef] [PubMed]
  34. M. Caterina, M. Schumacher, M. Tominaga, T. Rosen, J. Levine, and D. Julius, “The capsaicin receptor: a heat-activated ion channel in the pain pathway,” Nature 389, 816–824 (1997).
    [CrossRef] [PubMed]
  35. M. Tominaga, M. J. Caterina, A. B. Malmberg, T. A. Rosen, H. Gilbert, K. Skinner, B. E. Raumann, A. I. Basbaum, and D. Julius, “The cloned capsaicin receptor integrates multiple pain-producing stimuli,” Neuron 21, 531–543 (1998).
    [CrossRef] [PubMed]
  36. J. B. Davis, J. Gray, M. J. Gunthorpe, J. P. Hatcher, P. T. Davey, P. Overend, M. H. Harries, J. Latcham, C. Clapham, K. Atkinson, S. A. Hughes, K. Rance, E. Grau, A. J. Harper, P. L. Pugh, D. C. Rogers, S. Bingham, A. Randall, and S. A. Sheardown, “Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia,” Nature 405, 183–187 (2000).
    [CrossRef] [PubMed]
  37. L. A. Birder, “More than just a barrier: urothelium as a drug target for urinary bladder pain,” Am. J. Physiol. 289, F489–F495 (2005).
    [CrossRef]
  38. C.-K. Park, M. S. Kim, Z. Fang, H. Y. Li, S. J. Jung, S.-Y. Choi, S. J. Lee, K. Park, J. S. Kim, and S. B. Oh, “Functional Expression of thermo-transient receptor potential channels in dental primary afferent neurons,” J. Biol. Chem. 281, 17304–17311 (2006).
    [CrossRef] [PubMed]
  39. M. Madou, Fundamentals of Microfabrication: The Science of Miniaturization (CRC Press, 2002).
  40. S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15, 15493–15499 (2007).
    [CrossRef] [PubMed]
  41. M. St. Pierre, P. Reeh, and K. Zimmermann, “Differential effects of trpv channel block on polymodal activation of rat cutaneous nociceptors in vitro,” Exp. Brain Res. 196, 31–44 (2009).
    [CrossRef] [PubMed]
  42. J. R. Savidge, S. P. Ranasinghe, and H. P. Rang, “Comparison of intracellular calcium signals evoked by heat and capsaicin in cultured rat dorsal root ganglion neurons and in a cell line expressing the rat vanilloid receptor, vr1,” Neuroscience 102, 177–184 (2001).
    [CrossRef] [PubMed]
  43. M. L. Woodruff, A. P. Sampath, H. R. Matthews, N. V. Krasnoperova, J. Lem, and G. L. Fain, “Measurement of cytoplasmic calcium concentration in the rods of wild-type and transducin knock-out mice,” J. Physiol. 542, 843–854 (2002).
    [CrossRef] [PubMed]
  44. H. Schmidt, K. M. Stiefel, P. Racay, B. Schwaller, and J. Eilers, “Mutational analysis of dendritic ca2+ kinetics in rodent purkinje cells: role of parvalbumin and calbindin d28k,” J. Physiol. 551, 13–32 (2003).
    [CrossRef] [PubMed]
  45. F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Ks, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40, 1–6 (2011).
    [CrossRef]
  46. C. T. Mierke, D. Rösel, B. Fabry, and J. Brábek, “Contractile forces in tumor cell migration,” Eur. J. Cell Biol. 87, 669–676 (2008).
    [CrossRef] [PubMed]
  47. B. Fabry, G. N. Maksym, J. P. Butler, M. Glogauer, D. Navajas, and J. J. Fredberg, “Scaling the microrheology of living cells,” Phys. Rev. Lett. 87, 148102 (2001).
    [CrossRef] [PubMed]
  48. F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. Käs, “Optical rheology of biological cells,” Phys. Rev. Lett. 94, 098103 (2005).
    [CrossRef] [PubMed]
  49. R. Ananthakrishnan, J. Guck, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, T. Moon, and J. Käs, “Quantifying the contribution of actin networks to the elastic strength of fibroblasts,” J. Theor. Biol. 242, 502–516 (2006).
    [CrossRef] [PubMed]
  50. P. Kollmannsberger and B. Fabry, “Linear and nonlinear rheology of living cells,” Annu. Rev. Mater. Res. 41, 75–97 (2011).
    [CrossRef]

2011

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Ks, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40, 1–6 (2011).
[CrossRef]

P. Kollmannsberger and B. Fabry, “Linear and nonlinear rheology of living cells,” Annu. Rev. Mater. Res. 41, 75–97 (2011).
[CrossRef]

2010

A. Fritsch, M. Höckel, T. Kiessling, K. D. Nnetu, F. Wetzel, M. Zink, and J. A. Käs, “Are biomechanical changes necessary for tumour progression?” Nat. Phys. 6, 730–732 (2010).
[CrossRef]

2009

F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A. 106, 15696–15701 (2009).
[CrossRef] [PubMed]

T. W. Remmerbach, F. Wottawah, J. Dietrich, B. Lincoln, C. Wittekind, and J. Guck, “Oral Cancer Diagnosis by Mechanical Phenotyping,” Cancer Res. 69, 1728–1732 (2009).
[CrossRef] [PubMed]

G. Iribe, C. W. Ward, P. Camelliti, C. Bollensdorff, F. Mason, R. A. Burton, A. Garny, M. K. Morphew, A. Hoenger, W. J. Lederer, and P. Kohl, “Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate,” Circ. Res. 104, 787–795 (2009).
[CrossRef] [PubMed]

C. Wei, X. Wang, M. Chen, K. Ouyang, L.-S. Song, and H. Cheng, “Calcium flickers steer cell migration,” Nature 457, 901–905 (2009).
[CrossRef] [PubMed]

M. St. Pierre, P. Reeh, and K. Zimmermann, “Differential effects of trpv channel block on polymodal activation of rat cutaneous nociceptors in vitro,” Exp. Brain Res. 196, 31–44 (2009).
[CrossRef] [PubMed]

2008

C. T. Mierke, D. Rösel, B. Fabry, and J. Brábek, “Contractile forces in tumor cell migration,” Eur. J. Cell Biol. 87, 669–676 (2008).
[CrossRef] [PubMed]

R. M. Paredes, J. C. Etzler, L. T. Watts, W. Zheng, and J. D. Lechleiter, “Chemical calcium indicators,” Methods 46, 143–151 (2008).
[CrossRef] [PubMed]

E. Neher and T. Sakaba, “Multiple roles of calcium ions in the regulation of neurotransmitter release,” Neuron 59, 861–872 (2008).
[CrossRef] [PubMed]

D. Icard-Arcizet, O. Cardoso, A. Richert, and S. Hnon, “Cell stiffening in response to external stress is correlated to actin recruitment,” Biophys. J. 94, 2906–2913 (2008).
[CrossRef] [PubMed]

H. Zhang and K.-K. Liu, “Optical tweezers for single cells,” J. R. Soc., Interface 5, 671–690 (2008).
[CrossRef]

2007

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed. Microdevices 9, 703–710 (2007).
[CrossRef] [PubMed]

M. J. Caterina, “Transient receptor potential ion channels as participants in thermosensation and thermoregulation,” Am. J. Physiol. Regulatory Integrative Comp. Physiol. 292, R64–R76 (2007).
[CrossRef]

B. Nilius, G. Owsianik, T. Voets, and J. A. Peters, “Transient receptor potential cation channels in disease,” Physiol. Rev. 87, 165–217 (2007).
[CrossRef] [PubMed]

S. Wray, “Insights into the uterus,” Exp. Physiol. 92, 621–631 (2007).
[CrossRef] [PubMed]

S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15, 15493–15499 (2007).
[CrossRef] [PubMed]

2006

R. Ananthakrishnan, J. Guck, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, T. Moon, and J. Käs, “Quantifying the contribution of actin networks to the elastic strength of fibroblasts,” J. Theor. Biol. 242, 502–516 (2006).
[CrossRef] [PubMed]

C.-K. Park, M. S. Kim, Z. Fang, H. Y. Li, S. J. Jung, S.-Y. Choi, S. J. Lee, K. Park, J. S. Kim, and S. B. Oh, “Functional Expression of thermo-transient receptor potential channels in dental primary afferent neurons,” J. Biol. Chem. 281, 17304–17311 (2006).
[CrossRef] [PubMed]

A. E. Palmer and R. Y. Tsien, “Measuring calcium signaling using genetically targetable fluorescent indicators,” Nat. Protoc. 1, 1057–1065 (2006).
[CrossRef]

M. Whitaker, “Calcium at fertilization and in early development,” Physiol. Rev. 86, 25–88 (2006).
[CrossRef]

2005

R. E. Haddock and C. E. Hill, “Rhythmicity in arterial smooth muscle,” J. Physiol. 566, 645–656 (2005).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[CrossRef] [PubMed]

N. Demaurex, “Calcium measurements in organelles with Ca2+-sensitive fluorescent proteins,” Cell Calcium 38, 213–222 (2005).
[CrossRef] [PubMed]

L. A. Birder, “More than just a barrier: urothelium as a drug target for urinary bladder pain,” Am. J. Physiol. 289, F489–F495 (2005).
[CrossRef]

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. Käs, “Optical rheology of biological cells,” Phys. Rev. Lett. 94, 098103 (2005).
[CrossRef] [PubMed]

2003

H. Schmidt, K. M. Stiefel, P. Racay, B. Schwaller, and J. Eilers, “Mutational analysis of dendritic ca2+ kinetics in rodent purkinje cells: role of parvalbumin and calbindin d28k,” J. Physiol. 551, 13–32 (2003).
[CrossRef] [PubMed]

2002

M. L. Woodruff, A. P. Sampath, H. R. Matthews, N. V. Krasnoperova, J. Lem, and G. L. Fain, “Measurement of cytoplasmic calcium concentration in the rods of wild-type and transducin knock-out mice,” J. Physiol. 542, 843–854 (2002).
[CrossRef] [PubMed]

