Abstract

A technique for measuring the refractive index of micron sized fibers using a series of immersion index matching oils, and image contrast measurements is proposed and demonstrated. It has been applied to radial silks of the orb web weaving spider Plebs eburnus. These have widths of ~1-2 microns. Values about 1.5500 are obtained, with birefringence values between 0.0000 and 0.0133 for individual silks. An uncertainty in the range ± 5 × 10−4 to ± 2 × 10−3 is achieved for these challenging samples. This accuracy is about a twenty times improvement on previously reported measurements for spider silks using other techniques. The technique is used to obtain measurements of the refractive index of spider silks as a function of wavelength, for the first time. An Abbe number for the radial silks of Plebs eburnus of ~32 is found.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. F. Ashby, L. J. Gibson, U. Wegst, and R. Olive, “The mechanical properties of natural materials. I. Material property charts,” Proc. R. Soc. Lond. A 450(1938), 123–140 (1995).
    [CrossRef]
  2. M. Heim, D. Keerl, and T. Scheibel, “Spider silk: from soluble protein to extraordinary fibre,” Angew. Chem. Int. Ed. 48(20), 3584–3596 (2009).
    [CrossRef]
  3. J. A. Kluge, O. Rabotyagova, G. G. Leisk, and D. L. Kaplan, “Spider silks and their applications,” Trends Biotechnol. 26(5), 244–251 (2008).
    [CrossRef] [PubMed]
  4. C. L. Craig, G. D. Bernard, and J. A. Coddington, “Evolutionary shifts in the spectral properties of spider silks,” Evolution 48(2), 287–296 (1994).
    [CrossRef]
  5. D. M. Kane, A. M. Joyce, G. R. Staib, and M. E. Herberstein, “Optical surface profiling of orb-web spider capture silks,” Bioinspir. Biomim. 5(3), 036004 (2010).
    [CrossRef] [PubMed]
  6. D. M. Kane, N. Naidoo, and G. R. Staib, “AFM of orb-spider-web-silks to measure surface nanostructuring and evaluate silk fibers per strand,” J. Appl. Phys. 108(073509), 5 (2010).
    [CrossRef]
  7. D. M. Kane, G. R. Staib, N. Naidoo, D. J. Little, and M. E. Herberstein, ““Optics of spider “sticky” orb webs,” Proc. SPIE 7975, 79750G, 79750G-13 (2011), doi:.
    [CrossRef]
  8. A. J. Werner, “Methods in high precision refractometry of optical glasses,” Appl. Opt. 7(5), 837–843 (1968).
    [CrossRef] [PubMed]
  9. Y. S. Liu, “Direct measurement of the refractive indices for a small numerical aperture cladded fiber: a simple method,” Appl. Opt. 13(6), 1255–1256 (1974).
    [CrossRef] [PubMed]
  10. F. Rinne and M. Berek, Anleitung zu optischen untersuchungen mit dem polarisationsmikroskop (Jänecke, Leipzig, 1935).
  11. R. G. Greenler and J. W. Hable, “Colors in spiders webs,” Am. Sci. 77, 368–373 (1989).
  12. R. G. Greenler, J. W. Hable, and P. O. Slane, “Diffraction around a fine wire: how good is the single-slit approximation?” Am. J. Phys. 58(4), 330–331 (1990).
    [CrossRef]
  13. F. Tajima and Y. Nishiyama, “Light scattering from a birefringent cylinder, spider silk, slimmer than the wavelength approaches dipole radiation,” J. Opt. Soc. Am. A 22(6), 1127–1131 (2005).
    [CrossRef] [PubMed]
  14. F. Tajima and Y. Nishiyama, “Multiple scattering effect in the Young-like interference pattern of an optical wave scattered by a double cylinder,” Opt. Rev. 15(2), 75–83 (2008).
    [CrossRef]
  15. R. C. Emmons and R. M. Gates, “The use of Becke line colors in refractive index determination,” Am. Mineral. 33, 612–618 (1948).
  16. S. Carmichael and C. Viney, “Molecular order in spider major ampullate silk (dragline): effects of spinning rate and post-spin drawing,” J. Appl. Polym. Sci. 72(7), 895–903 (1999).
    [CrossRef]
  17. H.-G. Zimmer, Geometrische Optik (Springer, 1967), p. 80.
  18. N. Naidoo, D. Birch, M. E. Herberstein and D. M. Kane, “Nano-morphology and radial cross-section characterisation of dragline/structural silks of Araneidae spiders,” Bioinspir. Biomim. (submitted for publication).

