Abstract

We present experimental and theoretical results on plasmonic control of far-field interference for regular ripple formation on semiconductor and metal. Experimental observation of interference ripple pattern on Si substrate originating from the gold nanosphere irradiated by femtosecond laser is presented. Gold nanosphere is found to be an origin for ripple formation. Arbitrary intensity ripple patterns are theoretically controllable by depositing desired plasmonic and Mie scattering far-field pattern generators. The plasmonic far-field generation is demonstrated not only by metallic nanostructures but also by the controlled surface structures such as ridge and trench structures on various material substrates.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kawata, Near-Field Optics and Surface Plasmon Polaritons (Springer, 2001).
  2. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [CrossRef] [PubMed]
  3. S. Carretero-Palacios, O. Mahboub, F. J. Garcia-Vidal, L. Martin-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express 19(11), 10429–10442 (2011).
    [CrossRef] [PubMed]
  4. S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
    [CrossRef]
  5. A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
    [CrossRef]
  6. H. Takada and M. Obara, “Fabrication of hexagonally arrayed nanoholes using femtosecond laser pulse ablation with template of subwavelength polystyrene particle array,” Jpn. J. Appl. Phys. 44, 7993–7997 (2005).
    [CrossRef]
  7. N. N. Nedyalkov, H. Takada, and M. Obara, “Nanostructuring of silicon surface by femtosecond laser pulse mediated with enhanced near-field of gold nanoparticles,” Appl. Phys., A Mater. Sci. Process. 85(2), 163–168 (2006).
    [CrossRef]
  8. N. N. Nedyalkov, T. Sakai, T. Miyanishi, and M. Obara, “Near field properties in the vicinity of gold nanoparticles placed on various substrates for precise nanostructuring,” J. Phys. D Appl. Phys. 39(23), 5037–5042 (2006).
    [CrossRef]
  9. T. Sakai, Y. Tanaka, Y. Nishizawa, M. Terakawa, and M. Obara, “Size parameter effect of dielectric small particle mediated nano-hole patterning on silicon wafer by femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 99(1), 39–46 (2010).
    [CrossRef]
  10. Y. Tanaka, G. Obara, A. Zenidaka, M. Terakawa, and M. Obara, “Femtosecond laser near-field nano-ablation patterning using Mie resonance high dielectric constant particle with small size parameter,” Appl. Phys. Lett. 96(26), 261103 (2010).
    [CrossRef]
  11. G. Obara, Y. Tanaka, T. Miyanishi, and M. Obara, “Uniform plasmonic near-field nanopatterning by backward irradiation of femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 102(3), 551–557 (2011).
    [CrossRef]
  12. Y. Tanaka, G. Obara, A. Zenidaka, N. N. Nedyalkov, M. Terakawa, and M. Obara, “Near-field interaction of two-dimensional high-permittivity spherical particle arrays on substrate in the Mie resonance scattering domain,” Opt. Express 18(26), 27226–27237 (2010).
    [CrossRef] [PubMed]
  13. S. Imamova, A. Dikovska, N. Nedyalkov, P. Atanasov, M. Sawczak, R. Jendrzejewski, G. Sliwinski, and M. Obara, “Laser nanostructuring of thin Au films for application in surface enhanced Raman spectroscopy,” J. Optoelectron. Adv. Mater. 12, 500–504 (2010).
  14. T. Miyanishi, T. Sakai, N. N. Nedyalkov, and M. Obara, “Femtosecond-laser nanofabrication onto silicon surface with near-field localization generated by plasmon polaritons in gold nanoparticles with oblique irradiation,” Appl. Phys., A Mater. Sci. Process. 96(4), 843–850 (2009).
    [CrossRef]
  15. Y. Tanaka, N. N. Nedyalkov, and M. Obara, “Enhanced near-field distribution inside substrates mediated with gold particle: optical vortex and bifurcation,” Appl. Phys., A Mater. Sci. Process. 97(1), 91–98 (2009).
    [CrossRef]
  16. G. Mie, “Beiträ ge zur Optik trü ber Medien, speziell kolloidaler Metallö sungen,” Ann. Phys. 330(3), 377–445 (1908).
    [CrossRef]
  17. A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
    [CrossRef]
  18. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
    [CrossRef]
  19. T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
    [CrossRef]
  20. G. Miyaji and K. Miyazaki, “Ultrafast dynamics of periodic nanostructure formation on diamondlike carbon films irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 89(19), 191902 (2006).
    [CrossRef]
  21. G. Miyaji and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express 16(20), 16265–16271 (2008).
    [CrossRef] [PubMed]
  22. G. Miyaji and K. Miyazaki, “Nanoscale ablation on patterned diamondlike carbon film with femtosecond laser pulses,” Appl. Phys. Lett. 91(12), 123102 (2007).
    [CrossRef]
  23. D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
    [CrossRef]
  24. J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond –laser pulse,” J. Appl. Phys. 106(10), 104910 (2009).
    [CrossRef]
  25. S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism of self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
    [CrossRef]
  26. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
    [CrossRef] [PubMed]
  27. J. Sipe, J. Young, J. Preston, and H. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
    [CrossRef]
  28. F. Jeff, “Young, J. F. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27, 1155–1172 (1983).
  29. J. Young, J. Sipe, and H. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Phys. Rev. B 30, 2001–2015 (1984).
    [CrossRef]
  30. H. Kumagai, M. Ezaki, K. Toyoda, and M. Obara, “Periodic submicrometer dot structure on n-GaAs substrates fabricated by laser-induced surface electromagnetic wave etching,” J. Appl. Phys. 73(4), 1971–1974 (1993).
    [CrossRef]
  31. M. Ezaki, H. Kumagai, K. Toyoda, and M. Obara, “Surface modification of III-V compound semiconductors using surface electromagnetic wave etching induced by ultraviolet lasers,” IEEE J. Sel. Top. Quantum Electron. 1(3), 841–847 (1995).
    [CrossRef]
  32. A. Anderson, F. Lücking, T. Prikoszovits, M. Hofer, Z. Cheng, C. C. Neacsu, M. Scharrer, S. Rammler, P. S. J. Russell, G. Tempea, and A. Assion, “Multi-mJ carrier envelope phase stabilized few-cycle pulses generated by a tabletop laser system,” Appl. Phys. B 103, 531–536 (2011).
    [CrossRef]
  33. L. Bergé, C.-L. Soulez, C. Köhler, and S. Skupin, “Role of the carrier-envelop phase in laser filamentation,” Appl. Phys. B 103(3), 563–570 (2011).
    [CrossRef]
  34. H. J. Hyvärinen, J. Turunen, and P. Vahimaa, “Elementary-field modeling of surface-plasmon excitation with partially coherent light,” Appl. Phys. B 101(1-2), 273–282 (2010).
    [CrossRef]
  35. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  36. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  37. A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B Condens. Matter 34(10), 7018–7026 (1986).
    [CrossRef] [PubMed]