2001

J. R. Savidge, S. P. Ranasinghe, and H. P. Rang, “Comparison of intracellular calcium signals evoked by heat and capsaicin in cultured rat dorsal root ganglion neurons and in a cell line expressing the rat vanilloid receptor, vr1,” Neuroscience 102, 177–184 (2001).
[CrossRef] [PubMed]

B. Fabry, G. N. Maksym, J. P. Butler, M. Glogauer, D. Navajas, and J. J. Fredberg, “Scaling the microrheology of living cells,” Phys. Rev. Lett. 87, 148102 (2001).
[CrossRef] [PubMed]

M. J. Caterina and D. Julius, “The vanilloid receptor: a molecular gateway to the pain pathway,” Annu. Rev. Neurosci. 24, 487–517 (2001).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[CrossRef] [PubMed]

2000

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[CrossRef] [PubMed]

K. R. Gee, K. A. Brown, W.-N. U. Chen, J. Bishop-Stewart, D. Gray, and I. Johnson, “Chemical and physiological characterization of fluo-4 Ca2+-indicator dyes,” Cell Calcium 27, 97–106 (2000).
[CrossRef] [PubMed]

J. B. Davis, J. Gray, M. J. Gunthorpe, J. P. Hatcher, P. T. Davey, P. Overend, M. H. Harries, J. Latcham, C. Clapham, K. Atkinson, S. A. Hughes, K. Rance, E. Grau, A. J. Harper, P. L. Pugh, D. C. Rogers, S. Bingham, A. Randall, and S. A. Sheardown, “Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia,” Nature 405, 183–187 (2000).
[CrossRef] [PubMed]

1999

J. Lee, A. Ishihara, G. Oxford, B. Johnson, and K. Jacobson, “Regulation of cell movement is mediated by stretch-activated calcium channels,” Nature 400, 382–386 (1999).
[CrossRef] [PubMed]

1998

M. Tominaga, M. J. Caterina, A. B. Malmberg, T. A. Rosen, H. Gilbert, K. Skinner, B. E. Raumann, A. I. Basbaum, and D. Julius, “The cloned capsaicin receptor integrates multiple pain-producing stimuli,” Neuron 21, 531–543 (1998).
[CrossRef] [PubMed]

1997

M. Caterina, M. Schumacher, M. Tominaga, T. Rosen, J. Levine, and D. Julius, “The capsaicin receptor: a heat-activated ion channel in the pain pathway,” Nature 389, 816–824 (1997).
[CrossRef] [PubMed]

1994

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[CrossRef] [PubMed]

1990

M. J. Sanderson, A. C. Charles, and E. R. Dirksen, “Mechanical stimulation and intercellular communication increases intracellular Ca2+ in epithelial cells.” Cell Regul. 1, 585–596 (1990).
[PubMed]

1989

A. Minta, J. Kao, and R. Tsien, “Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores,” J. Biol. Chem. 264, 8171–8178 (1989).
[PubMed]

1987

A. Ashkin and J. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[CrossRef] [PubMed]

1986

M. J. Sanderson and E. R. Dirksen, “Mechanosensitivity of cultured ciliated cells from the mammalian respiratory tract: implications for the regulation of mucociliary transport,” Proc. Natl. Acad. Sci. U.S.A. 83, 7302–7306 (1986).
[CrossRef] [PubMed]

1982

R. Y. Tsien, T. Pozzan, and T. J. Rink, “Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator.” J. Cell Biol. 94, 325–334 (1982).
[CrossRef] [PubMed]

1981

R. Y. Tsien, “A non-disruptive technique for loading calcium buffers and indicators into cells,” Nature 290, 527–528 (1981).
[CrossRef] [PubMed]

1980

R. Y. Tsien, “New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures,” Biochemistry 19, 2396–2404 (1980).
[CrossRef] [PubMed]

1970

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Ananthakrishnan, R.

R. Ananthakrishnan, J. Guck, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, T. Moon, and J. Käs, “Quantifying the contribution of actin networks to the elastic strength of fibroblasts,” J. Theor. Biol. 242, 502–516 (2006).
[CrossRef] [PubMed]

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. Käs, “Optical rheology of biological cells,” Phys. Rev. Lett. 94, 098103 (2005).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[CrossRef] [PubMed]

A. Ashkin and J. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Atkinson, K.

J. B. Davis, J. Gray, M. J. Gunthorpe, J. P. Hatcher, P. T. Davey, P. Overend, M. H. Harries, J. Latcham, C. Clapham, K. Atkinson, S. A. Hughes, K. Rance, E. Grau, A. J. Harper, P. L. Pugh, D. C. Rogers, S. Bingham, A. Randall, and S. A. Sheardown, “Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia,” Nature 405, 183–187 (2000).
[CrossRef] [PubMed]

Basbaum, A. I.

M. Tominaga, M. J. Caterina, A. B. Malmberg, T. A. Rosen, H. Gilbert, K. Skinner, B. E. Raumann, A. I. Basbaum, and D. Julius, “The cloned capsaicin receptor integrates multiple pain-producing stimuli,” Neuron 21, 531–543 (1998).
[CrossRef] [PubMed]

Beil, M.

F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A. 106, 15696–15701 (2009).
[CrossRef] [PubMed]

Bilby, C.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[CrossRef] [PubMed]

Bingham, S.

J. B. Davis, J. Gray, M. J. Gunthorpe, J. P. Hatcher, P. T. Davey, P. Overend, M. H. Harries, J. Latcham, C. Clapham, K. Atkinson, S. A. Hughes, K. Rance, E. Grau, A. J. Harper, P. L. Pugh, D. C. Rogers, S. Bingham, A. Randall, and S. A. Sheardown, “Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia,” Nature 405, 183–187 (2000).
[CrossRef] [PubMed]

Birder, L. A.

L. A. Birder, “More than just a barrier: urothelium as a drug target for urinary bladder pain,” Am. J. Physiol. 289, F489–F495 (2005).
[CrossRef]

Bishop-Stewart, J.

K. R. Gee, K. A. Brown, W.-N. U. Chen, J. Bishop-Stewart, D. Gray, and I. Johnson, “Chemical and physiological characterization of fluo-4 Ca2+-indicator dyes,” Cell Calcium 27, 97–106 (2000).
[CrossRef] [PubMed]

Block, S. M.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[CrossRef] [PubMed]

Bollensdorff, C.

G. Iribe, C. W. Ward, P. Camelliti, C. Bollensdorff, F. Mason, R. A. Burton, A. Garny, M. K. Morphew, A. Hoenger, W. J. Lederer, and P. Kohl, “Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate,” Circ. Res. 104, 787–795 (2009).
[CrossRef] [PubMed]

Brábek, J.

C. T. Mierke, D. Rösel, B. Fabry, and J. Brábek, “Contractile forces in tumor cell migration,” Eur. J. Cell Biol. 87, 669–676 (2008).
[CrossRef] [PubMed]

Brown, K. A.

K. R. Gee, K. A. Brown, W.-N. U. Chen, J. Bishop-Stewart, D. Gray, and I. Johnson, “Chemical and physiological characterization of fluo-4 Ca2+-indicator dyes,” Cell Calcium 27, 97–106 (2000).
[CrossRef] [PubMed]

Bruel, A.

F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A. 106, 15696–15701 (2009).
[CrossRef] [PubMed]

Burton, R. A.

G. Iribe, C. W. Ward, P. Camelliti, C. Bollensdorff, F. Mason, R. A. Burton, A. Garny, M. K. Morphew, A. Hoenger, W. J. Lederer, and P. Kohl, “Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate,” Circ. Res. 104, 787–795 (2009).
[CrossRef] [PubMed]

Butler, J. P.

B. Fabry, G. N. Maksym, J. P. Butler, M. Glogauer, D. Navajas, and J. J. Fredberg, “Scaling the microrheology of living cells,” Phys. Rev. Lett. 87, 148102 (2001).
[CrossRef] [PubMed]

Camelliti, P.

G. Iribe, C. W. Ward, P. Camelliti, C. Bollensdorff, F. Mason, R. A. Burton, A. Garny, M. K. Morphew, A. Hoenger, W. J. Lederer, and P. Kohl, “Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate,” Circ. Res. 104, 787–795 (2009).
[CrossRef] [PubMed]

Cardoso, O.

D. Icard-Arcizet, O. Cardoso, A. Richert, and S. Hnon, “Cell stiffening in response to external stress is correlated to actin recruitment,” Biophys. J. 94, 2906–2913 (2008).
[CrossRef] [PubMed]

Caterina, M.

M. Caterina, M. Schumacher, M. Tominaga, T. Rosen, J. Levine, and D. Julius, “The capsaicin receptor: a heat-activated ion channel in the pain pathway,” Nature 389, 816–824 (1997).
[CrossRef] [PubMed]

Caterina, M. J.

M. J. Caterina, “Transient receptor potential ion channels as participants in thermosensation and thermoregulation,” Am. J. Physiol. Regulatory Integrative Comp. Physiol. 292, R64–R76 (2007).
[CrossRef]

M. J. Caterina and D. Julius, “The vanilloid receptor: a molecular gateway to the pain pathway,” Annu. Rev. Neurosci. 24, 487–517 (2001).
[CrossRef] [PubMed]

M. Tominaga, M. J. Caterina, A. B. Malmberg, T. A. Rosen, H. Gilbert, K. Skinner, B. E. Raumann, A. I. Basbaum, and D. Julius, “The cloned capsaicin receptor integrates multiple pain-producing stimuli,” Neuron 21, 531–543 (1998).
[CrossRef] [PubMed]

Charles, A. C.

M. J. Sanderson, A. C. Charles, and E. R. Dirksen, “Mechanical stimulation and intercellular communication increases intracellular Ca2+ in epithelial cells.” Cell Regul. 1, 585–596 (1990).
[PubMed]

Chen, M.

C. Wei, X. Wang, M. Chen, K. Ouyang, L.-S. Song, and H. Cheng, “Calcium flickers steer cell migration,” Nature 457, 901–905 (2009).
[CrossRef] [PubMed]

Chen, W.-N. U.

K. R. Gee, K. A. Brown, W.-N. U. Chen, J. Bishop-Stewart, D. Gray, and I. Johnson, “Chemical and physiological characterization of fluo-4 Ca2+-indicator dyes,” Cell Calcium 27, 97–106 (2000).
[CrossRef] [PubMed]

Cheng, H.