2011

D. M. Kane, G. R. Staib, N. Naidoo, D. J. Little, and M. E. Herberstein, ““Optics of spider “sticky” orb webs,” Proc. SPIE 7975, 79750G, 79750G-13 (2011), doi:.
[CrossRef]

2010

D. M. Kane, A. M. Joyce, G. R. Staib, and M. E. Herberstein, “Optical surface profiling of orb-web spider capture silks,” Bioinspir. Biomim. 5(3), 036004 (2010).
[CrossRef] [PubMed]

D. M. Kane, N. Naidoo, and G. R. Staib, “AFM of orb-spider-web-silks to measure surface nanostructuring and evaluate silk fibers per strand,” J. Appl. Phys. 108(073509), 5 (2010).
[CrossRef]

2009

M. Heim, D. Keerl, and T. Scheibel, “Spider silk: from soluble protein to extraordinary fibre,” Angew. Chem. Int. Ed. 48(20), 3584–3596 (2009).
[CrossRef]

2008

J. A. Kluge, O. Rabotyagova, G. G. Leisk, and D. L. Kaplan, “Spider silks and their applications,” Trends Biotechnol. 26(5), 244–251 (2008).
[CrossRef] [PubMed]

F. Tajima and Y. Nishiyama, “Multiple scattering effect in the Young-like interference pattern of an optical wave scattered by a double cylinder,” Opt. Rev. 15(2), 75–83 (2008).
[CrossRef]

2005

1999

S. Carmichael and C. Viney, “Molecular order in spider major ampullate silk (dragline): effects of spinning rate and post-spin drawing,” J. Appl. Polym. Sci. 72(7), 895–903 (1999).
[CrossRef]

1995

M. F. Ashby, L. J. Gibson, U. Wegst, and R. Olive, “The mechanical properties of natural materials. I. Material property charts,” Proc. R. Soc. Lond. A 450(1938), 123–140 (1995).
[CrossRef]

1994

C. L. Craig, G. D. Bernard, and J. A. Coddington, “Evolutionary shifts in the spectral properties of spider silks,” Evolution 48(2), 287–296 (1994).
[CrossRef]

1990

R. G. Greenler, J. W. Hable, and P. O. Slane, “Diffraction around a fine wire: how good is the single-slit approximation?” Am. J. Phys. 58(4), 330–331 (1990).
[CrossRef]

1989

R. G. Greenler and J. W. Hable, “Colors in spiders webs,” Am. Sci. 77, 368–373 (1989).

1974

1968

1948

R. C. Emmons and R. M. Gates, “The use of Becke line colors in refractive index determination,” Am. Mineral. 33, 612–618 (1948).

Ashby, M. F.

M. F. Ashby, L. J. Gibson, U. Wegst, and R. Olive, “The mechanical properties of natural materials. I. Material property charts,” Proc. R. Soc. Lond. A 450(1938), 123–140 (1995).
[CrossRef]

Bernard, G. D.

C. L. Craig, G. D. Bernard, and J. A. Coddington, “Evolutionary shifts in the spectral properties of spider silks,” Evolution 48(2), 287–296 (1994).
[CrossRef]

Carmichael, S.

S. Carmichael and C. Viney, “Molecular order in spider major ampullate silk (dragline): effects of spinning rate and post-spin drawing,” J. Appl. Polym. Sci. 72(7), 895–903 (1999).
[CrossRef]

Coddington, J. A.

C. L. Craig, G. D. Bernard, and J. A. Coddington, “Evolutionary shifts in the spectral properties of spider silks,” Evolution 48(2), 287–296 (1994).
[CrossRef]

Craig, C. L.

C. L. Craig, G. D. Bernard, and J. A. Coddington, “Evolutionary shifts in the spectral properties of spider silks,” Evolution 48(2), 287–296 (1994).
[CrossRef]

Emmons, R. C.

