Abstract

Current methods to calculate the emission enhancement of a quantum emitter coupled to an optical antenna of arbitrary geometry rely on analyzing the total Poynting vector power flow out of the emitter or the dyadic Green functions from full-field numerical simulations. Unfortunately, these methods do not provide information regarding the nature of the dominant energy decay pathways. We present a new approach that allows for a rigorous separation, quantification, and visualization of the emitter output power flow captured by an antenna and the subsequent reradiation power flow to the far field. Such analysis reveals unprecedented details of the emitter/antenna coupling mechanisms and thus opens up new design strategies for strongly interacting emitter/antenna systems used in sensing, active plasmonics and metamaterials, and quantum optics.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  2. P. R. Berman, Cavity Quantum Electrodynamics (Academic Press, 1994).
  3. Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78, 153111 (2008).
    [CrossRef]
  4. R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmonic resonances,” Phys. Rev. Lett. 104, 026802 (2010).
    [CrossRef] [PubMed]
  5. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
    [CrossRef]
  6. M. V. Bashevoy, V. A. Fedotov, and N. I. Zheludev, “Optical whirlpool on an absorbing metallic nanoparticle,” Opt. Express 13, 8372–8379 (2005).
    [CrossRef] [PubMed]
  7. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10, 105005 (2008).
    [CrossRef]
  8. R. M. Bakker, V. P. Drachev, Z. Liu, H. Yuang, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” N. J. Phys. 10, 125022 (2008).
    [CrossRef]
  9. D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. D. Lukin, “Strong coupling of single emitters to surface plasmon,” Phys. Rev. B 76, 035420 (2007).
    [CrossRef]
  10. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
    [CrossRef]
  11. J. N. Farahani, H. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506 (2007).
    [CrossRef]
  12. L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623–1625 (2007).
    [CrossRef] [PubMed]
  13. S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
    [CrossRef] [PubMed]
  14. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
    [CrossRef] [PubMed]
  15. P. G. Etchegoin and E. C. L. Ru, “Multipolar emission in the vicinity of metallic nanostructures,” J. Phys. Condens. Matter 18, 1175–1188 (2006).
    [CrossRef]
  16. Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat. Commun. 2, 283 (2011).
    [CrossRef] [PubMed]
  17. A. F. Koenderink, “On the use of purcell factors for plasmon antennas,” Opt. Lett. 35, 4208–4210 (2010).
    [CrossRef] [PubMed]
  18. H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410–3416 (1988).
    [CrossRef] [PubMed]
  19. R. R. Chance, A. Prock, and R. Silbey, Molecular Fluorescence and Energy Transfer Near Interfaces (Wiley, 1978), Vol. 37.
  20. L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge Univ. Press, 2006).
  21. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical nanorod antennas modeled as cavities for dipolar emitters: optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant mode,” Nano Lett. 11, 1020–1024 (2011).
    [CrossRef] [PubMed]
  22. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  23. C. F. Bohren, “How can a particle absorb more than the light incident on it?” Am. J. Phys. 51, 323–327 (1983).
    [CrossRef]
  24. H. T. Miyazaki and Y. Kurokawa, “How can a resonant nanogap enhnace optical fields by many orders of magnitude?” IEEE J. Sel. Top. Quantum Electron. 14, 1565–1576 (2008).
    [CrossRef]
  25. E. S. Barnard, J. S. White, A. Chandran, and M. L. Brongersma, “Spectral properties of plasmonic resonator antennas,” Opt. Express 16, 16529–16537 (2008).
    [CrossRef] [PubMed]
  26. G. D. Valle, T. Sondergaard, and S. I. Bozhevolnyi, “Plasmon-polariton nano-strip resonators: from visible to infra-red,” Opt. Express 16, 6867–6876 (2008).
    [CrossRef] [PubMed]
  27. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005), 3rd ed.

2011

Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat. Commun. 2, 283 (2011).
[CrossRef] [PubMed]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical nanorod antennas modeled as cavities for dipolar emitters: optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant mode,” Nano Lett. 11, 1020–1024 (2011).
[CrossRef] [PubMed]

2010

A. F. Koenderink, “On the use of purcell factors for plasmon antennas,” Opt. Lett. 35, 4208–4210 (2010).
[CrossRef] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef] [PubMed]

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmonic resonances,” Phys. Rev. Lett. 104, 026802 (2010).
[CrossRef] [PubMed]

2009

2008

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78, 153111 (2008).
[CrossRef]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[CrossRef]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10, 105005 (2008).
[CrossRef]

R. M. Bakker, V. P. Drachev, Z. Liu, H. Yuang, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” N. J. Phys. 10, 125022 (2008).
[CrossRef]