2011 (4)

S. Carretero-Palacios, O. Mahboub, F. J. Garcia-Vidal, L. Martin-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express 19(11), 10429–10442 (2011).
[CrossRef] [PubMed]

G. Obara, Y. Tanaka, T. Miyanishi, and M. Obara, “Uniform plasmonic near-field nanopatterning by backward irradiation of femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 102(3), 551–557 (2011).
[CrossRef]

A. Anderson, F. Lücking, T. Prikoszovits, M. Hofer, Z. Cheng, C. C. Neacsu, M. Scharrer, S. Rammler, P. S. J. Russell, G. Tempea, and A. Assion, “Multi-mJ carrier envelope phase stabilized few-cycle pulses generated by a tabletop laser system,” Appl. Phys. B 103, 531–536 (2011).
[CrossRef]

L. Bergé, C.-L. Soulez, C. Köhler, and S. Skupin, “Role of the carrier-envelop phase in laser filamentation,” Appl. Phys. B 103(3), 563–570 (2011).
[CrossRef]

2010 (5)

H. J. Hyvärinen, J. Turunen, and P. Vahimaa, “Elementary-field modeling of surface-plasmon excitation with partially coherent light,” Appl. Phys. B 101(1-2), 273–282 (2010).
[CrossRef]

Y. Tanaka, G. Obara, A. Zenidaka, N. N. Nedyalkov, M. Terakawa, and M. Obara, “Near-field interaction of two-dimensional high-permittivity spherical particle arrays on substrate in the Mie resonance scattering domain,” Opt. Express 18(26), 27226–27237 (2010).
[CrossRef] [PubMed]

S. Imamova, A. Dikovska, N. Nedyalkov, P. Atanasov, M. Sawczak, R. Jendrzejewski, G. Sliwinski, and M. Obara, “Laser nanostructuring of thin Au films for application in surface enhanced Raman spectroscopy,” J. Optoelectron. Adv. Mater. 12, 500–504 (2010).

T. Sakai, Y. Tanaka, Y. Nishizawa, M. Terakawa, and M. Obara, “Size parameter effect of dielectric small particle mediated nano-hole patterning on silicon wafer by femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 99(1), 39–46 (2010).
[CrossRef]

Y. Tanaka, G. Obara, A. Zenidaka, M. Terakawa, and M. Obara, “Femtosecond laser near-field nano-ablation patterning using Mie resonance high dielectric constant particle with small size parameter,” Appl. Phys. Lett. 96(26), 261103 (2010).
[CrossRef]

2009 (6)

T. Miyanishi, T. Sakai, N. N. Nedyalkov, and M. Obara, “Femtosecond-laser nanofabrication onto silicon surface with near-field localization generated by plasmon polaritons in gold nanoparticles with oblique irradiation,” Appl. Phys., A Mater. Sci. Process. 96(4), 843–850 (2009).
[CrossRef]

Y. Tanaka, N. N. Nedyalkov, and M. Obara, “Enhanced near-field distribution inside substrates mediated with gold particle: optical vortex and bifurcation,” Appl. Phys., A Mater. Sci. Process. 97(1), 91–98 (2009).
[CrossRef]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[CrossRef]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond –laser pulse,” J. Appl. Phys. 106(10), 104910 (2009).
[CrossRef]

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism of self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[CrossRef]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (3)

G. Miyaji and K. Miyazaki, “Nanoscale ablation on patterned diamondlike carbon film with femtosecond laser pulses,” Appl. Phys. Lett. 91(12), 123102 (2007).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
[CrossRef]

2006 (4)

G. Miyaji and K. Miyazaki, “Ultrafast dynamics of periodic nanostructure formation on diamondlike carbon films irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 89(19), 191902 (2006).
[CrossRef]

N. N. Nedyalkov, H. Takada, and M. Obara, “Nanostructuring of silicon surface by femtosecond laser pulse mediated with enhanced near-field of gold nanoparticles,” Appl. Phys., A Mater. Sci. Process. 85(2), 163–168 (2006).
[CrossRef]

N. N. Nedyalkov, T. Sakai, T. Miyanishi, and M. Obara, “Near field properties in the vicinity of gold nanoparticles placed on various substrates for precise nanostructuring,” J. Phys. D Appl. Phys. 39(23), 5037–5042 (2006).
[CrossRef]

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[CrossRef]

2005 (1)

H. Takada and M. Obara, “Fabrication of hexagonally arrayed nanoholes using femtosecond laser pulse ablation with template of subwavelength polystyrene particle array,” Jpn. J. Appl. Phys. 44, 7993–7997 (2005).
[CrossRef]

2003 (1)

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[CrossRef]

2002 (1)

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[CrossRef]

1999 (1)

A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
[CrossRef]

1995 (1)

M. Ezaki, H. Kumagai, K. Toyoda, and M. Obara, “Surface modification of III-V compound semiconductors using surface electromagnetic wave etching induced by ultraviolet lasers,” IEEE J. Sel. Top. Quantum Electron. 1(3), 841–847 (1995).
[CrossRef]

1993 (1)

H. Kumagai, M. Ezaki, K. Toyoda, and M. Obara, “Periodic submicrometer dot structure on n-GaAs substrates fabricated by laser-induced surface electromagnetic wave etching,” J. Appl. Phys. 73(4), 1971–1974 (1993).
[CrossRef]

1986 (1)

A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B Condens. Matter 34(10), 7018–7026 (1986).
[CrossRef] [PubMed]

1984 (1)

J. Young, J. Sipe, and H. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Phys. Rev. B 30, 2001–2015 (1984).
[CrossRef]

1983 (2)

J. Sipe, J. Young, J. Preston, and H. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

F. Jeff, “Young, J. F. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27, 1155–1172 (1983).

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1908 (1)

G. Mie, “Beiträ ge zur Optik trü ber Medien, speziell kolloidaler Metallö sungen,” Ann. Phys. 330(3), 377–445 (1908).
[CrossRef]

Anderson, A.