C. Wei, X. Wang, M. Chen, K. Ouyang, L.-S. Song, and H. Cheng, “Calcium flickers steer cell migration,” Nature 457, 901–905 (2009).
[CrossRef] [PubMed]

Choi, S.-Y.

C.-K. Park, M. S. Kim, Z. Fang, H. Y. Li, S. J. Jung, S.-Y. Choi, S. J. Lee, K. Park, J. S. Kim, and S. B. Oh, “Functional Expression of thermo-transient receptor potential channels in dental primary afferent neurons,” J. Biol. Chem. 281, 17304–17311 (2006).
[CrossRef] [PubMed]

Clapham, C.

J. B. Davis, J. Gray, M. J. Gunthorpe, J. P. Hatcher, P. T. Davey, P. Overend, M. H. Harries, J. Latcham, C. Clapham, K. Atkinson, S. A. Hughes, K. Rance, E. Grau, A. J. Harper, P. L. Pugh, D. C. Rogers, S. Bingham, A. Randall, and S. A. Sheardown, “Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia,” Nature 405, 183–187 (2000).
[CrossRef] [PubMed]

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[CrossRef] [PubMed]

Davey, P. T.

J. B. Davis, J. Gray, M. J. Gunthorpe, J. P. Hatcher, P. T. Davey, P. Overend, M. H. Harries, J. Latcham, C. Clapham, K. Atkinson, S. A. Hughes, K. Rance, E. Grau, A. J. Harper, P. L. Pugh, D. C. Rogers, S. Bingham, A. Randall, and S. A. Sheardown, “Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia,” Nature 405, 183–187 (2000).
[CrossRef] [PubMed]

Davis, J. B.

J. B. Davis, J. Gray, M. J. Gunthorpe, J. P. Hatcher, P. T. Davey, P. Overend, M. H. Harries, J. Latcham, C. Clapham, K. Atkinson, S. A. Hughes, K. Rance, E. Grau, A. J. Harper, P. L. Pugh, D. C. Rogers, S. Bingham, A. Randall, and S. A. Sheardown, “Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia,” Nature 405, 183–187 (2000).
[CrossRef] [PubMed]

Demaurex, N.

N. Demaurex, “Calcium measurements in organelles with Ca2+-sensitive fluorescent proteins,” Cell Calcium 38, 213–222 (2005).
[CrossRef] [PubMed]

Dietrich, J.

T. W. Remmerbach, F. Wottawah, J. Dietrich, B. Lincoln, C. Wittekind, and J. Guck, “Oral Cancer Diagnosis by Mechanical Phenotyping,” Cancer Res. 69, 1728–1732 (2009).
[CrossRef] [PubMed]

Dirksen, E. R.

M. J. Sanderson, A. C. Charles, and E. R. Dirksen, “Mechanical stimulation and intercellular communication increases intracellular Ca2+ in epithelial cells.” Cell Regul. 1, 585–596 (1990).
[PubMed]

M. J. Sanderson and E. R. Dirksen, “Mechanosensitivity of cultured ciliated cells from the mammalian respiratory tract: implications for the regulation of mucociliary transport,” Proc. Natl. Acad. Sci. U.S.A. 83, 7302–7306 (1986).
[CrossRef] [PubMed]

Dziedzic, J.

A. Ashkin and J. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef] [PubMed]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[CrossRef] [PubMed]

Ebert, S.

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed. Microdevices 9, 703–710 (2007).
[CrossRef] [PubMed]

S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15, 15493–15499 (2007).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[CrossRef] [PubMed]

Eilers, J.

H. Schmidt, K. M. Stiefel, P. Racay, B. Schwaller, and J. Eilers, “Mutational analysis of dendritic ca2+ kinetics in rodent purkinje cells: role of parvalbumin and calbindin d28k,” J. Physiol. 551, 13–32 (2003).
[CrossRef] [PubMed]

Erickson, H. M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[CrossRef] [PubMed]

Etzler, J. C.

R. M. Paredes, J. C. Etzler, L. T. Watts, W. Zheng, and J. D. Lechleiter, “Chemical calcium indicators,” Methods 46, 143–151 (2008).
[CrossRef] [PubMed]

Fabry, B.

P. Kollmannsberger and B. Fabry, “Linear and nonlinear rheology of living cells,” Annu. Rev. Mater. Res. 41, 75–97 (2011).
[CrossRef]

C. T. Mierke, D. Rösel, B. Fabry, and J. Brábek, “Contractile forces in tumor cell migration,” Eur. J. Cell Biol. 87, 669–676 (2008).
[CrossRef] [PubMed]

B. Fabry, G. N. Maksym, J. P. Butler, M. Glogauer, D. Navajas, and J. J. Fredberg, “Scaling the microrheology of living cells,” Phys. Rev. Lett. 87, 148102 (2001).
[CrossRef] [PubMed]

Fain, G. L.

M. L. Woodruff, A. P. Sampath, H. R. Matthews, N. V. Krasnoperova, J. Lem, and G. L. Fain, “Measurement of cytoplasmic calcium concentration in the rods of wild-type and transducin knock-out mice,” J. Physiol. 542, 843–854 (2002).
[CrossRef] [PubMed]

Fang, Z.

C.-K. Park, M. S. Kim, Z. Fang, H. Y. Li, S. J. Jung, S.-Y. Choi, S. J. Lee, K. Park, J. S. Kim, and S. B. Oh, “Functional Expression of thermo-transient receptor potential channels in dental primary afferent neurons,” J. Biol. Chem. 281, 17304–17311 (2006).
[CrossRef] [PubMed]

Fredberg, J. J.

B. Fabry, G. N. Maksym, J. P. Butler, M. Glogauer, D. Navajas, and J. J. Fredberg, “Scaling the microrheology of living cells,” Phys. Rev. Lett. 87, 148102 (2001).
[CrossRef] [PubMed]

Fritsch, A.

A. Fritsch, M. Höckel, T. Kiessling, K. D. Nnetu, F. Wetzel, M. Zink, and J. A. Käs, “Are biomechanical changes necessary for tumour progression?” Nat. Phys. 6, 730–732 (2010).
[CrossRef]

Garny, A.

G. Iribe, C. W. Ward, P. Camelliti, C. Bollensdorff, F. Mason, R. A. Burton, A. Garny, M. K. Morphew, A. Hoenger, W. J. Lederer, and P. Kohl, “Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate,” Circ. Res. 104, 787–795 (2009).
[CrossRef] [PubMed]

Gee, K. R.

K. R. Gee, K. A. Brown, W.-N. U. Chen, J. Bishop-Stewart, D. Gray, and I. Johnson, “Chemical and physiological characterization of fluo-4 Ca2+-indicator dyes,” Cell Calcium 27, 97–106 (2000).
[CrossRef] [PubMed]

Gilbert, H.

M. Tominaga, M. J. Caterina, A. B. Malmberg, T. A. Rosen, H. Gilbert, K. Skinner, B. E. Raumann, A. I. Basbaum, and D. Julius, “The cloned capsaicin receptor integrates multiple pain-producing stimuli,” Neuron 21, 531–543 (1998).
[CrossRef] [PubMed]

Glogauer, M.

B. Fabry, G. N. Maksym, J. P. Butler, M. Glogauer, D. Navajas, and J. J. Fredberg, “Scaling the microrheology of living cells,” Phys. Rev. Lett. 87, 148102 (2001).
[CrossRef] [PubMed]

Grau, E.

J. B. Davis, J. Gray, M. J. Gunthorpe, J. P. Hatcher, P. T. Davey, P. Overend, M. H. Harries, J. Latcham, C. Clapham, K. Atkinson, S. A. Hughes, K. Rance, E. Grau, A. J. Harper, P. L. Pugh, D. C. Rogers, S. Bingham, A. Randall, and S. A. Sheardown, “Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia,” Nature 405, 183–187 (2000).
[CrossRef] [PubMed]

Gray, D.

K. R. Gee, K. A. Brown, W.-N. U. Chen, J. Bishop-Stewart, D. Gray, and I. Johnson, “Chemical and physiological characterization of fluo-4 Ca2+-indicator dyes,” Cell Calcium 27, 97–106 (2000).
[CrossRef] [PubMed]

Gray, J.

J. B. Davis, J. Gray, M. J. Gunthorpe, J. P. Hatcher, P. T. Davey, P. Overend, M. H. Harries, J. Latcham, C. Clapham, K. Atkinson, S. A. Hughes, K. Rance, E. Grau, A. J. Harper, P. L. Pugh, D. C. Rogers, S. Bingham, A. Randall, and S. A. Sheardown, “Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia,” Nature 405, 183–187 (2000).
[CrossRef] [PubMed]

Guck, J.

T. W. Remmerbach, F. Wottawah, J. Dietrich, B. Lincoln, C. Wittekind, and J. Guck, “Oral Cancer Diagnosis by Mechanical Phenotyping,” Cancer Res. 69, 1728–1732 (2009).
[CrossRef] [PubMed]

F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A. 106, 15696–15701 (2009).
[CrossRef] [PubMed]

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed. Microdevices 9, 703–710 (2007).
[CrossRef] [PubMed]

S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15, 15493–15499 (2007).
[CrossRef] [PubMed]

R. Ananthakrishnan, J. Guck, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, T. Moon, and J. Käs, “Quantifying the contribution of actin networks to the elastic strength of fibroblasts,” J. Theor. Biol. 242, 502–516 (2006).
[CrossRef] [PubMed]

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. Käs, “Optical rheology of biological cells,” Phys. Rev. Lett. 94, 098103 (2005).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[CrossRef] [PubMed]

Gunthorpe, M. J.

J. B. Davis, J. Gray, M. J. Gunthorpe, J. P. Hatcher, P. T. Davey, P. Overend, M. H. Harries, J. Latcham, C. Clapham, K. Atkinson, S. A. Hughes, K. Rance, E. Grau, A. J. Harper, P. L. Pugh, D. C. Rogers, S. Bingham, A. Randall, and S. A. Sheardown, “Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia,” Nature 405, 183–187 (2000).
[CrossRef] [PubMed]

Gyger, M.