H. T. Miyazaki and Y. Kurokawa, “How can a resonant nanogap enhnace optical fields by many orders of magnitude?” IEEE J. Sel. Top. Quantum Electron. 14, 1565–1576 (2008).
[CrossRef]

E. S. Barnard, J. S. White, A. Chandran, and M. L. Brongersma, “Spectral properties of plasmonic resonator antennas,” Opt. Express 16, 16529–16537 (2008).
[CrossRef] [PubMed]

G. D. Valle, T. Sondergaard, and S. I. Bozhevolnyi, “Plasmon-polariton nano-strip resonators: from visible to infra-red,” Opt. Express 16, 6867–6876 (2008).
[CrossRef] [PubMed]

2007

D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. D. Lukin, “Strong coupling of single emitters to surface plasmon,” Phys. Rev. B 76, 035420 (2007).
[CrossRef]

J. N. Farahani, H. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506 (2007).
[CrossRef]

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623–1625 (2007).
[CrossRef] [PubMed]

2006

S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

P. G. Etchegoin and E. C. L. Ru, “Multipolar emission in the vicinity of metallic nanostructures,” J. Phys. Condens. Matter 18, 1175–1188 (2006).
[CrossRef]

2005

1988

H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410–3416 (1988).
[CrossRef] [PubMed]

1983

C. F. Bohren, “How can a particle absorb more than the light incident on it?” Am. J. Phys. 51, 323–327 (1983).
[CrossRef]

1946

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Agio, M.

Bakker, R. M.

R. M. Bakker, V. P. Drachev, Z. Liu, H. Yuang, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” N. J. Phys. 10, 125022 (2008).
[CrossRef]

Barnard, E. S.

Bashevoy, M. V.

Berman, P. R.

P. R. Berman, Cavity Quantum Electrodynamics (Academic Press, 1994).

Bharadwaj, P.

Bohren, C. F.

C. F. Bohren, “How can a particle absorb more than the light incident on it?” Am. J. Phys. 51, 323–327 (1983).
[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Boltasseva, A.

R. M. Bakker, V. P. Drachev, Z. Liu, H. Yuang, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” N. J. Phys. 10, 125022 (2008).
[CrossRef]

Bozhevolnyi, S. I.

Brongersma, M. L.

Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat. Commun. 2, 283 (2011).
[CrossRef] [PubMed]

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78, 153111 (2008).
[CrossRef]

E. S. Barnard, J. S. White, A. Chandran, and M. L. Brongersma, “Spectral properties of plasmonic resonator antennas,” Opt. Express 16, 16529–16537 (2008).
[CrossRef] [PubMed]

Chance, R. R.

R. R. Chance, A. Prock, and R. Silbey, Molecular Fluorescence and Energy Transfer Near Interfaces (Wiley, 1978), Vol. 37.

Chandran, A.

Chang, D. E.

D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. D. Lukin, “Strong coupling of single emitters to surface plasmon,” Phys. Rev. B 76, 035420 (2007).
[CrossRef]

Chen, J.

R. M. Bakker, V. P. Drachev, Z. Liu, H. Yuang, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” N. J. Phys. 10, 125022 (2008).
[CrossRef]

Chew, H.

H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410–3416 (1988).
[CrossRef] [PubMed]

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef] [PubMed]

Deutsch, B.

Drachev, V. P.

R. M. Bakker, V. P. Drachev, Z. Liu, H. Yuang, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” N. J. Phys. 10, 125022 (2008).
[CrossRef]

Eisler, H.

J. N. Farahani, H. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506 (2007).
[CrossRef]

Esteban, R.

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmonic resonances,” Phys. Rev. Lett. 104, 026802 (2010).
[CrossRef] [PubMed]

Etchegoin, P. G.

P. G. Etchegoin and E. C. L. Ru, “Multipolar emission in the vicinity of metallic nanostructures,” J. Phys. Condens. Matter 18, 1175–1188 (2006).
[CrossRef]

Farahani, J. N.

J. N. Farahani, H. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506 (2007).
[CrossRef]

Fedotov, V. A.

Fluckiger, P.

J. N. Farahani, H. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506 (2007).
[CrossRef]

Gasser, P.

J. N. Farahani, H. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506 (2007).
[CrossRef]

Greffet, J. J.

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmonic resonances,” Phys. Rev. Lett. 104, 026802 (2010).
[CrossRef] [PubMed]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005), 3rd ed.

Hakanson, U.

S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Hecht, B.

J. N. Farahani, H. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506 (2007).
[CrossRef]

L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge Univ. Press, 2006).

Hemmer, P. R.