A. Anderson, F. Lücking, T. Prikoszovits, M. Hofer, Z. Cheng, C. C. Neacsu, M. Scharrer, S. Rammler, P. S. J. Russell, G. Tempea, and A. Assion, “Multi-mJ carrier envelope phase stabilized few-cycle pulses generated by a tabletop laser system,” Appl. Phys. B 103, 531–536 (2011).
[CrossRef]

Assion, A.

A. Anderson, F. Lücking, T. Prikoszovits, M. Hofer, Z. Cheng, C. C. Neacsu, M. Scharrer, S. Rammler, P. S. J. Russell, G. Tempea, and A. Assion, “Multi-mJ carrier envelope phase stabilized few-cycle pulses generated by a tabletop laser system,” Appl. Phys. B 103, 531–536 (2011).
[CrossRef]

Atanasov, P.

S. Imamova, A. Dikovska, N. Nedyalkov, P. Atanasov, M. Sawczak, R. Jendrzejewski, G. Sliwinski, and M. Obara, “Laser nanostructuring of thin Au films for application in surface enhanced Raman spectroscopy,” J. Optoelectron. Adv. Mater. 12, 500–504 (2010).

Bergé, L.

L. Bergé, C.-L. Soulez, C. Köhler, and S. Skupin, “Role of the carrier-envelop phase in laser filamentation,” Appl. Phys. B 103(3), 563–570 (2011).
[CrossRef]

Bloomer, I.

A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B Condens. Matter 34(10), 7018–7026 (1986).
[CrossRef] [PubMed]

Boneberg, J.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[CrossRef]

Bonse, J.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[CrossRef]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond –laser pulse,” J. Appl. Phys. 106(10), 104910 (2009).
[CrossRef]

Borowiec, A.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[CrossRef]

Brown, W. D.

A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
[CrossRef]

Carretero-Palacios, S.

Cheng, Y.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Cheng, Z.

A. Anderson, F. Lücking, T. Prikoszovits, M. Hofer, Z. Cheng, C. C. Neacsu, M. Scharrer, S. Rammler, P. S. J. Russell, G. Tempea, and A. Assion, “Multi-mJ carrier envelope phase stabilized few-cycle pulses generated by a tabletop laser system,” Appl. Phys. B 103, 531–536 (2011).
[CrossRef]

Chong, T. C.

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Das, S. K.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[CrossRef]

Dikovska, A.

S. Imamova, A. Dikovska, N. Nedyalkov, P. Atanasov, M. Sawczak, R. Jendrzejewski, G. Sliwinski, and M. Obara, “Laser nanostructuring of thin Au films for application in surface enhanced Raman spectroscopy,” J. Optoelectron. Adv. Mater. 12, 500–504 (2010).

Dufft, D.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[CrossRef]

Ebbesen, T. W.

Ezaki, M.

M. Ezaki, H. Kumagai, K. Toyoda, and M. Obara, “Surface modification of III-V compound semiconductors using surface electromagnetic wave etching induced by ultraviolet lasers,” IEEE J. Sel. Top. Quantum Electron. 1(3), 841–847 (1995).
[CrossRef]

H. Kumagai, M. Ezaki, K. Toyoda, and M. Obara, “Periodic submicrometer dot structure on n-GaAs substrates fabricated by laser-induced surface electromagnetic wave etching,” J. Appl. Phys. 73(4), 1971–1974 (1993).
[CrossRef]

Forouhi, A. R.

A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B Condens. Matter 34(10), 7018–7026 (1986).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

Genet, C.

Grunwald, R.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[CrossRef]

Hashida, M.

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism of self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[CrossRef]

Hashimoto, S.

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
[CrossRef]

Haugen, H. K.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[CrossRef]

Hofer, M.

A. Anderson, F. Lücking, T. Prikoszovits, M. Hofer, Z. Cheng, C. C. Neacsu, M. Scharrer, S. Rammler, P. S. J. Russell, G. Tempea, and A. Assion, “Multi-mJ carrier envelope phase stabilized few-cycle pulses generated by a tabletop laser system,” Appl. Phys. B 103, 531–536 (2011).
[CrossRef]

Hong, M. H.

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[CrossRef]

Huang, M.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Huang, S. M.

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[CrossRef]

Hyvärinen, H. J.

H. J. Hyvärinen, J. Turunen, and P. Vahimaa, “Elementary-field modeling of surface-plasmon excitation with partially coherent light,” Appl. Phys. B 101(1-2), 273–282 (2010).
[CrossRef]

Imamova, S.

S. Imamova, A. Dikovska, N. Nedyalkov, P. Atanasov, M. Sawczak, R. Jendrzejewski, G. Sliwinski, and M. Obara, “Laser nanostructuring of thin Au films for application in surface enhanced Raman spectroscopy,” J. Optoelectron. Adv. Mater. 12, 500–504 (2010).

Jeff, F.

F. Jeff, “Young, J. F. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27, 1155–1172 (1983).

Jendrzejewski, R.

S. Imamova, A. Dikovska, N. Nedyalkov, P. Atanasov, M. Sawczak, R. Jendrzejewski, G. Sliwinski, and M. Obara, “Laser nanostructuring of thin Au films for application in surface enhanced Raman spectroscopy,” J. Optoelectron. Adv. Mater. 12, 500–504 (2010).

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Kinoshita, K.

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
[CrossRef]

Köhler, C.

L. Bergé, C.-L. Soulez, C. Köhler, and S. Skupin, “Role of the carrier-envelop phase in laser filamentation,” Appl. Phys. B 103(3), 563–570 (2011).
[CrossRef]

Kotaidis, V.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[CrossRef]

Krüger, J.

