Abstract

We present a bandwidth-division phase-noise-compensated optical frequency domain reflectometry (PNC-OFDR) technique, which permits a fast sweep of the optical source frequency. This method makes it possible to reduce the influence of environmental perturbation, which is the dominant factor degrading the spatial resolution of frequency-domain reflectometry at a long measurement range after compensation of the optical source phase noise. By using this approach, we realize a sub-cm spatial resolution over 40 km in a normal laboratory environment, and a 5 cm spatial resolution at 39.2 km in a field trial.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. K. Barnoski and S. M. Jensen, “Fiber waveguides: a novel technique for investigating attenuation characteristics,” Appl. Opt. 15(9), 2112–2115 (1976).
    [CrossRef] [PubMed]
  2. B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry,” IEEE Photon. Technol. Lett. 10(10), 1458–1460 (1998).
    [CrossRef]
  3. W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single‐mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
    [CrossRef]
  4. H. Barfuss and E. Brinkmeyer, “Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems,” J. Lightwave Technol. 7(1), 3–10 (1989).
    [CrossRef]
  5. G. Mussi, N. Gisin, R. Passy, and J. P. von der Weid, “-152.5 dB sensitivity high dynamic-range optical frequency-domain reflectometry,” Electron. Lett. 32(10), 926–927 (1996).
    [CrossRef]
  6. D. K. Gifford, M. E. Froggatt, M. S. Wolfe, S. T. Kreger, and B. J. Soller, “Millimeter resolution reflectometry over two kilometers,” in 33rd European Conference and Exhibition on Optical Communication—ECOC 2007 (2007), vol. 2, pp. 85–87, paper Tu.3.6.1.
  7. K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, “Spatial-resolution improvement in long range coherent optical frequency domain reflectometry by frequency-sweep linearisation,” Electron. Lett. 33(5), 408–409 (1997).
    [CrossRef]
  8. X. Fan, Y. Koshikiya, and F. Ito, “Phase-noise-compensated optical frequency domain reflectometry with measurement range beyond laser coherence length realized using concatenative reference method,” Opt. Lett. 32(22), 3227–3229 (2007).
    [CrossRef] [PubMed]
  9. X. Fan, Y. Koshikiya, and F. Ito, “Noise of long-range optical frequency domain reflectometry after optical source phase noise compensation,” Proc. SPIE 7503, 75032E, 75032E-4 (2009).
    [CrossRef]
  10. Y. Koshikiya, X. Fan, and F. Ito, “Influence of acoustic perturbation of fibers in phase-noise-compensated optical-frequency-domain reflectometry,” J. Lightwave Technol. 28, 3323–3328 (2010).

2010 (1)

2009 (1)

X. Fan, Y. Koshikiya, and F. Ito, “Noise of long-range optical frequency domain reflectometry after optical source phase noise compensation,” Proc. SPIE 7503, 75032E, 75032E-4 (2009).
[CrossRef]

2007 (1)

1998 (1)

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry,” IEEE Photon. Technol. Lett. 10(10), 1458–1460 (1998).
[CrossRef]

1997 (1)

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, “Spatial-resolution improvement in long range coherent optical frequency domain reflectometry by frequency-sweep linearisation,” Electron. Lett. 33(5), 408–409 (1997).
[CrossRef]

1996 (1)

G. Mussi, N. Gisin, R. Passy, and J. P. von der Weid, “-152.5 dB sensitivity high dynamic-range optical frequency-domain reflectometry,” Electron. Lett. 32(10), 926–927 (1996).
[CrossRef]

1989 (1)

H. Barfuss and E. Brinkmeyer, “Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems,” J. Lightwave Technol. 7(1), 3–10 (1989).
[CrossRef]

1981 (1)

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single‐mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[CrossRef]

1976 (1)

Barfuss, H.

H. Barfuss and E. Brinkmeyer, “Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems,” J. Lightwave Technol. 7(1), 3–10 (1989).
[CrossRef]

Barnoski, M. K.

Brinkmeyer, E.

H. Barfuss and E. Brinkmeyer, “Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems,” J. Lightwave Technol. 7(1), 3–10 (1989).
[CrossRef]

Eickhoff, W.

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single‐mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[CrossRef]

Fan, X.

Gisin, N.

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry,” IEEE Photon. Technol. Lett. 10(10), 1458–1460 (1998).
[CrossRef]

G. Mussi, N. Gisin, R. Passy, and J. P. von der Weid, “-152.5 dB sensitivity high dynamic-range optical frequency-domain reflectometry,” Electron. Lett. 32(10), 926–927 (1996).
[CrossRef]

Horiguchi, T.

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, “Spatial-resolution improvement in long range coherent optical frequency domain reflectometry by frequency-sweep linearisation,” Electron. Lett. 33(5), 408–409 (1997).
[CrossRef]

Huttner, B.

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry,” IEEE Photon. Technol. Lett. 10(10), 1458–1460 (1998).
[CrossRef]

Ito, F.