R. C. Emmons and R. M. Gates, “The use of Becke line colors in refractive index determination,” Am. Mineral. 33, 612–618 (1948).

Gates, R. M.

R. C. Emmons and R. M. Gates, “The use of Becke line colors in refractive index determination,” Am. Mineral. 33, 612–618 (1948).

Gibson, L. J.

M. F. Ashby, L. J. Gibson, U. Wegst, and R. Olive, “The mechanical properties of natural materials. I. Material property charts,” Proc. R. Soc. Lond. A 450(1938), 123–140 (1995).
[CrossRef]

Greenler, R. G.

R. G. Greenler, J. W. Hable, and P. O. Slane, “Diffraction around a fine wire: how good is the single-slit approximation?” Am. J. Phys. 58(4), 330–331 (1990).
[CrossRef]

R. G. Greenler and J. W. Hable, “Colors in spiders webs,” Am. Sci. 77, 368–373 (1989).

Hable, J. W.

R. G. Greenler, J. W. Hable, and P. O. Slane, “Diffraction around a fine wire: how good is the single-slit approximation?” Am. J. Phys. 58(4), 330–331 (1990).
[CrossRef]

R. G. Greenler and J. W. Hable, “Colors in spiders webs,” Am. Sci. 77, 368–373 (1989).

Heim, M.

M. Heim, D. Keerl, and T. Scheibel, “Spider silk: from soluble protein to extraordinary fibre,” Angew. Chem. Int. Ed. 48(20), 3584–3596 (2009).
[CrossRef]

Herberstein, M. E.

D. M. Kane, G. R. Staib, N. Naidoo, D. J. Little, and M. E. Herberstein, ““Optics of spider “sticky” orb webs,” Proc. SPIE 7975, 79750G, 79750G-13 (2011), doi:.
[CrossRef]

D. M. Kane, A. M. Joyce, G. R. Staib, and M. E. Herberstein, “Optical surface profiling of orb-web spider capture silks,” Bioinspir. Biomim. 5(3), 036004 (2010).
[CrossRef] [PubMed]

Joyce, A. M.

D. M. Kane, A. M. Joyce, G. R. Staib, and M. E. Herberstein, “Optical surface profiling of orb-web spider capture silks,” Bioinspir. Biomim. 5(3), 036004 (2010).
[CrossRef] [PubMed]

Kane, D. M.

D. M. Kane, G. R. Staib, N. Naidoo, D. J. Little, and M. E. Herberstein, ““Optics of spider “sticky” orb webs,” Proc. SPIE 7975, 79750G, 79750G-13 (2011), doi:.
[CrossRef]

D. M. Kane, N. Naidoo, and G. R. Staib, “AFM of orb-spider-web-silks to measure surface nanostructuring and evaluate silk fibers per strand,” J. Appl. Phys. 108(073509), 5 (2010).
[CrossRef]

D. M. Kane, A. M. Joyce, G. R. Staib, and M. E. Herberstein, “Optical surface profiling of orb-web spider capture silks,” Bioinspir. Biomim. 5(3), 036004 (2010).
[CrossRef] [PubMed]

Kaplan, D. L.

J. A. Kluge, O. Rabotyagova, G. G. Leisk, and D. L. Kaplan, “Spider silks and their applications,” Trends Biotechnol. 26(5), 244–251 (2008).
[CrossRef] [PubMed]

Keerl, D.

M. Heim, D. Keerl, and T. Scheibel, “Spider silk: from soluble protein to extraordinary fibre,” Angew. Chem. Int. Ed. 48(20), 3584–3596 (2009).
[CrossRef]

Kluge, J. A.

J. A. Kluge, O. Rabotyagova, G. G. Leisk, and D. L. Kaplan, “Spider silks and their applications,” Trends Biotechnol. 26(5), 244–251 (2008).
[CrossRef] [PubMed]

Leisk, G. G.

J. A. Kluge, O. Rabotyagova, G. G. Leisk, and D. L. Kaplan, “Spider silks and their applications,” Trends Biotechnol. 26(5), 244–251 (2008).
[CrossRef] [PubMed]

Little, D. J.