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond –laser pulse,” J. Appl. Phys. 106(10), 104910 (2009).
[CrossRef]

Kumagai, H.

M. Ezaki, H. Kumagai, K. Toyoda, and M. Obara, “Surface modification of III-V compound semiconductors using surface electromagnetic wave etching induced by ultraviolet lasers,” IEEE J. Sel. Top. Quantum Electron. 1(3), 841–847 (1995).
[CrossRef]

H. Kumagai, M. Ezaki, K. Toyoda, and M. Obara, “Periodic submicrometer dot structure on n-GaAs substrates fabricated by laser-induced surface electromagnetic wave etching,” J. Appl. Phys. 73(4), 1971–1974 (1993).
[CrossRef]

Lorenc, M.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[CrossRef]

Lu, Y. F.

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[CrossRef]

Lücking, F.

A. Anderson, F. Lücking, T. Prikoszovits, M. Hofer, Z. Cheng, C. C. Neacsu, M. Scharrer, S. Rammler, P. S. J. Russell, G. Tempea, and A. Assion, “Multi-mJ carrier envelope phase stabilized few-cycle pulses generated by a tabletop laser system,” Appl. Phys. B 103, 531–536 (2011).
[CrossRef]

Luk’yanchuk, B. S.

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[CrossRef]

Mahboub, O.

Malshe, A. P.

A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
[CrossRef]

Martin-Moreno, L.

Matsuo, S.

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
[CrossRef]

Mie, G.

G. Mie, “Beiträ ge zur Optik trü ber Medien, speziell kolloidaler Metallö sungen,” Ann. Phys. 330(3), 377–445 (1908).
[CrossRef]

Miyaji, G.

G. Miyaji and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express 16(20), 16265–16271 (2008).
[CrossRef] [PubMed]

G. Miyaji and K. Miyazaki, “Nanoscale ablation on patterned diamondlike carbon film with femtosecond laser pulses,” Appl. Phys. Lett. 91(12), 123102 (2007).
[CrossRef]

G. Miyaji and K. Miyazaki, “Ultrafast dynamics of periodic nanostructure formation on diamondlike carbon films irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 89(19), 191902 (2006).
[CrossRef]

Miyanishi, T.

G. Obara, Y. Tanaka, T. Miyanishi, and M. Obara, “Uniform plasmonic near-field nanopatterning by backward irradiation of femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 102(3), 551–557 (2011).
[CrossRef]

T. Miyanishi, T. Sakai, N. N. Nedyalkov, and M. Obara, “Femtosecond-laser nanofabrication onto silicon surface with near-field localization generated by plasmon polaritons in gold nanoparticles with oblique irradiation,” Appl. Phys., A Mater. Sci. Process. 96(4), 843–850 (2009).
[CrossRef]

N. N. Nedyalkov, T. Sakai, T. Miyanishi, and M. Obara, “Near field properties in the vicinity of gold nanoparticles placed on various substrates for precise nanostructuring,” J. Phys. D Appl. Phys. 39(23), 5037–5042 (2006).
[CrossRef]

Miyazaki, K.

G. Miyaji and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express 16(20), 16265–16271 (2008).
[CrossRef] [PubMed]

G. Miyaji and K. Miyazaki, “Nanoscale ablation on patterned diamondlike carbon film with femtosecond laser pulses,” Appl. Phys. Lett. 91(12), 123102 (2007).
[CrossRef]

G. Miyaji and K. Miyazaki, “Ultrafast dynamics of periodic nanostructure formation on diamondlike carbon films irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 89(19), 191902 (2006).
[CrossRef]

Molian, P. A.

A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
[CrossRef]

Namba, S.

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism of self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[CrossRef]

Neacsu, C. C.

A. Anderson, F. Lücking, T. Prikoszovits, M. Hofer, Z. Cheng, C. C. Neacsu, M. Scharrer, S. Rammler, P. S. J. Russell, G. Tempea, and A. Assion, “Multi-mJ carrier envelope phase stabilized few-cycle pulses generated by a tabletop laser system,” Appl. Phys. B 103, 531–536 (2011).
[CrossRef]

Nedyalkov, N.

S. Imamova, A. Dikovska, N. Nedyalkov, P. Atanasov, M. Sawczak, R. Jendrzejewski, G. Sliwinski, and M. Obara, “Laser nanostructuring of thin Au films for application in surface enhanced Raman spectroscopy,” J. Optoelectron. Adv. Mater. 12, 500–504 (2010).

Nedyalkov, N. N.

Y. Tanaka, G. Obara, A. Zenidaka, N. N. Nedyalkov, M. Terakawa, and M. Obara, “Near-field interaction of two-dimensional high-permittivity spherical particle arrays on substrate in the Mie resonance scattering domain,” Opt. Express 18(26), 27226–27237 (2010).
[CrossRef] [PubMed]

T. Miyanishi, T. Sakai, N. N. Nedyalkov, and M. Obara, “Femtosecond-laser nanofabrication onto silicon surface with near-field localization generated by plasmon polaritons in gold nanoparticles with oblique irradiation,” Appl. Phys., A Mater. Sci. Process. 96(4), 843–850 (2009).
[CrossRef]

Y. Tanaka, N. N. Nedyalkov, and M. Obara, “Enhanced near-field distribution inside substrates mediated with gold particle: optical vortex and bifurcation,” Appl. Phys., A Mater. Sci. Process. 97(1), 91–98 (2009).
[CrossRef]

N. N. Nedyalkov, H. Takada, and M. Obara, “Nanostructuring of silicon surface by femtosecond laser pulse mediated with enhanced near-field of gold nanoparticles,” Appl. Phys., A Mater. Sci. Process. 85(2), 163–168 (2006).
[CrossRef]

N. N. Nedyalkov, T. Sakai, T. Miyanishi, and M. Obara, “Near field properties in the vicinity of gold nanoparticles placed on various substrates for precise nanostructuring,” J. Phys. D Appl. Phys. 39(23), 5037–5042 (2006).
[CrossRef]

Nishizawa, Y.

T. Sakai, Y. Tanaka, Y. Nishizawa, M. Terakawa, and M. Obara, “Size parameter effect of dielectric small particle mediated nano-hole patterning on silicon wafer by femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 99(1), 39–46 (2010).
[CrossRef]

Obara, G.

