Abstract

The generation and characterization of narrowband THz pulses by means of chirped pulse difference frequency generation in Auston-switch type photoconductive antennas is reported. Using optical pulses with energies in the range from 1 nJ to 1µJ, we generate THz pulses with up to 50 pJ in energy and electric field strengths on the order of 1 kV/cm. Two emitter concepts are investigated and circumvention of the fast saturation for small area excitation by scaling of the THz emitter is demonstrated.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. S. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, “Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas,” Appl. Phys. Lett. 64(2), 137–139 (1994).
    [CrossRef]
  2. A. S. Weling and D. H. Auston, “Novel sources and detectors for coherent tunable narrow-band terahertz radiation in free space,” J. Opt. Soc. Am. B 13(12), 2783–2791 (1996).
    [CrossRef]
  3. J. R. Danielson, A. D. Jameson, J. L. Tomaino, H. Hui, J. D. Wetzel, Y.-S. Lee, and K. L. Vodopyanov, “Intense narrow band terahertz generation via type-II difference-frequency generation in ZnTe using chirped optical pulses,” J. Appl. Phys. 104(3), 033111 (2008).
    [CrossRef]
  4. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).
  5. A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, “Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide,” Phys. Rev. Lett. 103(9), 095003 (2009).
    [CrossRef] [PubMed]
  6. W. C. Hurlbut, B. J. Norton, N. Amer, and Y.-S. Lee, “Manipulation of terahertz waveforms in nonlinear optical crystals by shaped optical pulses,” J. Opt. Soc. Am. B 23(1), 90–93 (2006).
    [CrossRef]
  7. Y. Liu, S.-G. Park, and A. M. Weiner, “Terahertz waveform synthesis via optical pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 2(3), 709–719 (1996).
    [CrossRef]
  8. J. Y. Sohn, Y. H. Ahn, D. J. Park, E. Oh, and D. S. Kim, “Tunable terahertz generation using femtosecond pulse shaping,” Appl. Phys. Lett. 81(1), 13–15 (2002).
    [CrossRef]
  9. T. Feurer, J. C. Vaughan, T. Hornung, and K. A. Nelson, “Typesetting of terahertz waveforms,” Opt. Lett. 29(15), 1802–1804 (2004).
    [CrossRef] [PubMed]
  10. A. G. Stepanov, J. Hebling, and J. Kuhl, “Generation, tuning, and shaping of narrow-band, picosecond THz pulses by two-beam excitation,” Opt. Express 12(19), 4650–4658 (2004).
    [CrossRef] [PubMed]
  11. C. D’Amico, M. Tondusson, J. Degert, and E. Freysz, “Tuning and focusing THz pulses by shaping the pump laser beam profile in a nonlinear crystal,” Opt. Express 17(2), 592–597 (2009).
    [CrossRef] [PubMed]
  12. S. Vidal, J. Degert, J. Oberlé, and E. Freysz, “Femtosecond optical pulse shaping for tunable terahertz pulse generation,” J. Opt. Soc. Am. B 27(5), 1044–1050 (2010).
    [CrossRef]
  13. M. Yamaguchi and J. Das, “Terahertz wave generation in nitrogen gas using shaped optical pulses,” J. Opt. Soc. Am. B 26(9), A90–A94 (2009).
    [CrossRef]
  14. K. K. Kohli, A. Vaupel, S. Chatterjee, and W. W. Rühle, “Adaptive shaping of THz-pulses generated in <110> ZnTe crystals,” J. Opt. Soc. Am. B 26(9), A74–A78 (2009).
    [CrossRef]
  15. J. Ahn, A. V. Efimov, R. D. Averitt, and A. J. Taylor, “Terahertz waveform synthesis via optical rectification of shaped ultrafast laser pulses,” Opt. Express 11(20), 2486–2496 (2003).
    [CrossRef] [PubMed]
  16. Y.-S. Lee, T. Meade, T. B. Norris, and A. Galvanauskas, “Tunable narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 78(23), 3583–3585 (2001).
    [CrossRef]
  17. Y.-S. Lee, N. Amer, and W. C. Hurlbut, “Terahertz pulse shaping via optical rectification in poled lithium niobate,” Appl. Phys. Lett. 82(2), 170–172 (2003).
    [CrossRef]
  18. S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
    [CrossRef]
  19. S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
    [CrossRef]
  20. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
    [CrossRef]
  21. Z. G. Lu, P. Campbell, and X.-C. Zhang, “Free-space electro-optic sampling with a high-repetition-rate regenerative amplified laser,” Appl. Phys. Lett. 71(5), 593–595 (1997).
    [CrossRef]
  22. High-resolution transmission molecular absorption database (HITRAN), http://cfa-www.harvard.edu/HITRAN/ .
  23. M. Beck, H. Schäfer, G. Klatt, J. Demsar, S. Winnerl, M. Helm, and T. Dekorsy, “Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna,” Opt. Express 18(9), 9251–9257 (2010).
    [CrossRef] [PubMed]