D. M. Kane, G. R. Staib, N. Naidoo, D. J. Little, and M. E. Herberstein, ““Optics of spider “sticky” orb webs,” Proc. SPIE 7975, 79750G, 79750G-13 (2011), doi:.
[CrossRef]

Liu, Y. S.

Naidoo, N.

D. M. Kane, G. R. Staib, N. Naidoo, D. J. Little, and M. E. Herberstein, ““Optics of spider “sticky” orb webs,” Proc. SPIE 7975, 79750G, 79750G-13 (2011), doi:.
[CrossRef]

D. M. Kane, N. Naidoo, and G. R. Staib, “AFM of orb-spider-web-silks to measure surface nanostructuring and evaluate silk fibers per strand,” J. Appl. Phys. 108(073509), 5 (2010).
[CrossRef]

Nishiyama, Y.

F. Tajima and Y. Nishiyama, “Multiple scattering effect in the Young-like interference pattern of an optical wave scattered by a double cylinder,” Opt. Rev. 15(2), 75–83 (2008).
[CrossRef]

F. Tajima and Y. Nishiyama, “Light scattering from a birefringent cylinder, spider silk, slimmer than the wavelength approaches dipole radiation,” J. Opt. Soc. Am. A 22(6), 1127–1131 (2005).
[CrossRef] [PubMed]

Olive, R.

M. F. Ashby, L. J. Gibson, U. Wegst, and R. Olive, “The mechanical properties of natural materials. I. Material property charts,” Proc. R. Soc. Lond. A 450(1938), 123–140 (1995).
[CrossRef]

Rabotyagova, O.

J. A. Kluge, O. Rabotyagova, G. G. Leisk, and D. L. Kaplan, “Spider silks and their applications,” Trends Biotechnol. 26(5), 244–251 (2008).
[CrossRef] [PubMed]

Scheibel, T.

M. Heim, D. Keerl, and T. Scheibel, “Spider silk: from soluble protein to extraordinary fibre,” Angew. Chem. Int. Ed. 48(20), 3584–3596 (2009).
[CrossRef]

Slane, P. O.

R. G. Greenler, J. W. Hable, and P. O. Slane, “Diffraction around a fine wire: how good is the single-slit approximation?” Am. J. Phys. 58(4), 330–331 (1990).
[CrossRef]

Staib, G. R.

D. M. Kane, G. R. Staib, N. Naidoo, D. J. Little, and M. E. Herberstein, ““Optics of spider “sticky” orb webs,” Proc. SPIE 7975, 79750G, 79750G-13 (2011), doi:.
[CrossRef]

D. M. Kane, A. M. Joyce, G. R. Staib, and M. E. Herberstein, “Optical surface profiling of orb-web spider capture silks,” Bioinspir. Biomim. 5(3), 036004 (2010).
[CrossRef] [PubMed]

D. M. Kane, N. Naidoo, and G. R. Staib, “AFM of orb-spider-web-silks to measure surface nanostructuring and evaluate silk fibers per strand,” J. Appl. Phys. 108(073509), 5 (2010).
[CrossRef]

Tajima, F.

F. Tajima and Y. Nishiyama, “Multiple scattering effect in the Young-like interference pattern of an optical wave scattered by a double cylinder,” Opt. Rev. 15(2), 75–83 (2008).
[CrossRef]

F. Tajima and Y. Nishiyama, “Light scattering from a birefringent cylinder, spider silk, slimmer than the wavelength approaches dipole radiation,” J. Opt. Soc. Am. A 22(6), 1127–1131 (2005).
[CrossRef] [PubMed]

Viney, C.

S. Carmichael and C. Viney, “Molecular order in spider major ampullate silk (dragline): effects of spinning rate and post-spin drawing,” J. Appl. Polym. Sci. 72(7), 895–903 (1999).
[CrossRef]

Wegst, U.

M. F. Ashby, L. J. Gibson, U. Wegst, and R. Olive, “The mechanical properties of natural materials. I. Material property charts,” Proc. R. Soc. Lond. A 450(1938), 123–140 (1995).
[CrossRef]

Werner, A. J.

Am. J. Phys.

R. G. Greenler, J. W. Hable, and P. O. Slane, “Diffraction around a fine wire: how good is the single-slit approximation?” Am. J. Phys. 58(4), 330–331 (1990).
[CrossRef]

Am. Mineral.