G. Obara, Y. Tanaka, T. Miyanishi, and M. Obara, “Uniform plasmonic near-field nanopatterning by backward irradiation of femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 102(3), 551–557 (2011).
[CrossRef]

Y. Tanaka, G. Obara, A. Zenidaka, M. Terakawa, and M. Obara, “Femtosecond laser near-field nano-ablation patterning using Mie resonance high dielectric constant particle with small size parameter,” Appl. Phys. Lett. 96(26), 261103 (2010).
[CrossRef]

Y. Tanaka, G. Obara, A. Zenidaka, N. N. Nedyalkov, M. Terakawa, and M. Obara, “Near-field interaction of two-dimensional high-permittivity spherical particle arrays on substrate in the Mie resonance scattering domain,” Opt. Express 18(26), 27226–27237 (2010).
[CrossRef] [PubMed]

Obara, M.

G. Obara, Y. Tanaka, T. Miyanishi, and M. Obara, “Uniform plasmonic near-field nanopatterning by backward irradiation of femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 102(3), 551–557 (2011).
[CrossRef]

T. Sakai, Y. Tanaka, Y. Nishizawa, M. Terakawa, and M. Obara, “Size parameter effect of dielectric small particle mediated nano-hole patterning on silicon wafer by femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 99(1), 39–46 (2010).
[CrossRef]

Y. Tanaka, G. Obara, A. Zenidaka, M. Terakawa, and M. Obara, “Femtosecond laser near-field nano-ablation patterning using Mie resonance high dielectric constant particle with small size parameter,” Appl. Phys. Lett. 96(26), 261103 (2010).
[CrossRef]

S. Imamova, A. Dikovska, N. Nedyalkov, P. Atanasov, M. Sawczak, R. Jendrzejewski, G. Sliwinski, and M. Obara, “Laser nanostructuring of thin Au films for application in surface enhanced Raman spectroscopy,” J. Optoelectron. Adv. Mater. 12, 500–504 (2010).

Y. Tanaka, G. Obara, A. Zenidaka, N. N. Nedyalkov, M. Terakawa, and M. Obara, “Near-field interaction of two-dimensional high-permittivity spherical particle arrays on substrate in the Mie resonance scattering domain,” Opt. Express 18(26), 27226–27237 (2010).
[CrossRef] [PubMed]

Y. Tanaka, N. N. Nedyalkov, and M. Obara, “Enhanced near-field distribution inside substrates mediated with gold particle: optical vortex and bifurcation,” Appl. Phys., A Mater. Sci. Process. 97(1), 91–98 (2009).
[CrossRef]

T. Miyanishi, T. Sakai, N. N. Nedyalkov, and M. Obara, “Femtosecond-laser nanofabrication onto silicon surface with near-field localization generated by plasmon polaritons in gold nanoparticles with oblique irradiation,” Appl. Phys., A Mater. Sci. Process. 96(4), 843–850 (2009).
[CrossRef]

N. N. Nedyalkov, T. Sakai, T. Miyanishi, and M. Obara, “Near field properties in the vicinity of gold nanoparticles placed on various substrates for precise nanostructuring,” J. Phys. D Appl. Phys. 39(23), 5037–5042 (2006).
[CrossRef]

N. N. Nedyalkov, H. Takada, and M. Obara, “Nanostructuring of silicon surface by femtosecond laser pulse mediated with enhanced near-field of gold nanoparticles,” Appl. Phys., A Mater. Sci. Process. 85(2), 163–168 (2006).
[CrossRef]

H. Takada and M. Obara, “Fabrication of hexagonally arrayed nanoholes using femtosecond laser pulse ablation with template of subwavelength polystyrene particle array,” Jpn. J. Appl. Phys. 44, 7993–7997 (2005).
[CrossRef]

M. Ezaki, H. Kumagai, K. Toyoda, and M. Obara, “Surface modification of III-V compound semiconductors using surface electromagnetic wave etching induced by ultraviolet lasers,” IEEE J. Sel. Top. Quantum Electron. 1(3), 841–847 (1995).
[CrossRef]

H. Kumagai, M. Ezaki, K. Toyoda, and M. Obara, “Periodic submicrometer dot structure on n-GaAs substrates fabricated by laser-induced surface electromagnetic wave etching,” J. Appl. Phys. 73(4), 1971–1974 (1993).
[CrossRef]

Okamuro, K.

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism of self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[CrossRef]

Ozkan, A. M.

A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
[CrossRef]

Plech, A.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[CrossRef]

Preston, J.

J. Sipe, J. Young, J. Preston, and H. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

Prikoszovits, T.

A. Anderson, F. Lücking, T. Prikoszovits, M. Hofer, Z. Cheng, C. C. Neacsu, M. Scharrer, S. Rammler, P. S. J. Russell, G. Tempea, and A. Assion, “Multi-mJ carrier envelope phase stabilized few-cycle pulses generated by a tabletop laser system,” Appl. Phys. B 103, 531–536 (2011).
[CrossRef]

Railkar, T. A.

A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
[CrossRef]

Rammler, S.

A. Anderson, F. Lücking, T. Prikoszovits, M. Hofer, Z. Cheng, C. C. Neacsu, M. Scharrer, S. Rammler, P. S. J. Russell, G. Tempea, and A. Assion, “Multi-mJ carrier envelope phase stabilized few-cycle pulses generated by a tabletop laser system,” Appl. Phys. B 103, 531–536 (2011).
[CrossRef]

Rodrigo, S. G.

Rosenfeld, A.

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond –laser pulse,” J. Appl. Phys. 106(10), 104910 (2009).
[CrossRef]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[CrossRef]

Russell, P. S. J.

A. Anderson, F. Lücking, T. Prikoszovits, M. Hofer, Z. Cheng, C. C. Neacsu, M. Scharrer, S. Rammler, P. S. J. Russell, G. Tempea, and A. Assion, “Multi-mJ carrier envelope phase stabilized few-cycle pulses generated by a tabletop laser system,” Appl. Phys. B 103, 531–536 (2011).
[CrossRef]

Sakabe, S.