2011 (1)

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[CrossRef]

2010 (2)

2009 (4)

2008 (2)

J. R. Danielson, A. D. Jameson, J. L. Tomaino, H. Hui, J. D. Wetzel, Y.-S. Lee, and K. L. Vodopyanov, “Intense narrow band terahertz generation via type-II difference-frequency generation in ZnTe using chirped optical pulses,” J. Appl. Phys. 104(3), 033111 (2008).
[CrossRef]

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
[CrossRef]

2006 (1)

2005 (1)

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[CrossRef]

2004 (2)

2003 (2)

J. Ahn, A. V. Efimov, R. D. Averitt, and A. J. Taylor, “Terahertz waveform synthesis via optical rectification of shaped ultrafast laser pulses,” Opt. Express 11(20), 2486–2496 (2003).
[CrossRef] [PubMed]

Y.-S. Lee, N. Amer, and W. C. Hurlbut, “Terahertz pulse shaping via optical rectification in poled lithium niobate,” Appl. Phys. Lett. 82(2), 170–172 (2003).
[CrossRef]

2002 (1)

J. Y. Sohn, Y. H. Ahn, D. J. Park, E. Oh, and D. S. Kim, “Tunable terahertz generation using femtosecond pulse shaping,” Appl. Phys. Lett. 81(1), 13–15 (2002).
[CrossRef]

2001 (1)

Y.-S. Lee, T. Meade, T. B. Norris, and A. Galvanauskas, “Tunable narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 78(23), 3583–3585 (2001).
[CrossRef]

1997 (1)

Z. G. Lu, P. Campbell, and X.-C. Zhang, “Free-space electro-optic sampling with a high-repetition-rate regenerative amplified laser,” Appl. Phys. Lett. 71(5), 593–595 (1997).
[CrossRef]

1996 (2)

Y. Liu, S.-G. Park, and A. M. Weiner, “Terahertz waveform synthesis via optical pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 2(3), 709–719 (1996).
[CrossRef]

A. S. Weling and D. H. Auston, “Novel sources and detectors for coherent tunable narrow-band terahertz radiation in free space,” J. Opt. Soc. Am. B 13(12), 2783–2791 (1996).
[CrossRef]

1994 (1)

A. S. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, “Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas,” Appl. Phys. Lett. 64(2), 137–139 (1994).
[CrossRef]

Ahn, J.

Ahn, Y. H.

J. Y. Sohn, Y. H. Ahn, D. J. Park, E. Oh, and D. S. Kim, “Tunable terahertz generation using femtosecond pulse shaping,” Appl. Phys. Lett. 81(1), 13–15 (2002).
[CrossRef]

Amer, N.

W. C. Hurlbut, B. J. Norton, N. Amer, and Y.-S. Lee, “Manipulation of terahertz waveforms in nonlinear optical crystals by shaped optical pulses,” J. Opt. Soc. Am. B 23(1), 90–93 (2006).
[CrossRef]

Y.-S. Lee, N. Amer, and W. C. Hurlbut, “Terahertz pulse shaping via optical rectification in poled lithium niobate,” Appl. Phys. Lett. 82(2), 170–172 (2003).
[CrossRef]

Auston, D. H.

A. S. Weling and D. H. Auston, “Novel sources and detectors for coherent tunable narrow-band terahertz radiation in free space,” J. Opt. Soc. Am. B 13(12), 2783–2791 (1996).
[CrossRef]

A. S. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, “Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas,” Appl. Phys. Lett. 64(2), 137–139 (1994).
[CrossRef]

Averitt, R. D.

Beck, M.

Campbell, P.

Z. G. Lu, P. Campbell, and X.-C. Zhang, “Free-space electro-optic sampling with a high-repetition-rate regenerative amplified laser,” Appl. Phys. Lett. 71(5), 593–595 (1997).
[CrossRef]

Chatterjee, S.

Cook, A. M.

A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, “Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide,” Phys. Rev. Lett. 103(9), 095003 (2009).
[CrossRef] [PubMed]

D’Amico, C.