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Ks, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40, 1–6 (2011).
[CrossRef]

Haddock, R. E.

R. E. Haddock and C. E. Hill, “Rhythmicity in arterial smooth muscle,” J. Physiol. 566, 645–656 (2005).
[CrossRef] [PubMed]

Harper, A. J.

J. B. Davis, J. Gray, M. J. Gunthorpe, J. P. Hatcher, P. T. Davey, P. Overend, M. H. Harries, J. Latcham, C. Clapham, K. Atkinson, S. A. Hughes, K. Rance, E. Grau, A. J. Harper, P. L. Pugh, D. C. Rogers, S. Bingham, A. Randall, and S. A. Sheardown, “Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia,” Nature 405, 183–187 (2000).
[CrossRef] [PubMed]

Harries, M. H.

J. B. Davis, J. Gray, M. J. Gunthorpe, J. P. Hatcher, P. T. Davey, P. Overend, M. H. Harries, J. Latcham, C. Clapham, K. Atkinson, S. A. Hughes, K. Rance, E. Grau, A. J. Harper, P. L. Pugh, D. C. Rogers, S. Bingham, A. Randall, and S. A. Sheardown, “Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia,” Nature 405, 183–187 (2000).
[CrossRef] [PubMed]

Hatcher, J. P.

J. B. Davis, J. Gray, M. J. Gunthorpe, J. P. Hatcher, P. T. Davey, P. Overend, M. H. Harries, J. Latcham, C. Clapham, K. Atkinson, S. A. Hughes, K. Rance, E. Grau, A. J. Harper, P. L. Pugh, D. C. Rogers, S. Bingham, A. Randall, and S. A. Sheardown, “Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia,” Nature 405, 183–187 (2000).
[CrossRef] [PubMed]

Hill, C. E.

R. E. Haddock and C. E. Hill, “Rhythmicity in arterial smooth muscle,” J. Physiol. 566, 645–656 (2005).
[CrossRef] [PubMed]

Hnon, S.

D. Icard-Arcizet, O. Cardoso, A. Richert, and S. Hnon, “Cell stiffening in response to external stress is correlated to actin recruitment,” Biophys. J. 94, 2906–2913 (2008).
[CrossRef] [PubMed]

Höckel, M.

A. Fritsch, M. Höckel, T. Kiessling, K. D. Nnetu, F. Wetzel, M. Zink, and J. A. Käs, “Are biomechanical changes necessary for tumour progression?” Nat. Phys. 6, 730–732 (2010).
[CrossRef]

Hoenger, A.

G. Iribe, C. W. Ward, P. Camelliti, C. Bollensdorff, F. Mason, R. A. Burton, A. Garny, M. K. Morphew, A. Hoenger, W. J. Lederer, and P. Kohl, “Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate,” Circ. Res. 104, 787–795 (2009).
[CrossRef] [PubMed]

Hughes, S. A.

J. B. Davis, J. Gray, M. J. Gunthorpe, J. P. Hatcher, P. T. Davey, P. Overend, M. H. Harries, J. Latcham, C. Clapham, K. Atkinson, S. A. Hughes, K. Rance, E. Grau, A. J. Harper, P. L. Pugh, D. C. Rogers, S. Bingham, A. Randall, and S. A. Sheardown, “Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia,” Nature 405, 183–187 (2000).
[CrossRef] [PubMed]

Icard-Arcizet, D.

D. Icard-Arcizet, O. Cardoso, A. Richert, and S. Hnon, “Cell stiffening in response to external stress is correlated to actin recruitment,” Biophys. J. 94, 2906–2913 (2008).
[CrossRef] [PubMed]

Iribe, G.

G. Iribe, C. W. Ward, P. Camelliti, C. Bollensdorff, F. Mason, R. A. Burton, A. Garny, M. K. Morphew, A. Hoenger, W. J. Lederer, and P. Kohl, “Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate,” Circ. Res. 104, 787–795 (2009).
[CrossRef] [PubMed]

Ishihara, A.

J. Lee, A. Ishihara, G. Oxford, B. Johnson, and K. Jacobson, “Regulation of cell movement is mediated by stretch-activated calcium channels,” Nature 400, 382–386 (1999).
[CrossRef] [PubMed]

Jacobson, K.

J. Lee, A. Ishihara, G. Oxford, B. Johnson, and K. Jacobson, “Regulation of cell movement is mediated by stretch-activated calcium channels,” Nature 400, 382–386 (1999).
[CrossRef] [PubMed]

Johnson, B.

J. Lee, A. Ishihara, G. Oxford, B. Johnson, and K. Jacobson, “Regulation of cell movement is mediated by stretch-activated calcium channels,” Nature 400, 382–386 (1999).
[CrossRef] [PubMed]

Johnson, I.

K. R. Gee, K. A. Brown, W.-N. U. Chen, J. Bishop-Stewart, D. Gray, and I. Johnson, “Chemical and physiological characterization of fluo-4 Ca2+-indicator dyes,” Cell Calcium 27, 97–106 (2000).
[CrossRef] [PubMed]

Julius, D.

M. J. Caterina and D. Julius, “The vanilloid receptor: a molecular gateway to the pain pathway,” Annu. Rev. Neurosci. 24, 487–517 (2001).
[CrossRef] [PubMed]

M. Tominaga, M. J. Caterina, A. B. Malmberg, T. A. Rosen, H. Gilbert, K. Skinner, B. E. Raumann, A. I. Basbaum, and D. Julius, “The cloned capsaicin receptor integrates multiple pain-producing stimuli,” Neuron 21, 531–543 (1998).
[CrossRef] [PubMed]

M. Caterina, M. Schumacher, M. Tominaga, T. Rosen, J. Levine, and D. Julius, “The capsaicin receptor: a heat-activated ion channel in the pain pathway,” Nature 389, 816–824 (1997).
[CrossRef] [PubMed]

Jung, S. J.

C.-K. Park, M. S. Kim, Z. Fang, H. Y. Li, S. J. Jung, S.-Y. Choi, S. J. Lee, K. Park, J. S. Kim, and S. B. Oh, “Functional Expression of thermo-transient receptor potential channels in dental primary afferent neurons,” J. Biol. Chem. 281, 17304–17311 (2006).
[CrossRef] [PubMed]

Kao, J.

A. Minta, J. Kao, and R. Tsien, “Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores,” J. Biol. Chem. 264, 8171–8178 (1989).
[PubMed]

Käs, J.

R. Ananthakrishnan, J. Guck, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, T. Moon, and J. Käs, “Quantifying the contribution of actin networks to the elastic strength of fibroblasts,” J. Theor. Biol. 242, 502–516 (2006).
[CrossRef] [PubMed]

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. Käs, “Optical rheology of biological cells,” Phys. Rev. Lett. 94, 098103 (2005).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[CrossRef] [PubMed]

Käs, J. A.

A. Fritsch, M. Höckel, T. Kiessling, K. D. Nnetu, F. Wetzel, M. Zink, and J. A. Käs, “Are biomechanical changes necessary for tumour progression?” Nat. Phys. 6, 730–732 (2010).
[CrossRef]

Kiessling, T.

A. Fritsch, M. Höckel, T. Kiessling, K. D. Nnetu, F. Wetzel, M. Zink, and J. A. Käs, “Are biomechanical changes necessary for tumour progression?” Nat. Phys. 6, 730–732 (2010).
[CrossRef]

Kim, J. S.

C.-K. Park, M. S. Kim, Z. Fang, H. Y. Li, S. J. Jung, S.-Y. Choi, S. J. Lee, K. Park, J. S. Kim, and S. B. Oh, “Functional Expression of thermo-transient receptor potential channels in dental primary afferent neurons,” J. Biol. Chem. 281, 17304–17311 (2006).
[CrossRef] [PubMed]

Kim, M. S.

C.-K. Park, M. S. Kim, Z. Fang, H. Y. Li, S. J. Jung, S.-Y. Choi, S. J. Lee, K. Park, J. S. Kim, and S. B. Oh, “Functional Expression of thermo-transient receptor potential channels in dental primary afferent neurons,” J. Biol. Chem. 281, 17304–17311 (2006).
[CrossRef] [PubMed]

Kohl, P.

G. Iribe, C. W. Ward, P. Camelliti, C. Bollensdorff, F. Mason, R. A. Burton, A. Garny, M. K. Morphew, A. Hoenger, W. J. Lederer, and P. Kohl, “Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate,” Circ. Res. 104, 787–795 (2009).
[CrossRef] [PubMed]

Kollmannsberger, P.

P. Kollmannsberger and B. Fabry, “Linear and nonlinear rheology of living cells,” Annu. Rev. Mater. Res. 41, 75–97 (2011).
[CrossRef]

Krasnoperova, N. V.

M. L. Woodruff, A. P. Sampath, H. R. Matthews, N. V. Krasnoperova, J. Lem, and G. L. Fain, “Measurement of cytoplasmic calcium concentration in the rods of wild-type and transducin knock-out mice,” J. Physiol. 542, 843–854 (2002).
[CrossRef] [PubMed]

Ks, J.

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Ks, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40, 1–6 (2011).
[CrossRef]

Latcham, J.

J. B. Davis, J. Gray, M. J. Gunthorpe, J. P. Hatcher, P. T. Davey, P. Overend, M. H. Harries, J. Latcham, C. Clapham, K. Atkinson, S. A. Hughes, K. Rance, E. Grau, A. J. Harper, P. L. Pugh, D. C. Rogers, S. Bingham, A. Randall, and S. A. Sheardown, “Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia,” Nature 405, 183–187 (2000).
[CrossRef] [PubMed]

Lautenschläger, F.

F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A. 106, 15696–15701 (2009).
[CrossRef] [PubMed]

Lechleiter, J. D.

R. M. Paredes, J. C. Etzler, L. T. Watts, W. Zheng, and J. D. Lechleiter, “Chemical calcium indicators,” Methods 46, 143–151 (2008).
[CrossRef] [PubMed]

Lederer, W. J.