D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. D. Lukin, “Strong coupling of single emitters to surface plasmon,” Phys. Rev. B 76, 035420 (2007).
[CrossRef]

Huang, K. C. Y.

Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat. Commun. 2, 283 (2011).
[CrossRef] [PubMed]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Irudayaraj, J.

R. M. Bakker, V. P. Drachev, Z. Liu, H. Yuang, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” N. J. Phys. 10, 125022 (2008).
[CrossRef]

Jun, Y. C.

Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat. Commun. 2, 283 (2011).
[CrossRef] [PubMed]

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78, 153111 (2008).
[CrossRef]

Kaminski, F.

Kekatpure, R. D.

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78, 153111 (2008).
[CrossRef]

Kildishev, A. V.

R. M. Bakker, V. P. Drachev, Z. Liu, H. Yuang, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” N. J. Phys. 10, 125022 (2008).
[CrossRef]

Koenderink, A. F.

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef] [PubMed]

Kuhn, S.

S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Kurokawa, Y.

H. T. Miyazaki and Y. Kurokawa, “How can a resonant nanogap enhnace optical fields by many orders of magnitude?” IEEE J. Sel. Top. Quantum Electron. 14, 1565–1576 (2008).
[CrossRef]

Liu, Z.

R. M. Bakker, V. P. Drachev, Z. Liu, H. Yuang, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” N. J. Phys. 10, 125022 (2008).
[CrossRef]

Lukin, M. D.

D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. D. Lukin, “Strong coupling of single emitters to surface plasmon,” Phys. Rev. B 76, 035420 (2007).
[CrossRef]

Miyazaki, H. T.

H. T. Miyazaki and Y. Kurokawa, “How can a resonant nanogap enhnace optical fields by many orders of magnitude?” IEEE J. Sel. Top. Quantum Electron. 14, 1565–1576 (2008).
[CrossRef]

Novotny, L.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
[CrossRef]

L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge Univ. Press, 2006).

Pavius, M.

J. N. Farahani, H. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506 (2007).
[CrossRef]

Pedersen, R. H.

R. M. Bakker, V. P. Drachev, Z. Liu, H. Yuang, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” N. J. Phys. 10, 125022 (2008).
[CrossRef]

Pohl, D. W.

J. N. Farahani, H. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506 (2007).
[CrossRef]

Prock, A.

R. R. Chance, A. Prock, and R. Silbey, Molecular Fluorescence and Energy Transfer Near Interfaces (Wiley, 1978), Vol. 37.

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef] [PubMed]

Rogobete, L.

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623–1625 (2007).
[CrossRef] [PubMed]

S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Ru, E. C. L.

P. G. Etchegoin and E. C. L. Ru, “Multipolar emission in the vicinity of metallic nanostructures,” J. Phys. Condens. Matter 18, 1175–1188 (2006).
[CrossRef]

Sandoghdar, V.

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett. 32, 1623–1625 (2007).
[CrossRef] [PubMed]

S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Segerink, F. B.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[CrossRef]

Shalaev, V. M.

R. M. Bakker, V. P. Drachev, Z. Liu, H. Yuang, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” N. J. Phys. 10, 125022 (2008).
[CrossRef]

Silbey, R.

R. R. Chance, A. Prock, and R. Silbey, Molecular Fluorescence and Energy Transfer Near Interfaces (Wiley, 1978), Vol. 37.

Sondergaard, T.

Sorensen, A. S.

D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. D. Lukin, “Strong coupling of single emitters to surface plasmon,” Phys. Rev. B 76, 035420 (2007).
[CrossRef]

Stefani, F. D.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical nanorod antennas modeled as cavities for dipolar emitters: optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant mode,” Nano Lett. 11, 1020–1024 (2011).
[CrossRef] [PubMed]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[CrossRef]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10, 105005 (2008).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005), 3rd ed.

Taminiau, T. H.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical nanorod antennas modeled as cavities for dipolar emitters: optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant mode,” Nano Lett. 11, 1020–1024 (2011).
[CrossRef] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef] [PubMed]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10, 105005 (2008).
[CrossRef]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[CrossRef]

Teperik, T. V.

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmonic resonances,” Phys. Rev. Lett. 104, 026802 (2010).
[CrossRef] [PubMed]

Valle, G. D.

van Hulst, N. F.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical nanorod antennas modeled as cavities for dipolar emitters: optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant mode,” Nano Lett. 11, 1020–1024 (2011).
[CrossRef] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef] [PubMed]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[CrossRef]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10, 105005 (2008).
[CrossRef]

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef] [PubMed]

White, J. S.

