Abstract

Megawatt peak power, giant pulse microchip lasers are attractive for wavelength conversion, provided their output is linearly polarized. We use a [110] cut Cr4+:YAG for passively Q-switched Nd:YAG microchip laser to obtain a stable, linearly polarized output. Further, we optimize the conditions for second harmonic generation at 532 nm wavelength to achieve > 6 MW peak power, 1.7 mJ, 265 ps, 100 Hz pulses with a conversion efficiency of 85%.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Zayhowski, “Microchip lasers,” Opt. Mater. 11(2-3), 255–267 (1999).
    [CrossRef]
  2. N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
    [CrossRef]
  3. H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
    [CrossRef] [PubMed]
  4. S. Hayashi, T. Shibuya, H. Sakai, T. Taira, C. Otani, Y. Ogawa, and K. Kawase, “Tunability enhancement of a terahertz-wave parametric generator pumped by a microchip Nd:YAG laser,” Appl. Opt. 48(15), 2899–2902 (2009).
    [CrossRef] [PubMed]
  5. M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
    [CrossRef]
  6. N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
    [CrossRef] [PubMed]
  7. OSA News Release, http://www.osa.org/about_osa/newsroom/news_releases/releases/04.2011/lasersparksrevolution.aspx .
  8. EurekAlert! (AAAS Science news wire), http://www.eurekalert.org/pub_releases/2011-04/osoa-lsr042011.php .
  9. Business Wire, http://www.businesswire.com/news/home/20110420005464/en/Laser-Sparks-Revolution-Internal-Combustion-Engines .
  10. B. B. C. News, http://www.bbc.co.uk/news/science-environment-13160950 .
  11. Forbes, http://blogs.forbes.com/alexknapp/2011/04/23/replacing-spark-plugs-with-lasers-for-a-more-fuel-efficient-car/ .
  12. New York Times, http://wheels.blogs.nytimes.com/2011/04/27/spark-plugs-joining-carburetors-on-the-automotive-scrap-heap/ .
  13. T. Taira and T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron. 30(3), 800–804 (1994).
    [CrossRef]
  14. T. Taira and T. Kobayashi, “Intracavity frequency doubling and Q switching in diode-laser-pumped Nd:YVO4 lasers,” Appl. Opt. 34(21), 4298–4301 (1995).
    [CrossRef] [PubMed]
  15. J. J. Zayhowski, C. Dill III, C. Cook, and J. L. Daneu, “Mid-and high-power passively Q-switched microchip lasers,” in Proceeding of Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonic Series (Optical Society of America, Washington, D. C., 1999), pp. 178–186.
  16. H. Sakai, A. Sone, H. Kan, and T. Taira, “Polarization stabilizing for diode-pumped passively Q-switched Nd:YAG microchip lasers,” in Advanced Solid-State Photonics Technical Digest (Optical Society of America, 2006), paper MD2.
  17. H. Sakai, H. Kan, and T. Taira, “Passive Q-switch laser device,” U. S. Patent No. 7,664,148 B2 (Feb. 16, 2010).
  18. G. Mennerat, J. Rault, O. Bonville, P. Canal, O. Hartmann, E. Mazataud, L. Marmande, L. Patissou, J.-F. Charrier, C. Lepage, “Very high efficiency high-energy frequency doubling in the Alise facility,” in Advanced Solid-State Photonics Technical Digest (Optical Society of America, 2010), paper ATuA24.
  19. J. E. Bjorkholm, “Optical second-harmonic generation using a focused Gaussian laser beam,” Phys. Rev. 142(1), 126–136 (1966).
    [CrossRef]
  20. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
    [CrossRef]
  21. S.-C. Sheng and A. E. Siegman, “Nonlinear-optical calculations using fast-transform methods: second-harmonic generation with depletion and diffraction,” Phys. Rev. A 21(2), 599–606 (1980).
    [CrossRef]
  22. T. Taira, “Domain-controlled laser ceramics toward giant micro-photonics [invited],” Opt. Mater. Express 1(5), 1040–1050 (2011).
    [CrossRef]

2011

2010

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[CrossRef]

2009

2008

2001

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[CrossRef]

1999

J. J. Zayhowski, “Microchip lasers,” Opt. Mater. 11(2-3), 255–267 (1999).
[CrossRef]

1995

1994

T. Taira and T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron. 30(3), 800–804 (1994).
[CrossRef]

1980

S.-C. Sheng and A. E. Siegman, “Nonlinear-optical calculations using fast-transform methods: second-harmonic generation with depletion and diffraction,” Phys. Rev. A 21(2), 599–606 (1980).
[CrossRef]

1968

D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

1966

J. E. Bjorkholm, “Optical second-harmonic generation using a focused Gaussian laser beam,” Phys. Rev. 142(1), 126–136 (1966).
[CrossRef]

Ando, A.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[CrossRef]

Bjorkholm, J. E.

J. E. Bjorkholm, “Optical second-harmonic generation using a focused Gaussian laser beam,” Phys. Rev. 142(1), 126–136 (1966).
[CrossRef]

Boyd, D.

D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

Hayashi, S.

Inohara, T.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[CrossRef]

Kan, H.

Kanehara, K.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[CrossRef]

Kawase, K.

Kido, N.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[CrossRef]

Kleinman, D. A.

D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

Kobayashi, T.

T. Taira and T. Kobayashi, “Intracavity frequency doubling and Q switching in diode-laser-pumped Nd:YVO4 lasers,” Appl. Opt. 34(21), 4298–4301 (1995).
[CrossRef] [PubMed]

T. Taira and T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron. 30(3), 800–804 (1994).
[CrossRef]

Kurimura, S.