Danielson, J. R.

J. R. Danielson, A. D. Jameson, J. L. Tomaino, H. Hui, J. D. Wetzel, Y.-S. Lee, and K. L. Vodopyanov, “Intense narrow band terahertz generation via type-II difference-frequency generation in ZnTe using chirped optical pulses,” J. Appl. Phys. 104(3), 033111 (2008).
[CrossRef]

Das, J.

Degert, J.

Dekorsy, T.

M. Beck, H. Schäfer, G. Klatt, J. Demsar, S. Winnerl, M. Helm, and T. Dekorsy, “Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna,” Opt. Express 18(9), 9251–9257 (2010).
[CrossRef] [PubMed]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[CrossRef]

Demsar, J.

Döhler, G. H.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[CrossRef]

Dreyhaupt, A.

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
[CrossRef]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[CrossRef]

Efimov, A. V.

Feurer, T.

Freysz, E.

Froberg, N. M.

A. S. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, “Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas,” Appl. Phys. Lett. 64(2), 137–139 (1994).
[CrossRef]

Galvanauskas, A.

Y.-S. Lee, T. Meade, T. B. Norris, and A. Galvanauskas, “Tunable narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 78(23), 3583–3585 (2001).
[CrossRef]

Gossard, A. C.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[CrossRef]

Hebling, J.

Helm, M.

M. Beck, H. Schäfer, G. Klatt, J. Demsar, S. Winnerl, M. Helm, and T. Dekorsy, “Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna,” Opt. Express 18(9), 9251–9257 (2010).
[CrossRef] [PubMed]

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
[CrossRef]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[CrossRef]

Hornung, T.

Hu, B. B.

A. S. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, “Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas,” Appl. Phys. Lett. 64(2), 137–139 (1994).
[CrossRef]

Hui, H.

J. R. Danielson, A. D. Jameson, J. L. Tomaino, H. Hui, J. D. Wetzel, Y.-S. Lee, and K. L. Vodopyanov, “Intense narrow band terahertz generation via type-II difference-frequency generation in ZnTe using chirped optical pulses,” J. Appl. Phys. 104(3), 033111 (2008).
[CrossRef]

Hurlbut, W. C.

W. C. Hurlbut, B. J. Norton, N. Amer, and Y.-S. Lee, “Manipulation of terahertz waveforms in nonlinear optical crystals by shaped optical pulses,” J. Opt. Soc. Am. B 23(1), 90–93 (2006).
[CrossRef]

Y.-S. Lee, N. Amer, and W. C. Hurlbut, “Terahertz pulse shaping via optical rectification in poled lithium niobate,” Appl. Phys. Lett. 82(2), 170–172 (2003).
[CrossRef]

Jameson, A. D.

J. R. Danielson, A. D. Jameson, J. L. Tomaino, H. Hui, J. D. Wetzel, Y.-S. Lee, and K. L. Vodopyanov, “Intense narrow band terahertz generation via type-II difference-frequency generation in ZnTe using chirped optical pulses,” J. Appl. Phys. 104(3), 033111 (2008).
[CrossRef]

Kim, D. S.

J. Y. Sohn, Y. H. Ahn, D. J. Park, E. Oh, and D. S. Kim, “Tunable terahertz generation using femtosecond pulse shaping,” Appl. Phys. Lett. 81(1), 13–15 (2002).
[CrossRef]

Klatt, G.

Köhler, K.

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
[CrossRef]

Kohli, K. K.

Kuhl, J.

Lee, Y.-S.

J. R. Danielson, A. D. Jameson, J. L. Tomaino, H. Hui, J. D. Wetzel, Y.-S. Lee, and K. L. Vodopyanov, “Intense narrow band terahertz generation via type-II difference-frequency generation in ZnTe using chirped optical pulses,” J. Appl. Phys. 104(3), 033111 (2008).
[CrossRef]

W. C. Hurlbut, B. J. Norton, N. Amer, and Y.-S. Lee, “Manipulation of terahertz waveforms in nonlinear optical crystals by shaped optical pulses,” J. Opt. Soc. Am. B 23(1), 90–93 (2006).
[CrossRef]

Y.-S. Lee, N. Amer, and W. C. Hurlbut, “Terahertz pulse shaping via optical rectification in poled lithium niobate,” Appl. Phys. Lett. 82(2), 170–172 (2003).
[CrossRef]

Y.-S. Lee, T. Meade, T. B. Norris, and A. Galvanauskas, “Tunable narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 78(23), 3583–3585 (2001).
[CrossRef]

Liu, Y.