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism of self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[CrossRef]

Sakai, T.

T. Sakai, Y. Tanaka, Y. Nishizawa, M. Terakawa, and M. Obara, “Size parameter effect of dielectric small particle mediated nano-hole patterning on silicon wafer by femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 99(1), 39–46 (2010).
[CrossRef]

T. Miyanishi, T. Sakai, N. N. Nedyalkov, and M. Obara, “Femtosecond-laser nanofabrication onto silicon surface with near-field localization generated by plasmon polaritons in gold nanoparticles with oblique irradiation,” Appl. Phys., A Mater. Sci. Process. 96(4), 843–850 (2009).
[CrossRef]

N. N. Nedyalkov, T. Sakai, T. Miyanishi, and M. Obara, “Near field properties in the vicinity of gold nanoparticles placed on various substrates for precise nanostructuring,” J. Phys. D Appl. Phys. 39(23), 5037–5042 (2006).
[CrossRef]

Sawczak, M.

S. Imamova, A. Dikovska, N. Nedyalkov, P. Atanasov, M. Sawczak, R. Jendrzejewski, G. Sliwinski, and M. Obara, “Laser nanostructuring of thin Au films for application in surface enhanced Raman spectroscopy,” J. Optoelectron. Adv. Mater. 12, 500–504 (2010).

Scharrer, M.

A. Anderson, F. Lücking, T. Prikoszovits, M. Hofer, Z. Cheng, C. C. Neacsu, M. Scharrer, S. Rammler, P. S. J. Russell, G. Tempea, and A. Assion, “Multi-mJ carrier envelope phase stabilized few-cycle pulses generated by a tabletop laser system,” Appl. Phys. B 103, 531–536 (2011).
[CrossRef]

Shirk, M. D.

A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
[CrossRef]

Sipe, J.

J. Young, J. Sipe, and H. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Phys. Rev. B 30, 2001–2015 (1984).
[CrossRef]

J. Sipe, J. Young, J. Preston, and H. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

Skupin, S.

L. Bergé, C.-L. Soulez, C. Köhler, and S. Skupin, “Role of the carrier-envelop phase in laser filamentation,” Appl. Phys. B 103(3), 563–570 (2011).
[CrossRef]

Sliwinski, G.

S. Imamova, A. Dikovska, N. Nedyalkov, P. Atanasov, M. Sawczak, R. Jendrzejewski, G. Sliwinski, and M. Obara, “Laser nanostructuring of thin Au films for application in surface enhanced Raman spectroscopy,” J. Optoelectron. Adv. Mater. 12, 500–504 (2010).

Song, W. D.

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[CrossRef]

Soulez, C.-L.

L. Bergé, C.-L. Soulez, C. Köhler, and S. Skupin, “Role of the carrier-envelop phase in laser filamentation,” Appl. Phys. B 103(3), 563–570 (2011).
[CrossRef]

Takada, H.

N. N. Nedyalkov, H. Takada, and M. Obara, “Nanostructuring of silicon surface by femtosecond laser pulse mediated with enhanced near-field of gold nanoparticles,” Appl. Phys., A Mater. Sci. Process. 85(2), 163–168 (2006).
[CrossRef]

H. Takada and M. Obara, “Fabrication of hexagonally arrayed nanoholes using femtosecond laser pulse ablation with template of subwavelength polystyrene particle array,” Jpn. J. Appl. Phys. 44, 7993–7997 (2005).
[CrossRef]

Tanaka, Y.

G. Obara, Y. Tanaka, T. Miyanishi, and M. Obara, “Uniform plasmonic near-field nanopatterning by backward irradiation of femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 102(3), 551–557 (2011).
[CrossRef]

T. Sakai, Y. Tanaka, Y. Nishizawa, M. Terakawa, and M. Obara, “Size parameter effect of dielectric small particle mediated nano-hole patterning on silicon wafer by femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 99(1), 39–46 (2010).
[CrossRef]

Y. Tanaka, G. Obara, A. Zenidaka, M. Terakawa, and M. Obara, “Femtosecond laser near-field nano-ablation patterning using Mie resonance high dielectric constant particle with small size parameter,” Appl. Phys. Lett. 96(26), 261103 (2010).
[CrossRef]

Y. Tanaka, G. Obara, A. Zenidaka, N. N. Nedyalkov, M. Terakawa, and M. Obara, “Near-field interaction of two-dimensional high-permittivity spherical particle arrays on substrate in the Mie resonance scattering domain,” Opt. Express 18(26), 27226–27237 (2010).
[CrossRef] [PubMed]

Y. Tanaka, N. N. Nedyalkov, and M. Obara, “Enhanced near-field distribution inside substrates mediated with gold particle: optical vortex and bifurcation,” Appl. Phys., A Mater. Sci. Process. 97(1), 91–98 (2009).
[CrossRef]

Tempea, G.

A. Anderson, F. Lücking, T. Prikoszovits, M. Hofer, Z. Cheng, C. C. Neacsu, M. Scharrer, S. Rammler, P. S. J. Russell, G. Tempea, and A. Assion, “Multi-mJ carrier envelope phase stabilized few-cycle pulses generated by a tabletop laser system,” Appl. Phys. B 103, 531–536 (2011).
[CrossRef]

Terakawa, M.

Y. Tanaka, G. Obara, A. Zenidaka, N. N. Nedyalkov, M. Terakawa, and M. Obara, “Near-field interaction of two-dimensional high-permittivity spherical particle arrays on substrate in the Mie resonance scattering domain,” Opt. Express 18(26), 27226–27237 (2010).
[CrossRef] [PubMed]

T. Sakai, Y. Tanaka, Y. Nishizawa, M. Terakawa, and M. Obara, “Size parameter effect of dielectric small particle mediated nano-hole patterning on silicon wafer by femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 99(1), 39–46 (2010).
[CrossRef]

Y. Tanaka, G. Obara, A. Zenidaka, M. Terakawa, and M. Obara, “Femtosecond laser near-field nano-ablation patterning using Mie resonance high dielectric constant particle with small size parameter,” Appl. Phys. Lett. 96(26), 261103 (2010).
[CrossRef]

Tokita, S.