R. C. Emmons and R. M. Gates, “The use of Becke line colors in refractive index determination,” Am. Mineral. 33, 612–618 (1948).

Am. Sci.

R. G. Greenler and J. W. Hable, “Colors in spiders webs,” Am. Sci. 77, 368–373 (1989).

Angew. Chem. Int. Ed.

M. Heim, D. Keerl, and T. Scheibel, “Spider silk: from soluble protein to extraordinary fibre,” Angew. Chem. Int. Ed. 48(20), 3584–3596 (2009).
[CrossRef]

Appl. Opt.

Bioinspir. Biomim.

D. M. Kane, A. M. Joyce, G. R. Staib, and M. E. Herberstein, “Optical surface profiling of orb-web spider capture silks,” Bioinspir. Biomim. 5(3), 036004 (2010).
[CrossRef] [PubMed]

Evolution

C. L. Craig, G. D. Bernard, and J. A. Coddington, “Evolutionary shifts in the spectral properties of spider silks,” Evolution 48(2), 287–296 (1994).
[CrossRef]

J. Appl. Phys.

D. M. Kane, N. Naidoo, and G. R. Staib, “AFM of orb-spider-web-silks to measure surface nanostructuring and evaluate silk fibers per strand,” J. Appl. Phys. 108(073509), 5 (2010).
[CrossRef]

J. Appl. Polym. Sci.

S. Carmichael and C. Viney, “Molecular order in spider major ampullate silk (dragline): effects of spinning rate and post-spin drawing,” J. Appl. Polym. Sci. 72(7), 895–903 (1999).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Rev.

F. Tajima and Y. Nishiyama, “Multiple scattering effect in the Young-like interference pattern of an optical wave scattered by a double cylinder,” Opt. Rev. 15(2), 75–83 (2008).
[CrossRef]

Proc. R. Soc. Lond. A

M. F. Ashby, L. J. Gibson, U. Wegst, and R. Olive, “The mechanical properties of natural materials. I. Material property charts,” Proc. R. Soc. Lond. A 450(1938), 123–140 (1995).
[CrossRef]

Proc. SPIE

D. M. Kane, G. R. Staib, N. Naidoo, D. J. Little, and M. E. Herberstein, ““Optics of spider “sticky” orb webs,” Proc. SPIE 7975, 79750G, 79750G-13 (2011), doi:.
[CrossRef]

Trends Biotechnol.

J. A. Kluge, O. Rabotyagova, G. G. Leisk, and D. L. Kaplan, “Spider silks and their applications,” Trends Biotechnol. 26(5), 244–251 (2008).
[CrossRef] [PubMed]

Other

F. Rinne and M. Berek, Anleitung zu optischen untersuchungen mit dem polarisationsmikroskop (Jänecke, Leipzig, 1935).

H.-G. Zimmer, Geometrische Optik (Springer, 1967), p. 80.

N. Naidoo, D. Birch, M. E. Herberstein and D. M. Kane, “Nano-morphology and radial cross-section characterisation of dragline/structural silks of Araneidae spiders,” Bioinspir. Biomim. (submitted for publication).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Immersed spider silk passing through the focal plane along its length due to sample tilt. Note the inversion of the intensity profile as the silk passes through the focal plane (marked by a vertical arrow). The black vertical line indicates the point of maximum contrast used to calculate the visibility of the silk.

Fig. 2
Fig. 2

Intensity profile of the immersed silk shown in Fig. 1 along the point of maximum contrast.

Fig. 3
Fig. 3

Measured contrast as a function of the temperature-corrected refractive index of the oil for a Corning SMF-28 optical fiber.

Fig. 4
Fig. 4

Measured contrast as a function of the temperature-corrected refractive index of the oil for a P. eburnus radial silk (Web 2, Silk A in Table 1). The missing point around 1.554 for ns is due to the presence of an outlier that was omitted prior to performing the analysis.

Fig. 5
Fig. 5

Refractive index as a function of wavelength for two P. eburnus radial silks.

Tables (1)

Tables Icon

Table 1 Measured Refractive Indices of Plebs eburnus Radial Silks

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ν = n D 1 n F n C ,

Metrics