G. Iribe, C. W. Ward, P. Camelliti, C. Bollensdorff, F. Mason, R. A. Burton, A. Garny, M. K. Morphew, A. Hoenger, W. J. Lederer, and P. Kohl, “Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate,” Circ. Res. 104, 787–795 (2009).
[CrossRef] [PubMed]

Lee, J.

J. Lee, A. Ishihara, G. Oxford, B. Johnson, and K. Jacobson, “Regulation of cell movement is mediated by stretch-activated calcium channels,” Nature 400, 382–386 (1999).
[CrossRef] [PubMed]

Lee, S. J.

C.-K. Park, M. S. Kim, Z. Fang, H. Y. Li, S. J. Jung, S.-Y. Choi, S. J. Lee, K. Park, J. S. Kim, and S. B. Oh, “Functional Expression of thermo-transient receptor potential channels in dental primary afferent neurons,” J. Biol. Chem. 281, 17304–17311 (2006).
[CrossRef] [PubMed]

Lem, J.

M. L. Woodruff, A. P. Sampath, H. R. Matthews, N. V. Krasnoperova, J. Lem, and G. L. Fain, “Measurement of cytoplasmic calcium concentration in the rods of wild-type and transducin knock-out mice,” J. Physiol. 542, 843–854 (2002).
[CrossRef] [PubMed]

Lenz, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[CrossRef] [PubMed]

Levine, J.

M. Caterina, M. Schumacher, M. Tominaga, T. Rosen, J. Levine, and D. Julius, “The capsaicin receptor: a heat-activated ion channel in the pain pathway,” Nature 389, 816–824 (1997).
[CrossRef] [PubMed]

Li, H. Y.

C.-K. Park, M. S. Kim, Z. Fang, H. Y. Li, S. J. Jung, S.-Y. Choi, S. J. Lee, K. Park, J. S. Kim, and S. B. Oh, “Functional Expression of thermo-transient receptor potential channels in dental primary afferent neurons,” J. Biol. Chem. 281, 17304–17311 (2006).
[CrossRef] [PubMed]

Lincoln, B.

T. W. Remmerbach, F. Wottawah, J. Dietrich, B. Lincoln, C. Wittekind, and J. Guck, “Oral Cancer Diagnosis by Mechanical Phenotyping,” Cancer Res. 69, 1728–1732 (2009).
[CrossRef] [PubMed]

S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15, 15493–15499 (2007).
[CrossRef] [PubMed]

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed. Microdevices 9, 703–710 (2007).
[CrossRef] [PubMed]

R. Ananthakrishnan, J. Guck, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, T. Moon, and J. Käs, “Quantifying the contribution of actin networks to the elastic strength of fibroblasts,” J. Theor. Biol. 242, 502–516 (2006).
[CrossRef] [PubMed]

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. Käs, “Optical rheology of biological cells,” Phys. Rev. Lett. 94, 098103 (2005).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[CrossRef] [PubMed]

Liu, K.-K.

H. Zhang and K.-K. Liu, “Optical tweezers for single cells,” J. R. Soc., Interface 5, 671–690 (2008).
[CrossRef]

Madou, M.

M. Madou, Fundamentals of Microfabrication: The Science of Miniaturization (CRC Press, 2002).

Mahmood, H.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[CrossRef] [PubMed]

Maksym, G. N.

B. Fabry, G. N. Maksym, J. P. Butler, M. Glogauer, D. Navajas, and J. J. Fredberg, “Scaling the microrheology of living cells,” Phys. Rev. Lett. 87, 148102 (2001).
[CrossRef] [PubMed]

Malmberg, A. B.

M. Tominaga, M. J. Caterina, A. B. Malmberg, T. A. Rosen, H. Gilbert, K. Skinner, B. E. Raumann, A. I. Basbaum, and D. Julius, “The cloned capsaicin receptor integrates multiple pain-producing stimuli,” Neuron 21, 531–543 (1998).
[CrossRef] [PubMed]

Mason, F.

G. Iribe, C. W. Ward, P. Camelliti, C. Bollensdorff, F. Mason, R. A. Burton, A. Garny, M. K. Morphew, A. Hoenger, W. J. Lederer, and P. Kohl, “Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate,” Circ. Res. 104, 787–795 (2009).
[CrossRef] [PubMed]

Matthews, H. R.

M. L. Woodruff, A. P. Sampath, H. R. Matthews, N. V. Krasnoperova, J. Lem, and G. L. Fain, “Measurement of cytoplasmic calcium concentration in the rods of wild-type and transducin knock-out mice,” J. Physiol. 542, 843–854 (2002).
[CrossRef] [PubMed]

Mierke, C. T.

C. T. Mierke, D. Rösel, B. Fabry, and J. Brábek, “Contractile forces in tumor cell migration,” Eur. J. Cell Biol. 87, 669–676 (2008).
[CrossRef] [PubMed]

Minta, A.

A. Minta, J. Kao, and R. Tsien, “Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores,” J. Biol. Chem. 264, 8171–8178 (1989).
[PubMed]

Mitchell, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[CrossRef] [PubMed]

Moon, T.

R. Ananthakrishnan, J. Guck, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, T. Moon, and J. Käs, “Quantifying the contribution of actin networks to the elastic strength of fibroblasts,” J. Theor. Biol. 242, 502–516 (2006).
[CrossRef] [PubMed]

Moon, T. J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[CrossRef] [PubMed]

Morphew, M. K.

G. Iribe, C. W. Ward, P. Camelliti, C. Bollensdorff, F. Mason, R. A. Burton, A. Garny, M. K. Morphew, A. Hoenger, W. J. Lederer, and P. Kohl, “Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate,” Circ. Res. 104, 787–795 (2009).
[CrossRef] [PubMed]

Müller, K.

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Ks, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40, 1–6 (2011).
[CrossRef]

Navajas, D.

B. Fabry, G. N. Maksym, J. P. Butler, M. Glogauer, D. Navajas, and J. J. Fredberg, “Scaling the microrheology of living cells,” Phys. Rev. Lett. 87, 148102 (2001).
[CrossRef] [PubMed]

Neher, E.

E. Neher and T. Sakaba, “Multiple roles of calcium ions in the regulation of neurotransmitter release,” Neuron 59, 861–872 (2008).
[CrossRef] [PubMed]

Nilius, B.

B. Nilius, G. Owsianik, T. Voets, and J. A. Peters, “Transient receptor potential cation channels in disease,” Physiol. Rev. 87, 165–217 (2007).
[CrossRef] [PubMed]

Nnetu, K. D.

A. Fritsch, M. Höckel, T. Kiessling, K. D. Nnetu, F. Wetzel, M. Zink, and J. A. Käs, “Are biomechanical changes necessary for tumour progression?” Nat. Phys. 6, 730–732 (2010).
[CrossRef]

Oh, S. B.

C.-K. Park, M. S. Kim, Z. Fang, H. Y. Li, S. J. Jung, S.-Y. Choi, S. J. Lee, K. Park, J. S. Kim, and S. B. Oh, “Functional Expression of thermo-transient receptor potential channels in dental primary afferent neurons,” J. Biol. Chem. 281, 17304–17311 (2006).
[CrossRef] [PubMed]

Ouyang, K.

C. Wei, X. Wang, M. Chen, K. Ouyang, L.-S. Song, and H. Cheng, “Calcium flickers steer cell migration,” Nature 457, 901–905 (2009).
[CrossRef] [PubMed]

Overend, P.

J. B. Davis, J. Gray, M. J. Gunthorpe, J. P. Hatcher, P. T. Davey, P. Overend, M. H. Harries, J. Latcham, C. Clapham, K. Atkinson, S. A. Hughes, K. Rance, E. Grau, A. J. Harper, P. L. Pugh, D. C. Rogers, S. Bingham, A. Randall, and S. A. Sheardown, “Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia,” Nature 405, 183–187 (2000).
[CrossRef] [PubMed]

Owsianik, G.

B. Nilius, G. Owsianik, T. Voets, and J. A. Peters, “Transient receptor potential cation channels in disease,” Physiol. Rev. 87, 165–217 (2007).
[CrossRef] [PubMed]

Oxford, G.

J. Lee, A. Ishihara, G. Oxford, B. Johnson, and K. Jacobson, “Regulation of cell movement is mediated by stretch-activated calcium channels,” Nature 400, 382–386 (1999).
[CrossRef] [PubMed]

Palmer, A. E.

A. E. Palmer and R. Y. Tsien, “Measuring calcium signaling using genetically targetable fluorescent indicators,” Nat. Protoc. 1, 1057–1065 (2006).
[CrossRef]

Paredes, R. M.

R. M. Paredes, J. C. Etzler, L. T. Watts, W. Zheng, and J. D. Lechleiter, “Chemical calcium indicators,” Methods 46, 143–151 (2008).
[CrossRef] [PubMed]

Park, C.-K.

C.-K. Park, M. S. Kim, Z. Fang, H. Y. Li, S. J. Jung, S.-Y. Choi, S. J. Lee, K. Park, J. S. Kim, and S. B. Oh, “Functional Expression of thermo-transient receptor potential channels in dental primary afferent neurons,” J. Biol. Chem. 281, 17304–17311 (2006).
[CrossRef] [PubMed]

Park, K.

C.-K. Park, M. S. Kim, Z. Fang, H. Y. Li, S. J. Jung, S.-Y. Choi, S. J. Lee, K. Park, J. S. Kim, and S. B. Oh, “Functional Expression of thermo-transient receptor potential channels in dental primary afferent neurons,” J. Biol. Chem. 281, 17304–17311 (2006).
[CrossRef] [PubMed]

Paschke, S.

F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A. 106, 15696–15701 (2009).
[CrossRef] [PubMed]

Peters, J. A.

B. Nilius, G. Owsianik, T. Voets, and J. A. Peters, “Transient receptor potential cation channels in disease,” Physiol. Rev. 87, 165–217 (2007).
[CrossRef] [PubMed]

Pozzan, T.

R. Y. Tsien, T. Pozzan, and T. J. Rink, “Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator.” J. Cell Biol. 94, 325–334 (1982).
[CrossRef] [PubMed]

Pugh, P. L.