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism of self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[CrossRef]

Tomita, T.

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
[CrossRef]

Toyoda, K.

M. Ezaki, H. Kumagai, K. Toyoda, and M. Obara, “Surface modification of III-V compound semiconductors using surface electromagnetic wave etching induced by ultraviolet lasers,” IEEE J. Sel. Top. Quantum Electron. 1(3), 841–847 (1995).
[CrossRef]

H. Kumagai, M. Ezaki, K. Toyoda, and M. Obara, “Periodic submicrometer dot structure on n-GaAs substrates fabricated by laser-induced surface electromagnetic wave etching,” J. Appl. Phys. 73(4), 1971–1974 (1993).
[CrossRef]

Turunen, J.

H. J. Hyvärinen, J. Turunen, and P. Vahimaa, “Elementary-field modeling of surface-plasmon excitation with partially coherent light,” Appl. Phys. B 101(1-2), 273–282 (2010).
[CrossRef]

Vahimaa, P.

H. J. Hyvärinen, J. Turunen, and P. Vahimaa, “Elementary-field modeling of surface-plasmon excitation with partially coherent light,” Appl. Phys. B 101(1-2), 273–282 (2010).
[CrossRef]

van Driel, H.

J. Young, J. Sipe, and H. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Phys. Rev. B 30, 2001–2015 (1984).
[CrossRef]

J. Sipe, J. Young, J. Preston, and H. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Xu, Z.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Young, J.

J. Young, J. Sipe, and H. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Phys. Rev. B 30, 2001–2015 (1984).
[CrossRef]

J. Sipe, J. Young, J. Preston, and H. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

Zenidaka, A.

Y. Tanaka, G. Obara, A. Zenidaka, N. N. Nedyalkov, M. Terakawa, and M. Obara, “Near-field interaction of two-dimensional high-permittivity spherical particle arrays on substrate in the Mie resonance scattering domain,” Opt. Express 18(26), 27226–27237 (2010).
[CrossRef] [PubMed]

Y. Tanaka, G. Obara, A. Zenidaka, M. Terakawa, and M. Obara, “Femtosecond laser near-field nano-ablation patterning using Mie resonance high dielectric constant particle with small size parameter,” Appl. Phys. Lett. 96(26), 261103 (2010).
[CrossRef]

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Zheng, Y. W.

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[CrossRef]

ACS Nano (1)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Ann. Phys. (1)

G. Mie, “Beiträ ge zur Optik trü ber Medien, speziell kolloidaler Metallö sungen,” Ann. Phys. 330(3), 377–445 (1908).
[CrossRef]

Appl. Phys. B (3)

A. Anderson, F. Lücking, T. Prikoszovits, M. Hofer, Z. Cheng, C. C. Neacsu, M. Scharrer, S. Rammler, P. S. J. Russell, G. Tempea, and A. Assion, “Multi-mJ carrier envelope phase stabilized few-cycle pulses generated by a tabletop laser system,” Appl. Phys. B 103, 531–536 (2011).
[CrossRef]

L. Bergé, C.-L. Soulez, C. Köhler, and S. Skupin, “Role of the carrier-envelop phase in laser filamentation,” Appl. Phys. B 103(3), 563–570 (2011).
[CrossRef]

H. J. Hyvärinen, J. Turunen, and P. Vahimaa, “Elementary-field modeling of surface-plasmon excitation with partially coherent light,” Appl. Phys. B 101(1-2), 273–282 (2010).
[CrossRef]

Appl. Phys. Lett. (6)

G. Miyaji and K. Miyazaki, “Nanoscale ablation on patterned diamondlike carbon film with femtosecond laser pulses,” Appl. Phys. Lett. 91(12), 123102 (2007).
[CrossRef]

A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
[CrossRef]

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[CrossRef]

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
[CrossRef]

G. Miyaji and K. Miyazaki, “Ultrafast dynamics of periodic nanostructure formation on diamondlike carbon films irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 89(19), 191902 (2006).
[CrossRef]

Y. Tanaka, G. Obara, A. Zenidaka, M. Terakawa, and M. Obara, “Femtosecond laser near-field nano-ablation patterning using Mie resonance high dielectric constant particle with small size parameter,” Appl. Phys. Lett. 96(26), 261103 (2010).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (5)

G. Obara, Y. Tanaka, T. Miyanishi, and M. Obara, “Uniform plasmonic near-field nanopatterning by backward irradiation of femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 102(3), 551–557 (2011).
[CrossRef]

T. Sakai, Y. Tanaka, Y. Nishizawa, M. Terakawa, and M. Obara, “Size parameter effect of dielectric small particle mediated nano-hole patterning on silicon wafer by femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 99(1), 39–46 (2010).
[CrossRef]

N. N. Nedyalkov, H. Takada, and M. Obara, “Nanostructuring of silicon surface by femtosecond laser pulse mediated with enhanced near-field of gold nanoparticles,” Appl. Phys., A Mater. Sci. Process. 85(2), 163–168 (2006).
[CrossRef]

T. Miyanishi, T. Sakai, N. N. Nedyalkov, and M. Obara, “Femtosecond-laser nanofabrication onto silicon surface with near-field localization generated by plasmon polaritons in gold nanoparticles with oblique irradiation,” Appl. Phys., A Mater. Sci. Process. 96(4), 843–850 (2009).
[CrossRef]

Y. Tanaka, N. N. Nedyalkov, and M. Obara, “Enhanced near-field distribution inside substrates mediated with gold particle: optical vortex and bifurcation,” Appl. Phys., A Mater. Sci. Process. 97(1), 91–98 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Ezaki, H. Kumagai, K. Toyoda, and M. Obara, “Surface modification of III-V compound semiconductors using surface electromagnetic wave etching induced by ultraviolet lasers,” IEEE J. Sel. Top. Quantum Electron. 1(3), 841–847 (1995).
[CrossRef]

J. Appl. Phys. (4)

H. Kumagai, M. Ezaki, K. Toyoda, and M. Obara, “Periodic submicrometer dot structure on n-GaAs substrates fabricated by laser-induced surface electromagnetic wave etching,” J. Appl. Phys. 73(4), 1971–1974 (1993).
[CrossRef]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[CrossRef]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond –laser pulse,” J. Appl. Phys. 106(10), 104910 (2009).
[CrossRef]

S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002).
[CrossRef]

J. Optoelectron. Adv. Mater. (1)

S. Imamova, A. Dikovska, N. Nedyalkov, P. Atanasov, M. Sawczak, R. Jendrzejewski, G. Sliwinski, and M. Obara, “Laser nanostructuring of thin Au films for application in surface enhanced Raman spectroscopy,” J. Optoelectron. Adv. Mater. 12, 500–504 (2010).