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78, 153111 (2008).
[CrossRef]

E. S. Barnard, J. S. White, A. Chandran, and M. L. Brongersma, “Spectral properties of plasmonic resonator antennas,” Opt. Express 16, 16529–16537 (2008).
[CrossRef] [PubMed]

Yuang, H.

R. M. Bakker, V. P. Drachev, Z. Liu, H. Yuang, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” N. J. Phys. 10, 125022 (2008).
[CrossRef]

Zheludev, N. I.

Adv. Opt. Photon.

Am. J. Phys.

C. F. Bohren, “How can a particle absorb more than the light incident on it?” Am. J. Phys. 51, 323–327 (1983).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

H. T. Miyazaki and Y. Kurokawa, “How can a resonant nanogap enhnace optical fields by many orders of magnitude?” IEEE J. Sel. Top. Quantum Electron. 14, 1565–1576 (2008).
[CrossRef]

J. Phys. Condens. Matter

P. G. Etchegoin and E. C. L. Ru, “Multipolar emission in the vicinity of metallic nanostructures,” J. Phys. Condens. Matter 18, 1175–1188 (2006).
[CrossRef]

N. J. Phys.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10, 105005 (2008).
[CrossRef]

R. M. Bakker, V. P. Drachev, Z. Liu, H. Yuang, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” N. J. Phys. 10, 125022 (2008).
[CrossRef]

Nano Lett.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Optical nanorod antennas modeled as cavities for dipolar emitters: optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant mode,” Nano Lett. 11, 1020–1024 (2011).
[CrossRef] [PubMed]

Nanotechnology

J. N. Farahani, H. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506 (2007).
[CrossRef]

Nat. Commun.

Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat. Commun. 2, 283 (2011).
[CrossRef] [PubMed]

Nat. Photonics

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. A

H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410–3416 (1988).
[CrossRef] [PubMed]

Phys. Rev. B

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78, 153111 (2008).
[CrossRef]

D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. D. Lukin, “Strong coupling of single emitters to surface plasmon,” Phys. Rev. B 76, 035420 (2007).
[CrossRef]

Phys. Rev. Lett.

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmonic resonances,” Phys. Rev. Lett. 104, 026802 (2010).
[CrossRef] [PubMed]

S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Science

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef] [PubMed]

Other

R. R. Chance, A. Prock, and R. Silbey, Molecular Fluorescence and Energy Transfer Near Interfaces (Wiley, 1978), Vol. 37.

L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge Univ. Press, 2006).

P. R. Berman, Cavity Quantum Electrodynamics (Academic Press, 1994).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005), 3rd ed.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Linear plot of the magnitude of the electric field for the lowest order eigenmode for a 20nm thick Ag PRA in air. (b) Linear plot of the magnitude of the scattered electric field due to the excitation by a vertically oriented electric dipole placed 20nm beneath the left end of a Ag PRA.

Fig. 2
Fig. 2

Ratio of antenna-directed emission to direct free space emission of a vertically oriented dipole placed underneath the edge of a 20nm thick by 246nm wide horizontal PRA as a function of separation. Ratio of PRA transfer power flow to free space emission |Ptransf |/Pfs (solid black). Ratio of far-field radiated power per radian at 90°and 0°(red dashed). Far-field emission pattern for separations of 20, 80 and 500nm are shown as well.

Fig. 3
Fig. 3

Total radiative efficiency Prad /Ptot (solid black) and PRA radiative efficiency Pscat /|Ptransf | (red dashed) as a function of the PRA width.

Fig. 4
Fig. 4

Decay channel coupling strengths of a vertically oriented dipole placed underneath the center of a 20nm thick 600nm wide horizontal PRA as a function of separation (inset). Total decay enhancement Ptot (solid black), radiative decay enhancement Prad (thick green dotted), transferred power to the PRA |Ptransf | (thin blue dotted), free space radiation mode emission Pfs (thin red dash dot) and non-radiative decay enhancement Pnrad (thick orange dash dot).

Fig. 5
Fig. 5

Visualizations of the emission properties of a vertically oriented dipole placed 20nm underneath the center of a 20nm thick 600nm wide horizontal PRA. (a) Log plot of the magnitude of total Poynting vector S⃗tot . (b) Log plot of the magnitude of emitter output Poynting vector S⃗out . (c) Log plot of the magnitude of PRA scattering Poynting vector S⃗scat .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S o u t = 1 2 { E i n c × H i n c * + E i n c × H s c a t * + E s c a t × H i n c * } S s c a t = 1 2 { E s c a t × H s c a t * }
P t o t P i n c = A S t o t n ^ d A A S i n c n ^ d A = 1 + A S c r o s s n ^ d A A S i n c n ^ d A

Metrics