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[CrossRef]

Ogawa, Y.

Otani, C.

Pavel, N.

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[CrossRef] [PubMed]

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[CrossRef]

Saikawa, J.

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[CrossRef]

Sakai, H.

Sheng, S.-C.

S.-C. Sheng and A. E. Siegman, “Nonlinear-optical calculations using fast-transform methods: second-harmonic generation with depletion and diffraction,” Phys. Rev. A 21(2), 599–606 (1980).
[CrossRef]

Shibuya, T.

Siegman, A. E.

S.-C. Sheng and A. E. Siegman, “Nonlinear-optical calculations using fast-transform methods: second-harmonic generation with depletion and diffraction,” Phys. Rev. A 21(2), 599–606 (1980).
[CrossRef]

Taira, T.

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[CrossRef] [PubMed]

T. Taira, “Domain-controlled laser ceramics toward giant micro-photonics [invited],” Opt. Mater. Express 1(5), 1040–1050 (2011).
[CrossRef]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[CrossRef]

S. Hayashi, T. Shibuya, H. Sakai, T. Taira, C. Otani, Y. Ogawa, and K. Kawase, “Tunability enhancement of a terahertz-wave parametric generator pumped by a microchip Nd:YAG laser,” Appl. Opt. 48(15), 2899–2902 (2009).
[CrossRef] [PubMed]

H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
[CrossRef] [PubMed]

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[CrossRef]

T. Taira and T. Kobayashi, “Intracavity frequency doubling and Q switching in diode-laser-pumped Nd:YVO4 lasers,” Appl. Opt. 34(21), 4298–4301 (1995).
[CrossRef] [PubMed]

T. Taira and T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron. 30(3), 800–804 (1994).
[CrossRef]

Tsunekane, M.

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[CrossRef] [PubMed]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[CrossRef]

Zayhowski, J. J.

J. J. Zayhowski, “Microchip lasers,” Opt. Mater. 11(2-3), 255–267 (1999).
[CrossRef]

Appl. Opt.

IEEE J. Quantum Electron.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[CrossRef]

T. Taira and T. Kobayashi, “Q-switching and frequency doubling of solid-state lasers by a single intracavity KTP crystal,” IEEE J. Quantum Electron. 30(3), 800–804 (1994).
[CrossRef]

J. Appl. Phys.

D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

Jpn. J. Appl. Phys.

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[CrossRef]

Opt. Express

Opt. Mater.

J. J. Zayhowski, “Microchip lasers,” Opt. Mater. 11(2-3), 255–267 (1999).
[CrossRef]

Opt. Mater. Express

Phys. Rev.

J. E. Bjorkholm, “Optical second-harmonic generation using a focused Gaussian laser beam,” Phys. Rev. 142(1), 126–136 (1966).
[CrossRef]

Phys. Rev. A

S.-C. Sheng and A. E. Siegman, “Nonlinear-optical calculations using fast-transform methods: second-harmonic generation with depletion and diffraction,” Phys. Rev. A 21(2), 599–606 (1980).
[CrossRef]

Other

J. J. Zayhowski, C. Dill III, C. Cook, and J. L. Daneu, “Mid-and high-power passively Q-switched microchip lasers,” in Proceeding of Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonic Series (Optical Society of America, Washington, D. C., 1999), pp. 178–186.

H. Sakai, A. Sone, H. Kan, and T. Taira, “Polarization stabilizing for diode-pumped passively Q-switched Nd:YAG microchip lasers,” in Advanced Solid-State Photonics Technical Digest (Optical Society of America, 2006), paper MD2.

H. Sakai, H. Kan, and T. Taira, “Passive Q-switch laser device,” U. S. Patent No. 7,664,148 B2 (Feb. 16, 2010).

G. Mennerat, J. Rault, O. Bonville, P. Canal, O. Hartmann, E. Mazataud, L. Marmande, L. Patissou, J.-F. Charrier, C. Lepage, “Very high efficiency high-energy frequency doubling in the Alise facility,” in Advanced Solid-State Photonics Technical Digest (Optical Society of America, 2010), paper ATuA24.

OSA News Release, http://www.osa.org/about_osa/newsroom/news_releases/releases/04.2011/lasersparksrevolution.aspx .

EurekAlert! (AAAS Science news wire), http://www.eurekalert.org/pub_releases/2011-04/osoa-lsr042011.php .

Business Wire, http://www.businesswire.com/news/home/20110420005464/en/Laser-Sparks-Revolution-Internal-Combustion-Engines .

B. B. C. News, http://www.bbc.co.uk/news/science-environment-13160950 .

Forbes, http://blogs.forbes.com/alexknapp/2011/04/23/replacing-spark-plugs-with-lasers-for-a-more-fuel-efficient-car/ .

New York Times, http://wheels.blogs.nytimes.com/2011/04/27/spark-plugs-joining-carburetors-on-the-automotive-scrap-heap/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of laser structure.

Fig. 2
Fig. 2

Schematic of SHG experiment.

Fig. 3
Fig. 3

SHG characteristics for 5 mm-long LBO.

Fig. 4
Fig. 4

SHG characteristics for 10 mm-long LBO.

Fig. 5
Fig. 5

Plot of output power with time showing thermal dephasing. The maximum value on the time axis is 5 min.

Fig. 6
Fig. 6

SHG conversion characteristics under optimum conditions.

Tables (1)

Tables Icon

Table 1 Spot Diameter and Confocal Length for Focusing Lenses Used in Experiment

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η = P 2 ω P ω = tanh 2 [ κ L ( P ω A ) 1 2 ]
κ = 8 π 2 ε 0 c λ ω 2 n ω 2 n 2 ω d e f f 2

Metrics