J. Phys. D Appl. Phys. (1)

N. N. Nedyalkov, T. Sakai, T. Miyanishi, and M. Obara, “Near field properties in the vicinity of gold nanoparticles placed on various substrates for precise nanostructuring,” J. Phys. D Appl. Phys. 39(23), 5037–5042 (2006).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Takada and M. Obara, “Fabrication of hexagonally arrayed nanoholes using femtosecond laser pulse ablation with template of subwavelength polystyrene particle array,” Jpn. J. Appl. Phys. 44, 7993–7997 (2005).
[CrossRef]

Nat. Phys. (1)

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[CrossRef]

Nature (1)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Opt. Express (3)

Phys. Rev. B (5)

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism of self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[CrossRef]

J. Sipe, J. Young, J. Preston, and H. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

F. Jeff, “Young, J. F. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27, 1155–1172 (1983).

J. Young, J. Sipe, and H. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Phys. Rev. B 30, 2001–2015 (1984).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B Condens. Matter 34(10), 7018–7026 (1986).
[CrossRef] [PubMed]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

S. Kawata, Near-Field Optics and Surface Plasmon Polaritons (Springer, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

SEM images of the silicon surface after the laser irradiation. (a) Ripples. (b) Close-up picture near the center (different area) and nano-dotted substructure size is 30 nm approximately. The 400 nm femtosecond laser with circular polarization illuminated normally the surface with 20 pulses at 1 kHz. The laser fluence is 80 mJ/cm2, which is below the bulk silicon ablation threshold.

Fig. 2
Fig. 2

SEM image of the silicon surface after the laser irradiation. The 400 nm femtosecond laser with circular polarization illuminated normally the surface with 20 pulses at 1 kHz. The laser fluence is 100 mJ/cm2, which is equivalent to the bulk silicon ablation threshold.

Fig. 3
Fig. 3

The simulated optical field intensity ripples induced by a single gold particle on silicon substrate. The incident electric field strength is 1 V/m at 400 nm. The circular polarization pulse is incident normally to the surface. (a) Irradiation schematic. (b) Optical intensity distribution on xy plane at z = −5 nm for silicon. (c) Optical intensity distribution on xy plane at z = − 5 nm for metal-like silicon.

Fig. 4
Fig. 4

The simulated optical field intensity ripples induced by a single silicon particle (200 nm diameter) on silicon substrate. The circular polarization beam at 800 nm is incident normally to the surface. (a) Irradiation schematic. (b) Optical intensity ripple distribution on xy plane at z = −5 nm for silicon. (c) Optical field intensity distribution on xy plane at z = −5 nm for metal-like silicon.

Fig. 5
Fig. 5

(a)The simulated optical field intensity ripples around a square mesa of silicon on silicon substrate. The silicon square mesa is 200 nm x 200 nm and is 200 nm high. (a) The linear polarization pulse is incident along x axis. (b) Optical field distribution on xy plane at z = −5 nm for metal-like silicon. (c) The optical field intensity profile along y axis (along the dotted line in Fig. 5(b)).

Fig. 6
Fig. 6

(a) The simulated optical field intensity ripples around two square mesa structures (3200 nm distant) of silicon on silicon substrate. The incident linear polarization is along x axis. (b) Optical field distribution on xy plane at z = −5 nm for metal-like silicon. (c) The optical field intensity profile along y axis (along the dotted line in Fig. 6(b)).

Fig. 7
Fig. 7

(Color online) The simulated optical field intensity ripples induced by a gold nano ridge structure on silicon substrate for silicon. The incident linear polarization is orthogonal to the ridge. (a) Irradiation schematic. (b) Optical field distribution on xy plane at z = −5 nm for silicon. (c) Optical field intensity profile along y axis at x = 0. Note that | E x|2 = 0 and |E z|2 = 0.

Fig. 8
Fig. 8

The simulated optical field intensity ripples induced by silicon nano-ridge structure on silicon substrate. The incident linear polarization is orthogonal to the ridge. (a) Irradiation schematic. (b) Optical field distribution on xy plane at z = −5 nm for metal-like silicon.

Fig. 9
Fig. 9

The simulated optical field intensity ripples induced by V-trench on silicon substrate. The linear polarization pulse is incident orthogonal to the trench. (a) Irradiation schematic. (b) Optical intensity distribution on xy plane at z = −5 nm for metal-like silicon.

Fig. 10
Fig. 10

The simulated optical field intensity ripples induced by (a) L-shaped gold ridge structure, and (b) L-shaped, V-trench both on Si substrate. The dimension of the gold nano-ridge is 200 nm width x 200 nm height x 4000 nm length. The dimension of the V-trench is 400 nm width and 200 nm depth. The circular polarization pulse is at normal incidence to the silicon surface. (a) Optical intensity distribution at z = −5 nm for gold ridge and metal-like silicon. (b) Optical intensity distribution at z = −5 nm for V-trench and metal-like silicon.

Fig. 11
Fig. 11

The simulated optical field intensity ripples induced by a trench on gold (Au) substrate. The dimension of the trench is 200 nm width and 200 nm depth. The incident linear polarization is orthogonal to the trench. (a) Irradiation schematic. (b) Optical field intensity on xy plane at z = −5 nm. (c) Optical field intensity along y axis (along the dotted black line in Fig. 11(b)).

Fig. 12
Fig. 12

The simulated optical field intensity ripples induced by a trench on tungsten (W) substrate. The incident linear polarization pulse is orthogonal to the trench. (a) Irradiation schematic. (b) Optical field intensity on xy plane at z = −5 nm. (c) Optical field intensity along y axis (along the white dotted line in Fig. 12(b)).

Metrics