Jensen, S. M.

Koshikiya, Y.

Koyamada, Y.

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, “Spatial-resolution improvement in long range coherent optical frequency domain reflectometry by frequency-sweep linearisation,” Electron. Lett. 33(5), 408–409 (1997).
[CrossRef]

Mussi, G.

G. Mussi, N. Gisin, R. Passy, and J. P. von der Weid, “-152.5 dB sensitivity high dynamic-range optical frequency-domain reflectometry,” Electron. Lett. 32(10), 926–927 (1996).
[CrossRef]

Passy, R.

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry,” IEEE Photon. Technol. Lett. 10(10), 1458–1460 (1998).
[CrossRef]

G. Mussi, N. Gisin, R. Passy, and J. P. von der Weid, “-152.5 dB sensitivity high dynamic-range optical frequency-domain reflectometry,” Electron. Lett. 32(10), 926–927 (1996).
[CrossRef]

Reecht, J.

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry,” IEEE Photon. Technol. Lett. 10(10), 1458–1460 (1998).
[CrossRef]

Shimizu, K.

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, “Spatial-resolution improvement in long range coherent optical frequency domain reflectometry by frequency-sweep linearisation,” Electron. Lett. 33(5), 408–409 (1997).
[CrossRef]

Tsuji, K.

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, “Spatial-resolution improvement in long range coherent optical frequency domain reflectometry by frequency-sweep linearisation,” Electron. Lett. 33(5), 408–409 (1997).
[CrossRef]

Ulrich, R.

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single‐mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[CrossRef]

von der Weid, J. P.

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry,” IEEE Photon. Technol. Lett. 10(10), 1458–1460 (1998).
[CrossRef]

G. Mussi, N. Gisin, R. Passy, and J. P. von der Weid, “-152.5 dB sensitivity high dynamic-range optical frequency-domain reflectometry,” Electron. Lett. 32(10), 926–927 (1996).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single‐mode fiber,” Appl. Phys. Lett. 39(9), 693–695 (1981).
[CrossRef]

Electron. Lett. (2)

G. Mussi, N. Gisin, R. Passy, and J. P. von der Weid, “-152.5 dB sensitivity high dynamic-range optical frequency-domain reflectometry,” Electron. Lett. 32(10), 926–927 (1996).
[CrossRef]

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, “Spatial-resolution improvement in long range coherent optical frequency domain reflectometry by frequency-sweep linearisation,” Electron. Lett. 33(5), 408–409 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry,” IEEE Photon. Technol. Lett. 10(10), 1458–1460 (1998).
[CrossRef]

J. Lightwave Technol. (2)

Y. Koshikiya, X. Fan, and F. Ito, “Influence of acoustic perturbation of fibers in phase-noise-compensated optical-frequency-domain reflectometry,” J. Lightwave Technol. 28, 3323–3328 (2010).

H. Barfuss and E. Brinkmeyer, “Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems,” J. Lightwave Technol. 7(1), 3–10 (1989).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

X. Fan, Y. Koshikiya, and F. Ito, “Noise of long-range optical frequency domain reflectometry after optical source phase noise compensation,” Proc. SPIE 7503, 75032E, 75032E-4 (2009).
[CrossRef]

Other (1)

D. K. Gifford, M. E. Froggatt, M. S. Wolfe, S. T. Kreger, and B. J. Soller, “Millimeter resolution reflectometry over two kilometers,” in 33rd European Conference and Exhibition on Optical Communication—ECOC 2007 (2007), vol. 2, pp. 85–87, paper Tu.3.6.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Reference signals used in each section of FUT.

Fig. 2
Fig. 2

Concept of bandwidth-division process.

Fig. 3
Fig. 3

Reference signals used in each section of FUT for different bandwidths.

Fig. 4
Fig. 4

Experimental setup. SSB, single sideband; DFL, delay fiber loop; PC, polarization controller; PBS, polarization beam splitter; BPD, balanced photodetector; LPF, low-pass filter; ADC, analog to digital card; FUT, fiber under test.

Fig. 5
Fig. 5

Electrical processing after the signals having been received by one BPD. The bandwidth of BPF1 and BPF2 is 400–800 MHz and 800–1200 MHz, respectively, and the LPF cutoff bandwidth is 400 MHz.

Fig. 6
Fig. 6

Measurement results for the reflectivity of backscattered/reflected light wave.

Fig. 7
Fig. 7

Details of reflection peaks in different environments. (a) Reflection peaks occurred around 40 km; (b) Reflection peaks occurred around 41.25 km; (c) Reflection peak measured in the field environment; (d) Sound pressure density of two laboratory environments.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

X N ( t ) = n = 0 N 1 X 1 ( t n τ r e f ) ,
Φ ( t ) = [ θ ( t ) θ ( t τ F U T ) ] τ F U T N τ r e f [ θ ( t ) θ ( t N τ r e f ) ] ,
X N ( m ) ( t ) = X N ( t ) 2 π m 1 M F t .

Metrics