Y. Liu, S.-G. Park, and A. M. Weiner, “Terahertz waveform synthesis via optical pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 2(3), 709–719 (1996).
[CrossRef]

Lu, Z. G.

Z. G. Lu, P. Campbell, and X.-C. Zhang, “Free-space electro-optic sampling with a high-repetition-rate regenerative amplified laser,” Appl. Phys. Lett. 71(5), 593–595 (1997).
[CrossRef]

Malzer, S.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[CrossRef]

Meade, T.

Y.-S. Lee, T. Meade, T. B. Norris, and A. Galvanauskas, “Tunable narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 78(23), 3583–3585 (2001).
[CrossRef]

Nelson, K. A.

Nitsche, S.

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
[CrossRef]

Norris, T. B.

Y.-S. Lee, T. Meade, T. B. Norris, and A. Galvanauskas, “Tunable narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 78(23), 3583–3585 (2001).
[CrossRef]

Norton, B. J.

Oberlé, J.

Oh, E.

J. Y. Sohn, Y. H. Ahn, D. J. Park, E. Oh, and D. S. Kim, “Tunable terahertz generation using femtosecond pulse shaping,” Appl. Phys. Lett. 81(1), 13–15 (2002).
[CrossRef]

Park, D. J.

J. Y. Sohn, Y. H. Ahn, D. J. Park, E. Oh, and D. S. Kim, “Tunable terahertz generation using femtosecond pulse shaping,” Appl. Phys. Lett. 81(1), 13–15 (2002).
[CrossRef]

Park, S.-G.

Y. Liu, S.-G. Park, and A. M. Weiner, “Terahertz waveform synthesis via optical pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 2(3), 709–719 (1996).
[CrossRef]

Peter, F.

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
[CrossRef]

Preu, S.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[CrossRef]

Rosenzweig, J. B.

A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, “Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide,” Phys. Rev. Lett. 103(9), 095003 (2009).
[CrossRef] [PubMed]

Rühle, W. W.

Schäfer, H.

Schneider, H.

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
[CrossRef]

Sohn, J. Y.

J. Y. Sohn, Y. H. Ahn, D. J. Park, E. Oh, and D. S. Kim, “Tunable terahertz generation using femtosecond pulse shaping,” Appl. Phys. Lett. 81(1), 13–15 (2002).
[CrossRef]

Stepanov, A. G.

Taylor, A. J.

Tikhoplav, R.

A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, “Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide,” Phys. Rev. Lett. 103(9), 095003 (2009).
[CrossRef] [PubMed]

Tochitsky, S. Y.

A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, “Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide,” Phys. Rev. Lett. 103(9), 095003 (2009).
[CrossRef] [PubMed]

Tomaino, J. L.

J. R. Danielson, A. D. Jameson, J. L. Tomaino, H. Hui, J. D. Wetzel, Y.-S. Lee, and K. L. Vodopyanov, “Intense narrow band terahertz generation via type-II difference-frequency generation in ZnTe using chirped optical pulses,” J. Appl. Phys. 104(3), 033111 (2008).
[CrossRef]

Tondusson, M.

Travish, G.

A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, “Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide,” Phys. Rev. Lett. 103(9), 095003 (2009).
[CrossRef] [PubMed]

Vaughan, J. C.

Vaupel, A.

Vidal, S.

Vodopyanov, K. L.

J. R. Danielson, A. D. Jameson, J. L. Tomaino, H. Hui, J. D. Wetzel, Y.-S. Lee, and K. L. Vodopyanov, “Intense narrow band terahertz generation via type-II difference-frequency generation in ZnTe using chirped optical pulses,” J. Appl. Phys. 104(3), 033111 (2008).
[CrossRef]

Wagner, M.

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
[CrossRef]

Wang, L. J.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[CrossRef]

Weiner, A. M.

Y. Liu, S.-G. Park, and A. M. Weiner, “Terahertz waveform synthesis via optical pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 2(3), 709–719 (1996).
[CrossRef]

Weling, A. S.

A. S. Weling and D. H. Auston, “Novel sources and detectors for coherent tunable narrow-band terahertz radiation in free space,” J. Opt. Soc. Am. B 13(12), 2783–2791 (1996).
[CrossRef]

A. S. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, “Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas,” Appl. Phys. Lett. 64(2), 137–139 (1994).
[CrossRef]

Wetzel, J. D.