J. B. Davis, J. Gray, M. J. Gunthorpe, J. P. Hatcher, P. T. Davey, P. Overend, M. H. Harries, J. Latcham, C. Clapham, K. Atkinson, S. A. Hughes, K. Rance, E. Grau, A. J. Harper, P. L. Pugh, D. C. Rogers, S. Bingham, A. Randall, and S. A. Sheardown, “Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia,” Nature 405, 183–187 (2000).
[CrossRef] [PubMed]

Racay, P.

H. Schmidt, K. M. Stiefel, P. Racay, B. Schwaller, and J. Eilers, “Mutational analysis of dendritic ca2+ kinetics in rodent purkinje cells: role of parvalbumin and calbindin d28k,” J. Physiol. 551, 13–32 (2003).
[CrossRef] [PubMed]

Ranasinghe, S. P.

J. R. Savidge, S. P. Ranasinghe, and H. P. Rang, “Comparison of intracellular calcium signals evoked by heat and capsaicin in cultured rat dorsal root ganglion neurons and in a cell line expressing the rat vanilloid receptor, vr1,” Neuroscience 102, 177–184 (2001).
[CrossRef] [PubMed]

Rance, K.

J. B. Davis, J. Gray, M. J. Gunthorpe, J. P. Hatcher, P. T. Davey, P. Overend, M. H. Harries, J. Latcham, C. Clapham, K. Atkinson, S. A. Hughes, K. Rance, E. Grau, A. J. Harper, P. L. Pugh, D. C. Rogers, S. Bingham, A. Randall, and S. A. Sheardown, “Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia,” Nature 405, 183–187 (2000).
[CrossRef] [PubMed]

Randall, A.

J. B. Davis, J. Gray, M. J. Gunthorpe, J. P. Hatcher, P. T. Davey, P. Overend, M. H. Harries, J. Latcham, C. Clapham, K. Atkinson, S. A. Hughes, K. Rance, E. Grau, A. J. Harper, P. L. Pugh, D. C. Rogers, S. Bingham, A. Randall, and S. A. Sheardown, “Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia,” Nature 405, 183–187 (2000).
[CrossRef] [PubMed]

Rang, H. P.

J. R. Savidge, S. P. Ranasinghe, and H. P. Rang, “Comparison of intracellular calcium signals evoked by heat and capsaicin in cultured rat dorsal root ganglion neurons and in a cell line expressing the rat vanilloid receptor, vr1,” Neuroscience 102, 177–184 (2001).
[CrossRef] [PubMed]

Raumann, B. E.

M. Tominaga, M. J. Caterina, A. B. Malmberg, T. A. Rosen, H. Gilbert, K. Skinner, B. E. Raumann, A. I. Basbaum, and D. Julius, “The cloned capsaicin receptor integrates multiple pain-producing stimuli,” Neuron 21, 531–543 (1998).
[CrossRef] [PubMed]

Reeh, P.

M. St. Pierre, P. Reeh, and K. Zimmermann, “Differential effects of trpv channel block on polymodal activation of rat cutaneous nociceptors in vitro,” Exp. Brain Res. 196, 31–44 (2009).
[CrossRef] [PubMed]

Remmerbach, T. W.

T. W. Remmerbach, F. Wottawah, J. Dietrich, B. Lincoln, C. Wittekind, and J. Guck, “Oral Cancer Diagnosis by Mechanical Phenotyping,” Cancer Res. 69, 1728–1732 (2009).
[CrossRef] [PubMed]

Richert, A.

D. Icard-Arcizet, O. Cardoso, A. Richert, and S. Hnon, “Cell stiffening in response to external stress is correlated to actin recruitment,” Biophys. J. 94, 2906–2913 (2008).
[CrossRef] [PubMed]

Rink, T. J.

R. Y. Tsien, T. Pozzan, and T. J. Rink, “Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator.” J. Cell Biol. 94, 325–334 (1982).
[CrossRef] [PubMed]

Rogers, D. C.

J. B. Davis, J. Gray, M. J. Gunthorpe, J. P. Hatcher, P. T. Davey, P. Overend, M. H. Harries, J. Latcham, C. Clapham, K. Atkinson, S. A. Hughes, K. Rance, E. Grau, A. J. Harper, P. L. Pugh, D. C. Rogers, S. Bingham, A. Randall, and S. A. Sheardown, “Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia,” Nature 405, 183–187 (2000).
[CrossRef] [PubMed]

Romeyke, M.

R. Ananthakrishnan, J. Guck, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, T. Moon, and J. Käs, “Quantifying the contribution of actin networks to the elastic strength of fibroblasts,” J. Theor. Biol. 242, 502–516 (2006).
[CrossRef] [PubMed]

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. Käs, “Optical rheology of biological cells,” Phys. Rev. Lett. 94, 098103 (2005).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[CrossRef] [PubMed]

Rönicke, S.

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Ks, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40, 1–6 (2011).
[CrossRef]

Rose, D.

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Ks, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40, 1–6 (2011).
[CrossRef]

Rösel, D.

C. T. Mierke, D. Rösel, B. Fabry, and J. Brábek, “Contractile forces in tumor cell migration,” Eur. J. Cell Biol. 87, 669–676 (2008).
[CrossRef] [PubMed]

Rosen, T.

M. Caterina, M. Schumacher, M. Tominaga, T. Rosen, J. Levine, and D. Julius, “The capsaicin receptor: a heat-activated ion channel in the pain pathway,” Nature 389, 816–824 (1997).
[CrossRef] [PubMed]

Rosen, T. A.

M. Tominaga, M. J. Caterina, A. B. Malmberg, T. A. Rosen, H. Gilbert, K. Skinner, B. E. Raumann, A. I. Basbaum, and D. Julius, “The cloned capsaicin receptor integrates multiple pain-producing stimuli,” Neuron 21, 531–543 (1998).
[CrossRef] [PubMed]

Sakaba, T.

E. Neher and T. Sakaba, “Multiple roles of calcium ions in the regulation of neurotransmitter release,” Neuron 59, 861–872 (2008).
[CrossRef] [PubMed]

Sampath, A. P.

M. L. Woodruff, A. P. Sampath, H. R. Matthews, N. V. Krasnoperova, J. Lem, and G. L. Fain, “Measurement of cytoplasmic calcium concentration in the rods of wild-type and transducin knock-out mice,” J. Physiol. 542, 843–854 (2002).
[CrossRef] [PubMed]

Sanderson, M. J.

M. J. Sanderson, A. C. Charles, and E. R. Dirksen, “Mechanical stimulation and intercellular communication increases intracellular Ca2+ in epithelial cells.” Cell Regul. 1, 585–596 (1990).
[PubMed]

M. J. Sanderson and E. R. Dirksen, “Mechanosensitivity of cultured ciliated cells from the mammalian respiratory tract: implications for the regulation of mucociliary transport,” Proc. Natl. Acad. Sci. U.S.A. 83, 7302–7306 (1986).
[CrossRef] [PubMed]

Sauer, F.

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed. Microdevices 9, 703–710 (2007).
[CrossRef] [PubMed]

Savidge, J. R.

J. R. Savidge, S. P. Ranasinghe, and H. P. Rang, “Comparison of intracellular calcium signals evoked by heat and capsaicin in cultured rat dorsal root ganglion neurons and in a cell line expressing the rat vanilloid receptor, vr1,” Neuroscience 102, 177–184 (2001).
[CrossRef] [PubMed]

Schinkinger, S.

F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A. 106, 15696–15701 (2009).
[CrossRef] [PubMed]

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed. Microdevices 9, 703–710 (2007).
[CrossRef] [PubMed]

R. Ananthakrishnan, J. Guck, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, T. Moon, and J. Käs, “Quantifying the contribution of actin networks to the elastic strength of fibroblasts,” J. Theor. Biol. 242, 502–516 (2006).
[CrossRef] [PubMed]

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. Käs, “Optical rheology of biological cells,” Phys. Rev. Lett. 94, 098103 (2005).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[CrossRef] [PubMed]

Schmidt, H.

H. Schmidt, K. M. Stiefel, P. Racay, B. Schwaller, and J. Eilers, “Mutational analysis of dendritic ca2+ kinetics in rodent purkinje cells: role of parvalbumin and calbindin d28k,” J. Physiol. 551, 13–32 (2003).
[CrossRef] [PubMed]

Schumacher, M.

M. Caterina, M. Schumacher, M. Tominaga, T. Rosen, J. Levine, and D. Julius, “The capsaicin receptor: a heat-activated ion channel in the pain pathway,” Nature 389, 816–824 (1997).
[CrossRef] [PubMed]

Schwaller, B.

H. Schmidt, K. M. Stiefel, P. Racay, B. Schwaller, and J. Eilers, “Mutational analysis of dendritic ca2+ kinetics in rodent purkinje cells: role of parvalbumin and calbindin d28k,” J. Physiol. 551, 13–32 (2003).
[CrossRef] [PubMed]

Sheardown, S. A.

J. B. Davis, J. Gray, M. J. Gunthorpe, J. P. Hatcher, P. T. Davey, P. Overend, M. H. Harries, J. Latcham, C. Clapham, K. Atkinson, S. A. Hughes, K. Rance, E. Grau, A. J. Harper, P. L. Pugh, D. C. Rogers, S. Bingham, A. Randall, and S. A. Sheardown, “Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia,” Nature 405, 183–187 (2000).
[CrossRef] [PubMed]

Skinner, K.

M. Tominaga, M. J. Caterina, A. B. Malmberg, T. A. Rosen, H. Gilbert, K. Skinner, B. E. Raumann, A. I. Basbaum, and D. Julius, “The cloned capsaicin receptor integrates multiple pain-producing stimuli,” Neuron 21, 531–543 (1998).
[CrossRef] [PubMed]

Song, L.-S.

C. Wei, X. Wang, M. Chen, K. Ouyang, L.-S. Song, and H. Cheng, “Calcium flickers steer cell migration,” Nature 457, 901–905 (2009).
[CrossRef] [PubMed]

St. Pierre, M.

M. St. Pierre, P. Reeh, and K. Zimmermann, “Differential effects of trpv channel block on polymodal activation of rat cutaneous nociceptors in vitro,” Exp. Brain Res. 196, 31–44 (2009).
[CrossRef] [PubMed]

Stiefel, K. M.