J. R. Danielson, A. D. Jameson, J. L. Tomaino, H. Hui, J. D. Wetzel, Y.-S. Lee, and K. L. Vodopyanov, “Intense narrow band terahertz generation via type-II difference-frequency generation in ZnTe using chirped optical pulses,” J. Appl. Phys. 104(3), 033111 (2008).
[CrossRef]

Williams, O. B.

A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, “Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide,” Phys. Rev. Lett. 103(9), 095003 (2009).
[CrossRef] [PubMed]

Winnerl, S.

M. Beck, H. Schäfer, G. Klatt, J. Demsar, S. Winnerl, M. Helm, and T. Dekorsy, “Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna,” Opt. Express 18(9), 9251–9257 (2010).
[CrossRef] [PubMed]

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
[CrossRef]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[CrossRef]

Yamaguchi, M.

Zhang, X.-C.

Z. G. Lu, P. Campbell, and X.-C. Zhang, “Free-space electro-optic sampling with a high-repetition-rate regenerative amplified laser,” Appl. Phys. Lett. 71(5), 593–595 (1997).
[CrossRef]

Zimmermann, B.

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
[CrossRef]

Appl. Phys. Lett. (6)

J. Y. Sohn, Y. H. Ahn, D. J. Park, E. Oh, and D. S. Kim, “Tunable terahertz generation using femtosecond pulse shaping,” Appl. Phys. Lett. 81(1), 13–15 (2002).
[CrossRef]

Y.-S. Lee, T. Meade, T. B. Norris, and A. Galvanauskas, “Tunable narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 78(23), 3583–3585 (2001).
[CrossRef]

Y.-S. Lee, N. Amer, and W. C. Hurlbut, “Terahertz pulse shaping via optical rectification in poled lithium niobate,” Appl. Phys. Lett. 82(2), 170–172 (2003).
[CrossRef]

A. S. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, “Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas,” Appl. Phys. Lett. 64(2), 137–139 (1994).
[CrossRef]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[CrossRef]

Z. G. Lu, P. Campbell, and X.-C. Zhang, “Free-space electro-optic sampling with a high-repetition-rate regenerative amplified laser,” Appl. Phys. Lett. 71(5), 593–595 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008).
[CrossRef]

Y. Liu, S.-G. Park, and A. M. Weiner, “Terahertz waveform synthesis via optical pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 2(3), 709–719 (1996).
[CrossRef]

J. Appl. Phys. (2)

J. R. Danielson, A. D. Jameson, J. L. Tomaino, H. Hui, J. D. Wetzel, Y.-S. Lee, and K. L. Vodopyanov, “Intense narrow band terahertz generation via type-II difference-frequency generation in ZnTe using chirped optical pulses,” J. Appl. Phys. 104(3), 033111 (2008).
[CrossRef]

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[CrossRef]

J. Opt. Soc. Am. B (5)

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, “Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide,” Phys. Rev. Lett. 103(9), 095003 (2009).
[CrossRef] [PubMed]

Other (2)

Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).

High-resolution transmission molecular absorption database (HITRAN), http://cfa-www.harvard.edu/HITRAN/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Scheme of chirped-pulse difference frequency generation (a) and experimental setup for the THz generation (b). BS:beamsplitter.

Fig. 2
Fig. 2

(a) THz time domain transients for regular femtosecond excitation (black) and chirped pulse DFG (red line). The spectral powers at various central frequencies and the power spectrum of fs-excitation (dashed) are shown in (b).

Fig. 3
Fig. 3

Power (top) and tuning (bottom) curves for different input pulse lengths for increasing time delay between the two optical pulses.

Fig. 4
Fig. 4

Power spectra for two pulse lengths of 1.4 ps (black) and 3.3 ps (blue). The arrows indicate the FWHM of the two spectra.

Fig. 5
Fig. 5

Curves of the THz power as function of the combined NIR pulse energy. The black squares and blue triangles data are from the focused SI(LT)-GaAs emitters, the full red circles are taken from the 10 × 10 mm2 SI-GaAs emitter under wide focus excitation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E 1 ( t ) = E 2 ( t + τ ) = E 0 exp ( 4 ln 2 ( t / τ p ) 2 ) exp ( i ω t i b t 2 ) ,
ν DFG = v 2 i ν 1 i = ( b / π ) t ( b / π ) ( t τ ) = ( b / π ) τ = ω DFG 2 π .
Δ ω = 8 τ P 0 b = 2 π Δ ν DFG ,

Metrics