H. Schmidt, K. M. Stiefel, P. Racay, B. Schwaller, and J. Eilers, “Mutational analysis of dendritic ca2+ kinetics in rodent purkinje cells: role of parvalbumin and calbindin d28k,” J. Physiol. 551, 13–32 (2003).
[CrossRef] [PubMed]

Svoboda, K.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[CrossRef] [PubMed]

Tominaga, M.

M. Tominaga, M. J. Caterina, A. B. Malmberg, T. A. Rosen, H. Gilbert, K. Skinner, B. E. Raumann, A. I. Basbaum, and D. Julius, “The cloned capsaicin receptor integrates multiple pain-producing stimuli,” Neuron 21, 531–543 (1998).
[CrossRef] [PubMed]

M. Caterina, M. Schumacher, M. Tominaga, T. Rosen, J. Levine, and D. Julius, “The capsaicin receptor: a heat-activated ion channel in the pain pathway,” Nature 389, 816–824 (1997).
[CrossRef] [PubMed]

Travis, K.

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed. Microdevices 9, 703–710 (2007).
[CrossRef] [PubMed]

S. Ebert, K. Travis, B. Lincoln, and J. Guck, “Fluorescence ratio thermometry in a microfluidic dual-beam laser trap,” Opt. Express 15, 15493–15499 (2007).
[CrossRef] [PubMed]

Tsien, R.

A. Minta, J. Kao, and R. Tsien, “Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores,” J. Biol. Chem. 264, 8171–8178 (1989).
[PubMed]

Tsien, R. Y.

A. E. Palmer and R. Y. Tsien, “Measuring calcium signaling using genetically targetable fluorescent indicators,” Nat. Protoc. 1, 1057–1065 (2006).
[CrossRef]

R. Y. Tsien, T. Pozzan, and T. J. Rink, “Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator.” J. Cell Biol. 94, 325–334 (1982).
[CrossRef] [PubMed]

R. Y. Tsien, “A non-disruptive technique for loading calcium buffers and indicators into cells,” Nature 290, 527–528 (1981).
[CrossRef] [PubMed]

R. Y. Tsien, “New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures,” Biochemistry 19, 2396–2404 (1980).
[CrossRef] [PubMed]

Ulvick, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[CrossRef] [PubMed]

Voets, T.

B. Nilius, G. Owsianik, T. Voets, and J. A. Peters, “Transient receptor potential cation channels in disease,” Physiol. Rev. 87, 165–217 (2007).
[CrossRef] [PubMed]

Wang, X.

C. Wei, X. Wang, M. Chen, K. Ouyang, L.-S. Song, and H. Cheng, “Calcium flickers steer cell migration,” Nature 457, 901–905 (2009).
[CrossRef] [PubMed]

Ward, C. W.

G. Iribe, C. W. Ward, P. Camelliti, C. Bollensdorff, F. Mason, R. A. Burton, A. Garny, M. K. Morphew, A. Hoenger, W. J. Lederer, and P. Kohl, “Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate,” Circ. Res. 104, 787–795 (2009).
[CrossRef] [PubMed]

Watts, L. T.

R. M. Paredes, J. C. Etzler, L. T. Watts, W. Zheng, and J. D. Lechleiter, “Chemical calcium indicators,” Methods 46, 143–151 (2008).
[CrossRef] [PubMed]

Wei, C.

C. Wei, X. Wang, M. Chen, K. Ouyang, L.-S. Song, and H. Cheng, “Calcium flickers steer cell migration,” Nature 457, 901–905 (2009).
[CrossRef] [PubMed]

Wetzel, F.

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Ks, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40, 1–6 (2011).
[CrossRef]

A. Fritsch, M. Höckel, T. Kiessling, K. D. Nnetu, F. Wetzel, M. Zink, and J. A. Käs, “Are biomechanical changes necessary for tumour progression?” Nat. Phys. 6, 730–732 (2010).
[CrossRef]

Whitaker, M.

M. Whitaker, “Calcium at fertilization and in early development,” Physiol. Rev. 86, 25–88 (2006).
[CrossRef]

Wittekind, C.

T. W. Remmerbach, F. Wottawah, J. Dietrich, B. Lincoln, C. Wittekind, and J. Guck, “Oral Cancer Diagnosis by Mechanical Phenotyping,” Cancer Res. 69, 1728–1732 (2009).
[CrossRef] [PubMed]

Woodruff, M. L.

M. L. Woodruff, A. P. Sampath, H. R. Matthews, N. V. Krasnoperova, J. Lem, and G. L. Fain, “Measurement of cytoplasmic calcium concentration in the rods of wild-type and transducin knock-out mice,” J. Physiol. 542, 843–854 (2002).
[CrossRef] [PubMed]

Wottawah, F.

T. W. Remmerbach, F. Wottawah, J. Dietrich, B. Lincoln, C. Wittekind, and J. Guck, “Oral Cancer Diagnosis by Mechanical Phenotyping,” Cancer Res. 69, 1728–1732 (2009).
[CrossRef] [PubMed]

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed. Microdevices 9, 703–710 (2007).
[CrossRef] [PubMed]

R. Ananthakrishnan, J. Guck, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, T. Moon, and J. Käs, “Quantifying the contribution of actin networks to the elastic strength of fibroblasts,” J. Theor. Biol. 242, 502–516 (2006).
[CrossRef] [PubMed]

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. Käs, “Optical rheology of biological cells,” Phys. Rev. Lett. 94, 098103 (2005).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[CrossRef] [PubMed]

Wray, S.

S. Wray, “Insights into the uterus,” Exp. Physiol. 92, 621–631 (2007).
[CrossRef] [PubMed]

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[CrossRef] [PubMed]

Zhang, H.

H. Zhang and K.-K. Liu, “Optical tweezers for single cells,” J. R. Soc., Interface 5, 671–690 (2008).
[CrossRef]

Zheng, W.

R. M. Paredes, J. C. Etzler, L. T. Watts, W. Zheng, and J. D. Lechleiter, “Chemical calcium indicators,” Methods 46, 143–151 (2008).
[CrossRef] [PubMed]

Zimmermann, K.

M. St. Pierre, P. Reeh, and K. Zimmermann, “Differential effects of trpv channel block on polymodal activation of rat cutaneous nociceptors in vitro,” Exp. Brain Res. 196, 31–44 (2009).
[CrossRef] [PubMed]

Zink, M.

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Ks, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40, 1–6 (2011).
[CrossRef]

A. Fritsch, M. Höckel, T. Kiessling, K. D. Nnetu, F. Wetzel, M. Zink, and J. A. Käs, “Are biomechanical changes necessary for tumour progression?” Nat. Phys. 6, 730–732 (2010).
[CrossRef]

Am. J. Physiol.

L. A. Birder, “More than just a barrier: urothelium as a drug target for urinary bladder pain,” Am. J. Physiol. 289, F489–F495 (2005).
[CrossRef]

Am. J. Physiol. Regulatory Integrative Comp. Physiol.

M. J. Caterina, “Transient receptor potential ion channels as participants in thermosensation and thermoregulation,” Am. J. Physiol. Regulatory Integrative Comp. Physiol. 292, R64–R76 (2007).
[CrossRef]

Annu. Rev. Biophys. Biomol. Struct.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[CrossRef] [PubMed]

Annu. Rev. Mater. Res.

P. Kollmannsberger and B. Fabry, “Linear and nonlinear rheology of living cells,” Annu. Rev. Mater. Res. 41, 75–97 (2011).
[CrossRef]

Annu. Rev. Neurosci.

M. J. Caterina and D. Julius, “The vanilloid receptor: a molecular gateway to the pain pathway,” Annu. Rev. Neurosci. 24, 487–517 (2001).
[CrossRef] [PubMed]

Biochemistry

R. Y. Tsien, “New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures,” Biochemistry 19, 2396–2404 (1980).
[CrossRef] [PubMed]

Biomed. Microdevices

B. Lincoln, S. Schinkinger, K. Travis, F. Wottawah, S. Ebert, F. Sauer, and J. Guck, “Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications,” Biomed. Microdevices 9, 703–710 (2007).
[CrossRef] [PubMed]

Biophys. J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[CrossRef] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[CrossRef] [PubMed]

D. Icard-Arcizet, O. Cardoso, A. Richert, and S. Hnon, “Cell stiffening in response to external stress is correlated to actin recruitment,” Biophys. J. 94, 2906–2913 (2008).
[CrossRef] [PubMed]

Cancer Res.

T. W. Remmerbach, F. Wottawah, J. Dietrich, B. Lincoln, C. Wittekind, and J. Guck, “Oral Cancer Diagnosis by Mechanical Phenotyping,” Cancer Res. 69, 1728–1732 (2009).
[CrossRef] [PubMed]

Cell Calcium

K. R. Gee, K. A. Brown, W.-N. U. Chen, J. Bishop-Stewart, D. Gray, and I. Johnson, “Chemical and physiological characterization of fluo-4 Ca2+-indicator dyes,” Cell Calcium 27, 97–106 (2000).
[CrossRef] [PubMed]

N. Demaurex, “Calcium measurements in organelles with Ca2+-sensitive fluorescent proteins,” Cell Calcium 38, 213–222 (2005).
[CrossRef] [PubMed]

Cell Regul.

M. J. Sanderson, A. C. Charles, and E. R. Dirksen, “Mechanical stimulation and intercellular communication increases intracellular Ca2+ in epithelial cells.” Cell Regul. 1, 585–596 (1990).
[PubMed]

Circ. Res.

G. Iribe, C. W. Ward, P. Camelliti, C. Bollensdorff, F. Mason, R. A. Burton, A. Garny, M. K. Morphew, A. Hoenger, W. J. Lederer, and P. Kohl, “Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate,” Circ. Res. 104, 787–795 (2009).
[CrossRef] [PubMed]

Eur. Biophys. J.

F. Wetzel, S. Rönicke, K. Müller, M. Gyger, D. Rose, M. Zink, and J. Ks, “Single cell viability and impact of heating by laser absorption,” Eur. Biophys. J. 40, 1–6 (2011).
[CrossRef]

Eur. J. Cell Biol.

C. T. Mierke, D. Rösel, B. Fabry, and J. Brábek, “Contractile forces in tumor cell migration,” Eur. J. Cell Biol. 87, 669–676 (2008).
[CrossRef] [PubMed]

Exp. Brain Res.

M. St. Pierre, P. Reeh, and K. Zimmermann, “Differential effects of trpv channel block on polymodal activation of rat cutaneous nociceptors in vitro,” Exp. Brain Res. 196, 31–44 (2009).
[CrossRef] [PubMed]

Exp. Physiol.

S. Wray, “Insights into the uterus,” Exp. Physiol. 92, 621–631 (2007).
[CrossRef] [PubMed]

J. Biol. Chem.

A. Minta, J. Kao, and R. Tsien, “Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores,” J. Biol. Chem. 264, 8171–8178 (1989).
[PubMed]

C.-K. Park, M. S. Kim, Z. Fang, H. Y. Li, S. J. Jung, S.-Y. Choi, S. J. Lee, K. Park, J. S. Kim, and S. B. Oh, “Functional Expression of thermo-transient receptor potential channels in dental primary afferent neurons,” J. Biol. Chem. 281, 17304–17311 (2006).
[CrossRef] [PubMed]

J. Cell Biol.

R. Y. Tsien, T. Pozzan, and T. J. Rink, “Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator.” J. Cell Biol. 94, 325–334 (1982).
[CrossRef] [PubMed]

J. Physiol.

R. E. Haddock and C. E. Hill, “Rhythmicity in arterial smooth muscle,” J. Physiol. 566, 645–656 (2005).
[CrossRef] [PubMed]

M. L. Woodruff, A. P. Sampath, H. R. Matthews, N. V. Krasnoperova, J. Lem, and G. L. Fain, “Measurement of cytoplasmic calcium concentration in the rods of wild-type and transducin knock-out mice,” J. Physiol. 542, 843–854 (2002).
[CrossRef] [PubMed]

H. Schmidt, K. M. Stiefel, P. Racay, B. Schwaller, and J. Eilers, “Mutational analysis of dendritic ca2+ kinetics in rodent purkinje cells: role of parvalbumin and calbindin d28k,” J. Physiol. 551, 13–32 (2003).
[CrossRef] [PubMed]

J. R. Soc., Interface

H. Zhang and K.-K. Liu, “Optical tweezers for single cells,” J. R. Soc., Interface 5, 671–690 (2008).
[CrossRef]

J. Theor. Biol.

R. Ananthakrishnan, J. Guck, F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke, T. Moon, and J. Käs, “Quantifying the contribution of actin networks to the elastic strength of fibroblasts,” J. Theor. Biol. 242, 502–516 (2006).
[CrossRef] [PubMed]

Methods

R. M. Paredes, J. C. Etzler, L. T. Watts, W. Zheng, and J. D. Lechleiter, “Chemical calcium indicators,” Methods 46, 143–151 (2008).
[CrossRef] [PubMed]

Nat. Phys.

A. Fritsch, M. Höckel, T. Kiessling, K. D. Nnetu, F. Wetzel, M. Zink, and J. A. Käs, “Are biomechanical changes necessary for tumour progression?” Nat. Phys. 6, 730–732 (2010).
[CrossRef]

Nat. Protoc.

A. E. Palmer and R. Y. Tsien, “Measuring calcium signaling using genetically targetable fluorescent indicators,” Nat. Protoc. 1, 1057–1065 (2006).
[CrossRef]

Nature

R. Y. Tsien, “A non-disruptive technique for loading calcium buffers and indicators into cells,” Nature 290, 527–528 (1981).
[CrossRef] [PubMed]

J. B. Davis, J. Gray, M. J. Gunthorpe, J. P. Hatcher, P. T. Davey, P. Overend, M. H. Harries, J. Latcham, C. Clapham, K. Atkinson, S. A. Hughes, K. Rance, E. Grau, A. J. Harper, P. L. Pugh, D. C. Rogers, S. Bingham, A. Randall, and S. A. Sheardown, “Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia,” Nature 405, 183–187 (2000).
[CrossRef] [PubMed]

M. Caterina, M. Schumacher, M. Tominaga, T. Rosen, J. Levine, and D. Julius, “The capsaicin receptor: a heat-activated ion channel in the pain pathway,” Nature 389, 816–824 (1997).
[CrossRef] [PubMed]

J. Lee, A. Ishihara, G. Oxford, B. Johnson, and K. Jacobson, “Regulation of cell movement is mediated by stretch-activated calcium channels,” Nature 400, 382–386 (1999).
[CrossRef] [PubMed]

C. Wei, X. Wang, M. Chen, K. Ouyang, L.-S. Song, and H. Cheng, “Calcium flickers steer cell migration,” Nature 457, 901–905 (2009).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330, 769–771 (1987).
[CrossRef] [PubMed]

Neuron

E. Neher and T. Sakaba, “Multiple roles of calcium ions in the regulation of neurotransmitter release,” Neuron 59, 861–872 (2008).
[CrossRef] [PubMed]

M. Tominaga, M. J. Caterina, A. B. Malmberg, T. A. Rosen, H. Gilbert, K. Skinner, B. E. Raumann, A. I. Basbaum, and D. Julius, “The cloned capsaicin receptor integrates multiple pain-producing stimuli,” Neuron 21, 531–543 (1998).
[CrossRef] [PubMed]

Neuroscience

J. R. Savidge, S. P. Ranasinghe, and H. P. Rang, “Comparison of intracellular calcium signals evoked by heat and capsaicin in cultured rat dorsal root ganglion neurons and in a cell line expressing the rat vanilloid receptor, vr1,” Neuroscience 102, 177–184 (2001).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. Lett.

B. Fabry, G. N. Maksym, J. P. Butler, M. Glogauer, D. Navajas, and J. J. Fredberg, “Scaling the microrheology of living cells,” Phys. Rev. Lett. 87, 148102 (2001).
[CrossRef] [PubMed]

F. Wottawah, S. Schinkinger, B. Lincoln, R. Ananthakrishnan, M. Romeyke, J. Guck, and J. Käs, “Optical rheology of biological cells,” Phys. Rev. Lett. 94, 098103 (2005).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Physiol. Rev.

M. Whitaker, “Calcium at fertilization and in early development,” Physiol. Rev. 86, 25–88 (2006).
[CrossRef]

B. Nilius, G. Owsianik, T. Voets, and J. A. Peters, “Transient receptor potential cation channels in disease,” Physiol. Rev. 87, 165–217 (2007).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

M. J. Sanderson and E. R. Dirksen, “Mechanosensitivity of cultured ciliated cells from the mammalian respiratory tract: implications for the regulation of mucociliary transport,” Proc. Natl. Acad. Sci. U.S.A. 83, 7302–7306 (1986).
[CrossRef] [PubMed]

F. Lautenschläger, S. Paschke, S. Schinkinger, A. Bruel, M. Beil, and J. Guck, “The regulatory role of cell mechanics for migration of differentiating myeloid cells,” Proc. Natl. Acad. Sci. U.S.A. 106, 15696–15701 (2009).
[CrossRef] [PubMed]

Science

A. Ashkin and J. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef] [PubMed]

Other

M. Madou, Fundamentals of Microfabrication: The Science of Miniaturization (CRC Press, 2002).

Supplementary Material (2)

» Media 1: AVI (2871 KB)     
» Media 2: AVI (2360 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic cross section along the laser fibers (a,c) and photo (b) of the Optical Stretcher setup mounted on the piezo driven z-stage of the CLSM. a) magnification of the Stretcher chamber, details can be found in [10]. c) The SU-8 structure sustaining the optical fibers was spin-coated on a 100 μm glass cover slip, supported by a stable aluminum structure. This reduced the distance between lower glass boundary and the trap position of cell compared to the setup described by Lincoln et al. sufficiently such that the working distance of the oil immersion objective sufficed to observe the mid-plain of the cell.

Fig. 2
Fig. 2

Fluorescent signal (b,d) and bright-field image (a,c) of a trapped cells. The signal of the cell’s mid-plane was recorded with a confocal laser scanning microscope. The fluorescence was averaged over a disk lying well inside the cell indicated by the gray circle in a) and c) to avoid artifacts due to the deformation of the cell upon stretching. e) shows the time course of the averaged fluorescent signal. Videos are available online: (Media 1), (Media 2).

Fig. 3
Fig. 3

Fluorescence intensities of single TRPV1 transfected HEK293 cells. The averaged fluorescent signal was recorded (see Fig. 2 for details). Cells were loaded with a) 1 mM Fluo-4,AM, b) 20 μM BAPTA,AM and 1 μM Fluo-4,AM. c) fluorescence intensity of a cell loaded with 20 μM BAPTA,AM and 1 μM Fluo-4,AM measured in a solution containing 10 μM Ruthenium Red (RuR), a specific blocker of the TRPV1 channel. d) shows the power per fiber of the 1064 nm laser, cells were trapped at 100 mW. Exposure to 700 mW per fiber results in visible deformations and significant heating.

Fig. 4
Fig. 4

Cells were loaded with 1 μM Fluo-4 and 20 μM BAPTA,AM.1 μM Ionomycin, a calcium ionophore, was used to let Ca2+ enter the cell and saturate the dye as well as the chelator. The application of different laser profiles, a) a rectangular, b) a triangular and c) a saw-tooth shaped pulse, resulted in changes in the fluorescence intensity following the laser power. This is a strong indication that the intensity drop during high laser power application is caused by the temperature increase.

Fig. 5
Fig. 5

Relative deformation curves of HEK293 transfected with TRPV1. Mean (solid line) and median (dashed line) of untreated cells (black) and cells treated with 20 μM BAPTA,AM and 10 μM Ruthenium Red (gray). The area around the median marks the quartiles, (black striped for untreated and light gray for BAPTA/RuR treated cells). The graph shows that blocking the Ca2+ signal correlates with a change in the mechanical properties.

Fig. 6
Fig. 6

The temperature during optical trapping and stretching was recorded using the ratio of the intensities of the temperature dependent dye Rhodamine-B and the temperature independent Rhodamine-110 following the method described in [40]. Heating and cooling occurred rapidly within tens of milliseconds.

Metrics